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Control measures have significantly reduced malaria morbidity and mortality in the last two
decades; however, the downward trends have stalled and have become complicated by
the emergence of COVID-19. Significant efforts have been made to develop malaria
vaccines, but currently only the RTS,S/AS01 vaccine against Plasmodium falciparum has
been recommended by the WHO, for widespread use among children in sub-Saharan
Africa. The efficacy of RTS,S/AS01 is modest, and therefore the development of more
efficacious vaccines is still needed. In addition, the development of transmission-blocking
vaccines (TBVs) to reduce the parasite transmission from humans to mosquitoes is
required toward the goal of malaria elimination. Few TBVs have reached clinical
development, and challenges include low immunogenicity or high reactogenicity in
humans. Therefore, novel approaches to accelerate TBV research and development are
urgently needed, especially novel TBV candidate discovery. In this mini review we
summarize the progress in TBV research and development, novel TBV candidate
discovery, and discuss how to accelerate novel TBV candidate discovery.

Keywords: immuno-profiling, malaria, Plasmodium, reverse vaccinology, transmission-blocking vaccine (TBV),
wheat germ cell-free system (WGCFS)
INTRODUCTION

Malaria continues to be responsible for a substantial global health burden, with 409,000 malarial
deaths reported in 2019 (WHO, 2020). From 2000 to 2015, malaria morbidity and mortality were
significantly reduced; however, the decreasing trend stalled between 2015 and 2019 and was further
complicated by the emergence of COVID-19 (Wang et al., 2020; WHO, 2020). Therefore, the
Abbreviations: AnAPN1, anopheline alanyl aminopeptidase N 1; BDES, baculovirus dual expression system; E., Escherichia;
EPA, ExoProtein A from Pseudomonas aeruginosa; HAP2/GCS1, Hapless 2/Generative Cell Specific 1; IFA, indirect
immunofluorescence assay; MiGS, microgamete surface protein; P., Plasmodium; PH, pleckstrin homology; PSOP, putative
secreted ookinete protein; SMFA, standard membrane feeding assay; TBA, transmission-blocking activity; TBV, transmission-
blocking vaccine; TRA, transmission-reducing activity; WGCFS, wheat germ cell-free system; WHO, The World
Health Organization.
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control and eventual eradication of this disease relies on the
development of a highly effective malaria vaccine.

Malaria vaccines can be categorized into three groups, each
targeting distinct parasite developmental stages: pre-erythrocytic
(sporozoite and liver), asexual erythrocytic, and sexual
transmission stages. The renewed Malaria Vaccine Technology
Roadmap proposes two main objectives by 2030 for the
development of new malaria vaccines targeting both
Plasmodium falciparum and Plasmodium vivax: i) vaccines with
protective efficacy of at least 75% against clinical malaria, and ii)
vaccines that reduce transmission of the parasite (Group, 2013;
Moorthy et al., 2013). A leading malaria vaccine RTS,S/AS01 was
the first malaria vaccine to enter Phase III clinical trials and shows
modest efficacy against clinical falciparum malaria (RTS, 2015)
with short durability (White et al., 2015). It is currently being
evaluated in a large pilot implementation program in Ghana,
Kenya, and Malawi since 2019 (Adepoju, 2019). The vaccine
reduced severe malaria by about 30% in the first 2 years of the
program (Vogel, 2021). Based on this, the World Health
Organization (WHO) is now recommending widespread use of
the RTS,S/AS01 malaria vaccine among children in sub-Saharan
Africa and in other regions with moderate to high P. falciparum
malaria transmission (Vogel, 2021).

