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Abstract

Background: With ever increasing accessibility to high throughput technologies, more complex treatment
structures can be assessed in a variety of ’omics applications. This adds an extra layer of complexity to the analysis and
interpretation, in particular when inferential univariate methods are applied en masse. It is well-known that mass
univariate testing suffers from multiplicity issues and although this has been well documented for simple comparative
tests, few approaches have focussed on more complex explanatory structures.

Results: Two frameworks are introduced incorporating corrections for multiplicity whilst maintaining appropriate
structure in the explanatory variables. Within this paradigm, a choice has to be made as to whether multiplicity
corrections should be applied to the saturated model, putting emphasis on controlling the rate of false positives, or to
the predictive model, where emphasis is on model selection. This choice has implications for both the ranking and
selection of the response variables identified as differentially expressed. The theoretical difference is demonstrated
between the two approaches along with an empirical study of lipid composition in Arabidopsis under differing levels
of salt stress.

Conclusions: Multiplicity corrections have an inherent weakness when the full explanatory structure is not properly
incorporated. Although a unifying ‘single best’ recommendation is not provided, two reasonable alternatives are
provided and the applicability of these approaches is discussed for different scenarios where the aims of analysis will
differ. The key result is that the point at which multiplicity is incorporated into the analysis will fundamentally change
the interpretation of the results, and the choice of approach should therefore be driven by the specific aims of the
experiment.
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Background
Multivariate data are frequently generated within bio-
logical applications due to the ever increasing availabil-
ity of high-throughput technologies to study functional
genomics using transcriptomics, proteomics, lipidomics
andmetabolomics. These technologies generate data from
large numbers of response variables, and typically inter-
est is focussed on identifying the ‘important’ response
variables, where important will be a context specific def-
inition. For instance, experiments may be designed with
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a specific explanatory structure, such as the inclusion
of treatment factors, blocking factors or observational
covariates, where important variables might be those for
which different (combinations of) treatment levels show
statistically significant different responses. It is indis-
putable that this explanatory structure information should
be incorporated into the subsequent statistical analysis.
However, this is not always straightforward to achieve.
This is exemplified in a study of the lipid composition of
Arabidopsis thaliana under differing treatment combina-
tions, constructed as a replicated 4x3 factorial design for
different Arabidopsis genotypes (Columbia, Shadara, Ta-
0 and Eutrema) under three differing levels of salt stress
(0, 100, 200 nM NaCl). In total, the abundance of 131
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lipids (response variables) was measured in each condi-
tion. The log2 abundance over these conditions for the
different lipid species is shown in Fig. 1a. Interest might be
focussed on lipids showing significant differences between
different genotypes, salt stresses or combinations of these.
There are two main avenues of analytical methods that

can be applied to such ’omics data; multivariate methods
and mass univariate methods (see e.g. [1, 2]). Each have
their own advantages and disadvantages, but in combina-
tion can elicit a great deal of insight into the underlying
mechanisms that generated the data [3–7]. In this paper,

we predominantly focus on the issues that arise in the lat-
ter methods, themass-univariate approach, but would like
to emphasise that these methods should add to the insight
obtained from multivariate approaches rather than act as
a replacement.

Mass univariate analysis
In contrast to multivariate approaches, mass univari-
ate methods investigate each response variable inde-
pendently. Although the covariance structure between
response variables is not accounted for in such an analysis,

a

b

Fig. 1 Lipidomics dataset. An experiment to investigate the abundance of 131 lipid species within 4 different Arabidopsis genotypes in 3 differing
levels of salt stress. a shows a heatmap of the log2 abundance of all lipid species in each condition and b depicts the factorial design structure



Hassall and Mead BMC Bioinformatics 2018, 19(Suppl 7):199 Page 111 of 154

this approach will provide information about the vari-
ability in individual response variables, and, in particular,
how it relates to components of the explanatory structure.
For example, identifying the sets of treatment conditions
that are statistically significant for each response. This
is particularly advantageous when an experiment may
include complex explanatory structures that include mul-
tiple explanatory terms. Standard statistical techniques
such as ANOVA (analysis of variance), REML (restricted
maximum likelihood) and regression can be used to inves-
tigate both the biological size and statistical significance of
different explanatory model components in an inferential
framework. Moreover, these analysis approaches can cope
with complex treatment structures (such as the factorial
treatment structure in the above example), unbalanced
design structures and missing values.
In generality, it is of interest to fit and analyse the