Since the RTS,S/AS01 vaccine efficacy is modest, the
development of more efficacious vaccines is still needed. A
number of second-generation malaria vaccines are in clinical
trials, such as R21/Matrix-M (Datoo et al., 2021). However, the
above mentioned two malaria vaccines are classified as pre-
erythrocytic stage vaccines. Therefore, the development of
erythrocytic stage vaccines to reduce morbidity and mortality,
and transmission-blocking vaccines (TBVs) to reduce parasite
transmission from humans to mosquitoes, are required to reach
the Roadmap goals.
MALARIA TRANSMISSION-BLOCKING
VACCINES (TBVS)

The principle of malaria TBVs is that antibodies against antigen(s)
expressed on the sexual stages of the malaria parasite -
gametocyte/gamete/zygote/ookinete - reduce the numbers of
oocysts in mosquito vectors when fed with gametocytes (Huff
et al., 1958; Carter and Chen, 1976; Gwadz, 1976). The advantages
of TBVs are summarized as follows (Tsuboi et al., 2003; Miura
et al., 2019; Duffy, 2021): i) TBV candidates tend to be less
polymorphic than blood- or pre-erythrocytic-stage antigens,
presumably due to lower immune pressure driving evolutionary
diversity; ii) the absolute number of parasites targeted by TBVs
is small, usually <10-100 oocysts per mosquito in nature, and
represent a biological bottleneck in the malaria parasite lifecycle;
and iii) TBVs might help to prevent the spread of emerging drug-
resistant parasites (Dondorp et al., 2009; Balikagala et al., 2021)
and future vaccine-escape mutants.

Target antigens include proteins expressed on the surface of
gametocytes/gametes/zygotes/ookinetes; such as the characterized
proteins P230, P48/45, P28, and P25 (Carter and Kaushal, 1984;
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Kumar and Carter, 1985; Vermeulen et al., 1985). To initiate
vaccine research, the antigens in human malaria parasites were
identified in the pre-genomic era; namely, Pfs25 (Kaslow et al.,
1988; Kaslow et al., 1994), Pfs28 (Duffy and Kaslow, 1997), Pfs48/
45 (Kocken et al., 1993; Outchkourov et al., 2008), and Pfs230
(Williamson et al., 1993; Williamson et al., 1995) from P.
falciparum; and their orthologs in P. vivax, Pvs25 and Pvs28
(Tsuboi et al., 1998; Hisaeda et al., 2000). Soon after whole genome
information became accessible, Pvs48/45 (Arevalo-Herrera et al.,
2015; Tachibana et al., 2015) and Pvs230 (Tachibana et al., 2012)
were also characterized as TBV candidates (Table 1).

Researchers have faced a number of difficulties to express
TBV antigens with native conformations (Miura et al., 2019),
using a variety of protein expression systems (Patel and Tolia,
2021). Antibodies raised against individual antigens needed to be
tested in an ex vivo efficacy assay; specifically, the standard
membrane feeding assay (SMFA) wherein laboratory-reared
Anopheles mosquitoes are fed on in vitro cultured P.
falciparum gametocytes along with test antisera or purified
antibodies, and counts of midgut wall oocysts as a measure of
the degree of transmission-blocking activity (Miura et al., 2013a).
TBV DEVELOPMENT EFFORTS TO DATE

After decades of efforts, the most advanced P. falciparum TBV
antigens in the clinical pipeline remain the first identified antigens:
Pfs25 expressed on the surface of zygotes/ookinetes in the
mosquito and classified as a post-fertilization antigen, and Pfs48/
45 and Pfs230 expressed on the surface of blood-circulating
gametocytes and gametes in the mosquito and classified as pre-
fertilization antigens. In addition, a mosquito midgut protein,
anopheline alanyl aminopeptidase N 1 (AnAPN1) (Armistead
et al., 2014), is under development as a TBV candidate in pre-
clinical developmental studies (Bender et al., 2021) (Table 1,
Figure 1). As transmission-blocking immunity is mostly
antibody-mediated (de Jong et al., 2020), TBV development
efforts focus on inducing potent antibodies that are sustained at
effective transmission-blocking levels for at least one transmission
season. Based on these requirements, extensive efforts towards the
clinical development of P. falciparum TBVs continue to date.
Recently, phase 1 trials of P. falciparum TBV based upon Pfs25/
Alhydrogel (Alum) have been reported. These studies used Pfs25-
EPA: Pfs25 conjugated with a recombinant detoxified ExoProtein
A from Pseudomonas aeruginosa (EPA), formulated with Alum,
and tested in adults in the USA (Talaat et al., 2016) and Mali
(Sagara et al., 2018). The vaccine was generally well-tolerated;
however, the functional activity of the anti-Pfs25 antibodies
induced were modest, and antibody titers decreased rapidly.

To improve functional immunogenicity and durability, the
same group performed a phase 1 trial of the pre-fertilization TBV
antigen Pfs230 alone or in combination with Pfs25 in USA
adults. Pfs25-EPA/Alum and Pfs230D1M [amino acid 542-736
(MacDonald et al., 2016)]-EPA/Alum induced similar serum
functional activity in mice, but Pfs230D1M-EPA induced
significantly greater activity in rhesus monkeys. In USA adults,
November 2021 | Volume 11 | Article 805482
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two vaccine doses induced functional activity in Pfs230D1M-
EPA/Alum volunteers, but no significant activity in Pfs25-EPA
vaccine recipients, and combination with Pfs25-EPA did not
increase functional activity over Pfs230D1M-EPA alone. The
research group concluded that the functional activity of
Pfs230D1M-EPA is significantly superior to that of Pfs25-EPA
(Healy et al., 2021). For more information about the clinical
development of these falciparum TBVs, please refer to two recent
review articles (Miura et al., 2019; Duffy, 2021). In addition to the
above TBV development efforts, novel TBV candidate discovery
is required to accelerate the success in TBV development.
POST-GENOME NOVEL TBV
CANDIDATE DISCOVERY

The goal of identifying new vaccine candidates for both
P. falciparum and P. vivax is aided by whole genome information
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
accessible since 2003 at the malaria genome database (PlasmoDB).
The database has been useful to identify vaccine candidates from
asexual-blood (Kanoi et al., 2021) and pre-erythrocytic (Bettencourt,
2020) stages. However, the rational selection and prioritization of
TBV candidates from the database has yet to be fully explored
(Miura et al., 2019). Extensive proteome and transcriptome data
from sexual-stage malaria parasites is now available (Lasonder et al.,
2016; Meerstein-Kessel et al., 2018) to inform in silico TBV
candidate discovery. In the following sections we summarize the
recent achievements for the discovery of the activities and candidate
antigens discovered in the post-genomic era (Table 1, Figure 1).
RODENT MALARIA MODELS FOR NOVEL
TBV CANDIDATE DISCOVERY

Most of the TBV candidates investigated to date have orthologs
in rodent malaria parasites, and thus the rodent malaria models
TABLE 1 | Discovery of malaria transmission-blocking vaccine antigens with publication yearsa.