following linear model,

yi = Xiβ + εi, for i = 1, ..., n (1)
εi ∼ N(0, σ 2),

where n is the number of observations, yi is the ith obser-
vation of a single response variable y, Xi is the ith row of
the design matrix X, β is the vector of coefficients to be
estimated and ε are independent error terms. Fitting and
analysing such models is a completely standard statistical
approach using the methods identified above.
However, there are issues in applying such methods en

masse to many different response variables in the same
dataset. To illustrate this, let us first consider the sim-
ple example where the design matrix X corresponds to a
single explanatory factor. Specifically, suppose

yji = βj + εji, i = 1, ..., nj, j = 1, ..., J (2)

where yji is the ith observation on the jth treatment.
Once fitted, the estimated parameters of this model can
be assessed. Specifically, using either a two-sample t-test
(for J = 2) or an F-test (for J > 2) the null hypothesis
of no difference in response in the J different treatments
can be tested. When testing at a pre-specified significance
level, α, of 0.05, the probability of a type I error (the
false positive rate) is controlled at 5%. However, it is well
known that applying such a univariate analysis approach,
en masse, to multiple response variables, will result in an
unacceptably high type I error rate over the whole exper-
iment due to the issue of multiple testing (also referred to
as multiplicity), described below.

Multiple testing
In a multiple testing scenario, the probability of a type
I error, or false positive (i.e. the probability of reject-
ing the null hypothesis when the null hypothesis is true)
over the tests for the complete set of response variables
is inflated. For example, consider making independent

hypothesis tests for 10 (independent) response variables,
the probability of making at least one type I error, α∗, is
given by,

α∗ = Prob(at least 1 type I error)
= 1 − Prob(no type I error)
= 1 − (1 − α)10,

which when the individual level of significance is α =
0.05, gives α∗ = 0.40. Thus, to control the overall proba-
bility over R tests (the number of response variables) of at
least one type I error at a specified level α, the significance
level for each test becomes 1 − (1 − α)1/R, which in prac-
tice is often approximated by the upper bound α/R, the
Bonferroni correction. This adjustment controls the fam-
ily wise error rate (FWER), defined to be the probability
of at least one type I error. Alternative ways of controlling
the type I error in a multiplicity framework include con-
trolling the per-family error rate (PFER), which is defined
to be the expected number of type I errors, and the false
discovery rate (FDR), defined as the expected proportion
of false discoveries. A plethora of methods for controlling
the type I error, through differing multiple testing correc-
tions, can be found in the literature (see [8, 9] and [10] for
reviews). These often have different aims, such as which
error rate is to be controlled, whether or not tests can
be considered independent and whether the chosen error
rate should be controlled in the strong or weak sense [8].
It is reasonable in an ’omics framework to assume there

will be substantial positive dependence between response
variables. This means that any correction based on the
assumption of independent tests will be highly conserva-
tive and will consequently reduce the power of the test
for fixed sample sizes. Alternative procedures are avail-
able that account for this dependence, for example [11]
employed resampling methods and [12–14] adjusted the
significance level based on an effective number of inde-
pendent tests Neff < N .
Where there is only a single explanatory variable in the

model, as in Eq. 2, any of the above multiplicity correc-
tions can be incorporated without difficulty to ensure the
overall type I error rate of the whole experiment does not
become over-inflated.

Incorporating explanatory structures
However, there is a lack of coherence within the litera-
ture when explanatory structures become more complex.
As the cost of ’omics experiments decreases, experi-
menters are increasingly generating ’omics datasets from
experiments with more complex designs, including both
crossed and nested treatment structures. Examples can
be found in transcriptomics [15–17], proteomics [18, 19]
and metabolomics (as exemplified from the open source
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database PMR [20]). In all of these scenarios, mass uni-
variate analysis can be applied to investigate the effect
of the explanatory structure on a response-by-response
basis.
Consider, the salt stress lipidomics example. For a single

response variable, the associated linear model takes the
form,

yjki = μ+aj + bk + (ab)jk+εjki, for j = 1, ..., 4; k = 1, ..., 3
εjki ∼ N(0, σ 2),