Antigenb Yearc Target
parasited

Developmental stagee Discoveryf Expression systemg Reference

Pre-Genomic Era
Pfs25 1988 Pf Zygote/ookinete Gene – (Kaslow et al., 1988)
Pfs25 1994 Pf Zygote/ookinete TRA Yeast (Kaslow et al., 1994)
Pfs28 1997 Pf Zygote/ookinete Gene/TRA Yeast (Duffy and Kaslow, 1997)
Pfs48/45 1993 Pf Gametocyte/gamete Gene – (Kocken et al., 1993)
Pfs48/45 2008 Pf Gametocyte/gamete TRA Bacteria (Outchkourov et al., 2008)
Pfs230 1993 Pf Gametocyte/gamete Gene – (Williamson et al., 1993)
Pfs230 1995 Pf Gametocyte/gamete TRA Bacteria (Williamson et al., 1995)
Pvs25 & Pvs28 1998 Pv Zygote/ookinete Gene – (Tsuboi et al., 1998)
Pvs25 & Pvs28 2000 Pv Zygote/ookinete TRA Yeast (Hisaeda et al., 2000)
Post-Genomic Era
HAP2/GCS1 2008 Pb Gamete Gene – (Hirai et al., 2008; Liu et al., 2008)
HAP2/GCS1 2009 Pb Gamete TRA Bacteria (Blagborough and Sinden, 2009)
HAP2/GCS1 2013 Pf Gamete TRA WGCFS (Miura et al., 2013b)
HAP2/GCS1 2017 Pb, Pf Gamete TRA Peptide (Angrisano et al., 2017)
HAP2/GCS1 2020 Pv Gamete TRA Baculovirus (Qiu et al., 2020)
Pvs230 2012 Pv Gametocyte/gamete TRA DNA (Tachibana et al., 2012)
Pvs48/45, Pvs47 2015 Pv Gametocyte/gamete TRA DNA, Bacteria (Arevalo-Herrera et al., 2015;

Tachibana et al., 2015)
Pfs47 2010 Pf Gametocyte/gamete Gene – (van Schaijk et al., 2006)
Pfs47 2018 Pf Gametocyte/gamete TRA Bacteria (Canepa et al., 2018)
AnAPN1 2014 Pf, Pv Anopheles midgut Gene/TRA Drosophila S2 (Armistead et al., 2014)
PbPSOP12 2015 Pb Gamete - ookinete TRA BDES (Sala et al., 2015)
PbPH 2016 Pb Gamete - ookinete TRA Bacteria (Kou et al., 2016)
PbPSOP7, 25 & 26
PbPSOP25

2016
2017

Pb Ookinete TRA Bacteria (Zheng et al., 2016)
(Zheng et al., 2017)

Pb51 2017 Pb Gametocyte - ookinete TRA Bacteria (Wang et al., 2017)
Pbg37 2018 Pb Gametocyte - zygote TRA Bacteria (Liu et al., 2018)
PyMiGS 2018

2020
Py Gametocyte/gamete TRA WGCFS (Tachibana et al., 2018a; Tachibana

et al., 2018b; Tachibana et al., 2020)
Pb22 2021 Pb Gamete - ookinete TRA Bacteria (Liu et al., 2021)
Novembe
aSummary of the TBV antigen discovery efforts in which significant TRA has been confirmed.
bAntigen, abbreviated names of TBV antigens.
cYear, year of publication.
dTarget parasite, Pf, Plasmodium falciparum; Pv, P. vivax; Pb, P. berghei; Py, P. yoelii.
eDevelopmental stage, parasite developmental stage(s) in which target the antigen is expressed.
fDiscovery, Gene, target gene discovered; TRA, antigens specific antibodies with confirmed transmission reducing/blocking activity identified..
gExpression system, indicates the platform used to express the antigen as either in yeast cells, bacteria, wheat germ cell-free system (WGCFS), Drosophila S2 cells, baculovirus vectored
protein expression system or was a synthetic peptide (Peptide). Alternatively, DNA vaccine used as the antigen (DNA). BDES, indicates target antigen was expressed in baculovirus dual
expression system.
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are useful for the discovery and characterization of novel TBV
candidates. In the last decade several potential TBV candidates
have been identified using rodent malaria models. The general
strategy of these studies is to select candidate genes from the
PlasmoDB according to the following criteria: i) genes must be
specifically expressed in sexual-stages; ii) they must share
orthologs with human parasites, in particular P. falciparum
and P. vivax; and iii) the presence of a predicted signal peptide
with/without transmembrane domain(s) or a GPI-anchor,
indicating possible protein export and exposure to inhibitory
antibodies. Candidate TBV genes are then expressed in one or
more recombinant protein expression systems, followed by
immunization of mice. To test efficacy, immunized mice are
infected with rodent malaria parasites and then mosquitoes are
fed directly on these mice; termed a direct feeding assay. The
transmission-blocking activity (TBA) is expressed as a percent
reduction of the prevalence of infected mosquitoes; and
transmission-reducing activity (TRA) is expressed as a percent
reduction of oocyst density.

The majority of such studies were conducted with P. berghei
rodent parasites because of the ease for genetic manipulation,
such as the knockout of candidate genes for functional
characterization of novel TBV candidates. Most such activities
are listed in Table 1, classified in the post-genomic era, and
following are descriptions of examples of post-genomic studies.

As the first examples, a group actively working on novel TBV
candidate discovery using the P. berghei model identified a
conserved P. berghei protein, PbPH, containing a pleckstrin
homology (PH) domain. By indirect immunofluorescence assay
(IFA) PbPH localized on the surface of gametes/zygotes/
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
ookinetes. Mice were immunized with recombinant PbPH
expressed in E. coli and mosquitoes fed on the immunized
mice showed a 48% TRA (Kou et al., 2016). Similarly, the
same group selected P. berghei ookinete-stage proteins,
Putative Secreted Ookinete Protein (PbPSOP25), PbPSOP26,
and PbPSOP7, for evaluation of their transmission-blocking
potentials. Antisera against these bacterially expressed partial
recombinant proteins recognized the ookinete surface.
Mosquitoes fed on immunized mice showed significant TRAs
(60% to 71%) (Zheng et al., 2016). Mice immunized with full-
length recombinant PSOP25 expressed in E. coli and those
receiving passive transfer of an anti-rPSOP25 mAb showed
significant TRAs by 66% and 63%, respectively (Zheng
et al., 2017).

The conserved Plasmodium gene, Pb51, was identified in P.
berghei through PlasmoDB using gene expression and protein
localization criteria. A partial domain of Pb51 was expressed in
E. coli and mice were immunized. By IFA Pb51 was expressed in
schizonts/gametocytes/ookinetes of P. berghei. Mice immunized
with the recombinant Pb51 showed 55% TRA in direct feeding
assays (Wang et al., 2017). Using a similar approach, the same
group characterized a protein of 37 kDa preferentially expressed
in gametocytes in P. berghei (Pbg37). A recombinant Pbg37
(rPbg37) was expressed in bacteria and antibody was generated
in mice. IFA showed surface expression of Pbg37 on gametes/
zygotes. The rPbg37-immunized mice had a significant TRA
(49%) (Liu et al., 2018). Similarly, a gamete/ookinete surface
protein of P. berghei, Pb22, was identified and recombinant Pb22
was expressed in E. coli. The Pb22-immunised mice had a
significant TRA (93.5-99.6%) (Liu et al., 2021).
FIGURE 1 | Expression of malaria transmission-blocking vaccine (TBV) target antigens. Sexual developmental stages of malaria parasites in humans (gametocytes)
and mosquitoes (gametes, zygotes, and ookinetes) are schematically presented. The TBV candidate antigens (Table 1) are categorized as pre-fertilization antigens
(mainly expressed in the sexual stages of parasites before fertilization), and post-fertilization antigens (mainly expressed in the sexual stages of parasites after
fertilization). Mosquito midgut antigen, AnAPN1, is also presented as a TBV candidate.
November 2021 | Volume 11 | Article 805482
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The P. berghei ookinete-stage protein, PbPSOP12, was
identified based upon annotation as a putative secreted protein
and then expressed using the baculovirus dual expression system
(BDES). Mouse antibodies against BDES-PbPSOP12 recognized
the surface of gametes/ookinetes. Immunization of mice with
BDES-PbPSOP12 conferred modest TRA (53%) (Sala et al., 2015).