(3)

where yjki is the response due to the ith observation on the
jth genotype for the kth salt stress, aj is the effect associ-
ated with genotype j, bk is the effect associated with salt
level k, (ab)jk is the interaction effect of genotype j and salt
level k and ε are independent error terms.
For a single response variable (e.g. lipid TAG 52.6), the

corresponding analysis would be done using ANOVA to
produce Table 1. This analysis provides an assessment of
the statistical significance of the three individual terms,
through independent tests, according to the explanatory
model given in Eq. 3. The question then arises as to how
to apply the multiplicity correction when applying such
an analysis to multiple response variables. All developed
multiplicity correction approaches are only appropriate
for correcting a single hypothesis test per response vari-
able as in the example corresponding to Eq. 2. Thus to
directly apply these multiplicity corrections, the com-
plex treatment structure would have to be ignored and
the multiplicity correction instead applied to the one-
way unstructured analysis. For the salt stress lipidomics
example, this corresponds to the analysis of the one-
way (unstructured) treatment term in the following linear
model:

yjki = μjk + εjki, for j = 1, ..., 4; k = 1, ..., 3 (4)
εjki ∼ N(0, σ 2),

where μjk is the mean response for genotype j and salt
level k. The associated ANOVA table is given in Table 2.
This analysis clearly fails to exploit the factorial treat-
ment structure included in the design of the experiment,
providing no information about the relative sizes and
importance of the two main effects and the interaction
effect.

Table 1 The two-way ANOVA table for a single lipid response
variable (TAG 52.6) with treatment factors genotype and salt

Df Sum Sq Mean Sq F value Pr(>F)

Genotype 3 27.503 9.168 38.230 <0.001

Salt 2 11.852 5.926 24.711 <0.001

Genotype:Salt 6 2.328 0.388 1.618 0.171

Residual 36 8.633 0.240

Table 2 The corresponding one-way unstructured ANOVA table
for a single lipid response variable (TAG 52.6), where
Genotype:Salt is a single explanatory term corresponding to all
combinations of genotype and salt conditions

Df Sum Sq Mean Sq F value Pr(>F)

Genotype:Salt 11 41.682 3.789 15.802 <0.001

Residual 36 8.633 0.240

In recent years, developments in two-stage or hierarchi-
cal hypothesis testing [21] have gone someway to address-
ing these issues. In this framework, a family of hypotheses
and tests are associated with each response variable. In
the first stage an overall test of the combined effects of
all explanatory variables is considered, withmore detailed,
individual hypotheses of interest only considered where
this first overall test gives a significant result. In this way
the overall false discovery rate (OFDR) [22] can be con-
trolled across all response variables. Examples using such
an approach include the analysis of data from microar-
ray gene expression studies with multiple treatments [23]
where at the first stage the OFDR is controlled for the
overall F-test resulting from a one-way ANOVA for each
gene. Subsequently, at the second stage of testing, ad-hoc
pairwise comparisons of interest between treatments are
considered only for genes having a multiplicity-corrected
significant result for the overall test (potentially requiring
further corrections for multiple comparisons). Two simi-
lar approaches (referred to as a nested F and a hierarchical
F method) are implemented in the decideTests function of
the limma package [24] for differential expression analy-
sis of microarray and RNAseq data. Heller et al. [25] also
considered a two-stage approach for the analysis of data
frommicroarray gene expression studies, but here the first
stage considered the overall analysis for a gene set, with
the OFDR controlled at the gene set level, and the sec-
ond stage then assessing individual genes within those
gene sets initially identified as showing significant results.
More recently, Van den Berge et al. [26] extend this con-
cept to RNAseq data to account for factorial treatment
structures. Although these approaches enable multiplicity
to be controlled at the appropriate level, i.e. at the level
of the gene or set of genes, or as in our case at the
response level, rather than at the hypothesis level, the sec-
ond stage of testing is not always fully satisfactory. The
examples above all focus the second stage testing on pair-
wise comparisons requiring a second multiplicity control
of the FWER and therefore a reduced power compared to
that achieved when fully exploiting the explanatory struc-
ture. We extend these approaches by exploiting the full
structure of the explanatory model both at the first and
second stage of testing. Moreover, we focus on developing
visualisations from the output of such approaches in order



Hassall and Mead BMC Bioinformatics 2018, 19(Suppl 7):199 Page 113 of 154

to explicitly investigate the structure of the data. Explic-
itly, we aim to providemass univariate analysis approaches
that can both:

– identify which response variables show significant
levels of variation due to the explanatory model
(taking account of multiplicity), and

– assess how these response variables are important by
identifying the components of the explanatory model
showing significant effects.

In the following, we present a general paradigm of
analysis, through which we develop the theory behind
two methods for incorporating a multiplicity correction
within the general linear model framework. This is sup-
ported by a simulation study before demonstrating the
methods on an application in lipidomics, where we inves-
tigate the biological understanding that can be gained
from such an approach. We end with a discussion on
themethods, highlighting current limitations and possible
extensions.

Methods
Typically, linear models as defined in (1) are used both
to estimate the effects due to individual explanatory vari-
ables (or the interactions between two or more explana-
tory variables), and to test the statistical significance of
these effects. For the analysis of a designed experiment,
it is conventional to fit the saturated (or maximal) model,
and it is important to make a distinction between this
model and the predictive model, used to generate predic-
tions for different combinations of the explanatory vari-
ables (usually factors). The saturated model includes all of
the explanatory terms associated with the factors included
in the design of the experiment, and provides the basis
for assessing the statistical significance of each of these
terms (blocking factors, main effects of treatment factors
and interaction effects between two or more treatment
factors). Having determined the statistically significant
effects relative to the estimated background (observation-
to-observation) variability, the predictive model can be
formed, containing all statistically significant terms plus
terms that are marginal to these (i.e. both main effects
must be included in the predictive model if the associ-
ated interaction effect is statistically significant). Where
an experiment is carefully designed to be balanced and
orthogonal, this selection of the predictive model is
straightforward as all terms in the saturated model will be
independent. For more general explanatory structures, it
may be more difficult to define a saturated model, so that
the fitted model will usually be the predictive model.
In both scenarios, the identification of the terms in the

predictive model can be achieved in multiple ways; such
as using F-tests to assess individual explanatory terms,

likelihood ratio tests to compare nested models, or the
minimisation of an information criterion. In some cases
these approaches will be equivalent. Note that, with the
exception of model selection via information criteria, all
methods rely on a predefined level of statistical signif-
icance at which to perform the test used to include or
omit a term from the predictive model. In these scenarios,
selection of the predictive model will identify the statisti-
cally significant explanatory terms for each response vari-
able. Thus, we consider the incorporation of multiplicity
correction and the selection of a response-specific predic-
tive model in a number of different ways. The process for
achieving this can be split into three steps,

– A ranking of responses in order of significance
[RANK]

– A filtering process to discard non-significant
responses (incorporating corrections for multiplicity)
[FILTER]

– A model selection step to define the predictive model
(i.e. to choose the important terms in the explanatory
structure) for each response [MODEL].

The order in which these steps are implemented will
depend upon the aims of the study.

Approach 1: rank, filter, model (RFM)
Firstly, we consider the RFM approach, where responses
are ranked, filtered and then modelled. Explicitly, this
approach can be viewed as an extension to the one-
way multiplicity corrections of Eq. 4, and consists of the
following steps:

1. For each of the n response variables, fit the linear
model with a single one-way (unstructured)
treatment term and calculate the associated one-way
ANOVA as in example (4) to obtain an overall test of
significance at this first step.

2. Rank the responses based on the significance of this
overall test and apply a multiplicity correction of
choice to this set of n tests.

3. Filter out the responses deemed non-significant after
the multiplicity correction.

4. For the remaining response variables, apply a model
selection process to the full explanatory structure,
generating a predictive model for each significant
response variable.

This process is depicted in Fig. 2a. Since there are a finite
number of possible models, responses can be grouped
according to the set of significant terms in the predictive
model. In the case that model selection is done via infor-
mation criteria, this is a simple extension to current meth-
ods, which enables the underlying explanatory structure
in each response to be further investigated. If however,
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Fig. 2 Pictorially representation of two approaches to incorporate multiplicity into non-trivial explanatory structures. a Option 1. Rank, filter, model
(RFM). This approach first applies a multiplicity correction to the one-way ANOVA obtained from the saturated model to filter out non-significant
responses and then applies a model selection step to obtain a response specific predictive model. b Option 2, Model, rank, filter (MRF). This
approach first performs a model selection step to obtain a response specific predictive model, from which a one-way ANOVA is applied and
corrected for multiplicity to filter out non-significant responses. c For the two-factor model in Eq. 5 with a 3x4 factorial treatment structure and a
replication of 3, this shows the relationship between the one-way ANOVA obtained from a saturated model (fixed variance ratio of 2 and associated
significance value of 0.075 – shown by the solid black line) and the one-way ANOVA obtained from the predictive model (for an increasing
interaction effect). Thus, as the variance ratio of the interaction term (shown by the solid red line) decreases, the associated p-value of the one-way
ANOVA of the predictive model also decreases

model selection is applied via a testing procedure, such as
likelihood ratio tests or F-tests, then careful consideration
of the chosen level of significance is required. Specifically,
in order to make consistent comparisons, the significance
level for the model selection step for each response should