Our lab has accumulated a number of experiences using the
Plasmodium yoelii rodent malaria parasite as a suitable model for
TBV study; such as the identification of Pfs25 and Pfs28
orthologs in P. yoelii, Pys25 and Pys28 (Tsuboi et al., 1997a;
Tsuboi et al., 1997b; Tsuboi et al., 1997c). Recently we identified a
novel TBV candidate, P. yoelii microgamete surface protein
(PyMiGS), using a similar approach as mentioned above for
the P. berghei studies. PyMiGS is a protein expressed in the
osmiophilic body of male gametocytes of P. yoelii and is
translocated to the surface of microgametes. Potent TRA
(>99%) was observed in mosquitoes fed on mice passively
immunized with antibodies against recombinant full-length
PyMiGS expressed using a wheat germ cell-free protein
expression system (WGCFS) (Tachibana et al., 2018a). Mice
actively immunized with the recombinant full-length PyMiGS
conferred >99% TRA using direct mosquito feeding (Tachibana
et al., 2018b), and the major epitopes for transmission-blocking
antibodies were within the C-terminal region of PyMiGS
(Tachibana et al., 2020).

Although the P. berghei and P. yoelii rodent malaria models
are useful to identify novel TBV candidates, results between the
models may differ. For example, when we characterized the
phenotype of a PyMiGS gene deletion mutant (DPyMiGS),
the ookinete formation efficiency of DPyMiGS was significantly
impaired (Tachibana et al., 2018a). Contrary, ookinete formation
of the gene deletion mutant of the P. berghei ortholog of PyMiGS
(PBANKA_1449000) was not impaired (Kehrer et al., 2016).
Accordingly, although the usefulness of the rodent models is
clear, careful consideration is also required.

Candidates identified in the rodent malaria studies should be
evaluated with P. falciparum orthologs. For example, a conserved
male gamete sterility gene, HAP2/GCS1 (Hapless 2/Generative
Cell Specific 1), was initially identified as an essential protein for
the fusion of male and female gametes of P. berghei (Hirai et al.,
2008; Liu et al., 2008). Genetic disruption of the hap2 locus
revealed that parasite fertilization is inhibited, and anti-PbHAP2
sera showed TRA by up to 81% (Blagborough and Sinden, 2009).
Mosquitoes fed on mice immunized with PbHAP2 cd loop
peptide showed 59% TRA in P. berghei and the corresponding
TRA in P. falciparum was 76% (Angrisano et al., 2017). We also
demonstrated strong transmission-blocking activity of mouse
antibody against recombinant P. falciparum HAP2 protein and
concluded the antigen to be a novel TBV candidate (Miura et al.,
2013b). Recently, recombinant P. vivaxHAP2 was expressed in a
baculovirus expression system, and rabbit antibody induced
significant TRA (40% to 90%) against P. vivax field isolates in
Anopheles dirus (Qiu et al., 2020).

The gametocyte/gamete protein P47 is another example of
experimental system-specific differences. When the p47 gene was
disrupted, a strong reduction of female fertility was observed in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
P. berghei (van Dijk et al., 2010), but not in P. falciparum (van
Schaijk et al., 2006), and anti-Pfs47 mAbs showed no efficacy in
P. falciparum SMFA (van Schaijk et al., 2006). Similarly, mAbs
and polyclonal antibodies against a full-length recombinant
Pfs47 protein did not show efficacy in SMFA. However,
antibodies against a part of domain 2 in Pfs47 did demonstrate
significant TRA (Canepa et al., 2018). Further characterization
revealed that when mice were immunized with the full-length
protein, almost no antibody was induced against the critical
domain 2. Therefore, it is possible that other potential TBV
candidates were overlooked in previous studies (Miura et al.,
2019); and improvement of antigen design and vaccine
formulations with existing TBV candidates, and expansion of
the repertoire of novel TBV candidates, are necessary to
accelerate TBV development.
NOVEL TBV CANDIDATE DISCOVERY
DIRECTLY USING HUMAN MALARIA
PARASITES