be adjusted according to the multiplicity correction
in step 2.
To be explicit, let p(1), ..., p(R) be the unadjusted p-values

for the responses 1...R of the one-way F-test in step 1.
After a multiplicity correction in step 2, the adjusted
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p-values are given by max(1, c(1)p(1)), ..., max(1, c(R)p(R)),
where c(r) is the adjustment applied to the p-value for
response r (e.g. under a Bonferroni correction c(r) =
R, ∀r ∈ {1...R}). Equivalently, the significance level, the
probability of a type I error, has also been adjusted by
1/c(r), which under a Bonferroni correction is 1/R. Thus,
each response is assessed against a specific significance
level α/c(r), r = 1...R. This response specific significance
level is carried through to step 3 and is the significance
level used in the model selection step.

Approach 2: model, rank, filter (MRF)
An alternative approach is the MRF approach, which
starts with the model selection step and filters the
response variables based on an overall test of the pre-
dictive model. Explicitly, this consists of the following
steps,

1. For each response variable, apply a model selection
process to the full explanatory structure. This will
then define specific explanatory structures for each
response, yielding the predictive model for each of
the n responses. Note, no multiplicity correction is
applied at this step as the aim is to construct a
predictive model for each response based on a
consistent measure of significance.

2. For each response-specific predictive model, obtain
the associated one-way (unstructured) treatment
term and fit the corresponding linear model that has
a single treatment term to obtain an overall test of
significance through a one-way ANOVA.

3. Rank the responses based on the significance of this
overall test and apply a multiplicity correction of
choice to this set of n tests.

4. Filter out the response variables deemed
non-significant after the multiplicity correction.

This is depicted in Fig. 2b. As with RFM, this will result
in different responses having different significant explana-
tory variables and hence can be used to classify responses
according to their final explanatory structure. However, in
contrast to RFM, the model selection step inMRF, regard-
less of which method used, will be consistent across all
response variables, whilst the overall test for significance
will differ. Since this test is applied after model selec-
tion, models for different response variables will have a
differing number of explanatory terms and as such the
overall F-test will have response-specific numerator and
denominator degrees of freedom.

A comparison
Although the general framework is very similar for incor-
porating multiplicity corrections and model selection in
these two approaches, they give fundamentally different

classifications of the response variables. The approach
that should be used will depend on the scenario in ques-
tion. In the case of balanced orthogonal designs, where all
model terms are either blocking or treatment factors, the
RFM approach seems favourable as the multiplicity cor-
rection is applied to the saturated model. In a regression
framework, wheremodel termsmay include observational
variables, intuitively model selection is more important,
motivating the use of MRF which puts more emphasis on
the model selection process.
To illustrate where differences occur between the two

approaches, consider the example of a designed experi-
ment consisting of a two factor (A and B) tA x tB factorial
treatment structure (with no blocking structure). The
saturated model is given by,

yjki = aj + bk + (ab)jk + εjki, (5)

with corresponding ANOVA table given in Table 3.
Under RFM, the overall significance test is based on the

one-way ANOVA and is given by the test statistic,

FA∗B = (SSA + SSB + SSAB)/(tAtB − 1)
SSres/(N − tAtB)

= N − tAtB
tAtB − 1

×
(
SSA
SSres

+ SSB
SSres

+ SSAB
SSres

)
,

where under the null hypothesis that there is no differ-
ence between the tA × tB different treatments, FA∗B ∼
FtAtB−1,N−tAtB .
Now, let us assume that the interaction term in the

two-way structured ANOVA is not significant, i.e. the F
statistic given by,

FA:B = SSAB/((tA − 1)(tB − 1))
SSres/(N − tAtB)

= N − tAtB
(tA − 1)(tB − 1)

×
(
SSAB
SSres

)
,

is less than the 5% critical value (FA:B <

F [0.05]
(tA−1)(tB−1),N−tAtB). Then under the MRF procedure, the

interaction term is dropped from the predictive model
and the overall assessment of significance is based on the
test statistic,

FA+B = N − (tA + tB)
tA + tB − 1

×
(

SSA
SSres + SSAB

+ SSB
SSres + SSAB

)
,

on tA + tB − 1 and N − (tA + tB) degrees of freedom.