In P. falciparum only two studies on genome-wide novel TBV
candidate discovery have been reported to date. One is a reverse
vaccinology approach by Nikolaeva et al. (Nikolaeva et al., 2020).
They identified a panel of potential TBV candidate genes from
PlasmoDB by selecting with a sexual-stage specific expression
profile. After a logical in-silico process to narrow down the
candidate list, they expressed 21 recombinant proteins using a
human embryonic kidney cell (HEK293) expression system.
Twelve proteins were successfully expressed, and mouse
antibodies against the recombinant proteins were tested by
SMFA. However, none of the novel TBV candidates showed
TRA. It is possible that the heterologous human cell expression
system resulted in aberrant glycosylation patterns compared with
Plasmodium, which has a minimal glycosylation machinery, and
the resulting antibodies did not recognize native Plasmodium
protein (Kanoi et al., 2021).

The other is a larger-scale trial of immuno-profiling of
naturally occurring antibody-mediated TRA (Stone et al.,
2018). Bioinformatically selected 315 proteins were expressed
using an E. coli cell-free system, and correctly-folded well-
characterized recombinant Pfs48/45 and Pfs230 proteins were
used as positive controls. They assessed antibody responses in
648 African plasma samples with TRA measured by SMFA, and
those with high (≥ 90%, n= 22) or low (< 10%, n=254) TRA were
used for the immuno-profiling. Forty-three out of 315 proteins in
addition to Pfs230 and Pfs48/45 had significantly higher
antibody levels in plasmas with high TRA. After additional
consideration on the protein expression levels in gametocytes,
and the presence of a signal peptide or a transmembrane domain,
13 out of the 43 proteins were selected as possible TBV
candidates. Although the strategy of this work is convincing, to
date they have not validated whether any of the 13 novel TBV
candidates could induce transmission-blocking antibodies in
immunized animals. In addition, since the reacted human
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antibodies were likely to recognize only linear epitopes of the
tested antigens, because the proteins were expressed in E. coli,
this work may have missed promising candidates which have
conformational TRA epitopes/antigens (Miura et al., 2019).
Finally, the approach might not identify TBV candidates
whose protein expression is solely in the mosquito and not
in gametocytes.

Additional gametocyte-specific gene discovery efforts have
been published (Ikadai et al., 2013; Chawla et al., 2021; Muthui
et al., 2021); although antigen expression, immunization, and
TRA assessment of the antibodies are not completed.
KEY MESSAGES TO THE NOVEL TBV
CANDIDATE DISCOVERY

The clinical development of P. falciparum TBV have advanced to
Phase 2 clinical trials (Duffy, 2021). However, those efforts have
focused only on the leading candidates - Pfs25, Pfs230, and
Pfs48/45 - which were identified in the pre-genome era (Miura
et al., 2019). To accelerate TBV research and development in the
post-genome era, genome-wide discovery of novel TBV
candidates by both immuno-profiling and reverse vaccinology
approaches are essential. A key message learned from the
pioneering post-genome TBV candidate discovery approaches
is that it is crucial to select an expression system with the
capability of producing large numbers of correctly-folded
malaria recombinant proteins, and without artificial
glycosylation. We have been using the WGCFS to express a
number of high-quality recombinant proteins of both
P. falciparum and P. vivax; and to produce comprehensive
genome-wide protein libraries useful for novel malaria
vaccine and sero-marker candidate discovery projects
(Morita et al., 2017; Kanoi et al., 2018; Longley et al., 2020;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Kanoi et al., 2021). Therefore, following genome-wide
gametocyte stage protein expression by WGCFS, these proteins
can then be used in immuno-profiling approaches using human
plasma with known TRA, to identify novel transmission-
blocking antigens (Ntege et al., 2017; Miura et al., 2019; Kanoi
et al., 2021). To this end it is also essential to obtain well-
characterized plasma samples from infected individuals who
carry transmission-reducing antibodies.
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