Table 3 A general two-way ANOVA table consisting of a factorial
treatment structure between factors A and B

df SS MS F

A (tA − 1) SSA
1

(tA−1) SSA MSA/MSres

B (tB − 1) SSB
1

(tB−1) SSB MSB/MSres

A:B (tA − 1)(tB − 1) SSAB
1

(tA−1)(tB−1) SSAB MSAB/MSres

Residual N − tAtB SSres 1
(N−tAtB)

SSres
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Thus, the overall test statistic under RFM (given by
FA∗B) can be directly related to the overall test statis-
tic under MRF (given by FA+B), see Section 1 of the
Supplementary Material in Additional file 1 for details.
This relationship is shown in Fig. 2c for tA = 4, tB =
3, N = 36 and overall F-statistic of FA∗B = 2, which
implies an associated p-value of pA∗B = 0.075. Thus,
regardless of the significance of any individual main
effects, under RFM this response variable would be fil-
tered out as being non-significant. However, as can be
seen in Fig. 2c, when the interaction term is sufficiently
non-significant (and consequently one or more main
effects are highly significant since the overall variance
ratio is fixed at 2), MRF would correctly identify a sig-
nificant response variable. Thus, RFM is a conservative
approach that has the potential for prematurely filtering
out responses.
By moving the filtering step of the RFM approach

to post-model selection step (i.e. a rank model filter
(RMF) approach as described in Additional file 1 of
the Supplementary Material), this conservativeness can
be mitigated, but ranking in the first step will, in
general, result in a more conservative multiplicity cor-
rection compared to the MRF approach that applies
multiplicity corrections to the one-way test of the pre-
dictive model associated with larger residual degrees
of freedom.

Results
The methods derived above are demonstrated and
compared through a comprehensive simulation study
before being applied to the lipidomics dataset previously
described. For this dataset, we also consider in detail the
interpretation of such analyses through the presentation
and visualisation of the output.

Simulation study
In order to comprehensively compare these methods, our
simulation study considered three different designs (a 2×2
factorial treatment structure, a 3 × 2 × 4 factorial treat-
ment structure and a 3×2×4 factorial treatment structure
with an imposed randomized complete block structure).
For each design, we varied the number of responses
(500, 1000 and 20000), the number of replicates
(3, 4 and 5) and the multiplicity control (FDR via
Benjamini-Hochberg and FWER via Bonferroni). In
addition, for the randomized complete block design
responses were simulated with a block diagonal depen-
dence structure. Each scenario was simulated 50 times in
order to obtain representative estimates of the achieved
error rates under the two methods of interest (RFM and
MRF). Thus, in total, 1350 datasets were simulated cov-
ering a range of design scenarios, each of which was
analysed via the following four methods.

1. RFM, with Benjamini-Hochberg (B-H) multiplicity
correction controlling the FDR at 5% and model
selection via F-tests

2. MRF, with Benjamini-Hochberg multiplicity
correction controlling the FDR at 5% and model
selection via F-tests

3. RFM, with Bonferroni multiplicity correction
controlling the FWER at 5% and model selection via
F-tests

4. MRF, with Bonferroni multiplicity correction
controlling the FWER at 5% and model selection via
F-tests

To compare the RFM and MRF approaches, we investi-
gated the observed error rates within the simulation study.
Throughout, we focus our discussion to the analysis under
a B-H multiplicity correction. Further discussion under a
Bonferroni multiplicity correction is given in Section 3.3
of the Supplementary Material in Additional file 1.
Figure 3a shows the distribution of the percentage of

false positives (out of a total of R responses) for each sim-
ulation scenario. From this, it can be seen that under the
MRF, more false positives are detected than under the
RFM. However, both methods appear to control the FDR
(as shown empirically in Section 3.2 of the Supplementary
Material in Additional file 1). As the number of responses
increases, the distribution of error rates tightens with little
difference observed as the sample size increases. More-
over, it is clear that where there is a strong dependence
structure between responses there is a greater variabil-
ity in the type I error rate obtained under the MRF.
Since model selection is emphasised under the MRF, this
approach would likely benefit by taking explicit account
of the dependence structure in the modelling step, for
example through a hierarchical approach. The distribu-
tion of the percentage of false negatives (the number of
responses falsely identified as non-significant out of a total
of R responses) is shown in Fig. 3b. Under the MRF, fewer
false negatives are detected than under the RFM as pre-
dicted from Fig. 2c. Moreover, it can clearly be seen that
as the power of the tests increases for larger sample sizes
and more complex experiments, the rate of false negatives
decreases.
However, the identification (or mis-identification) of

overall significance is not the only error we can consider.
Figure 4 shows the rate of model misspecification under
the RFM and MRF approaches. There is a tendency for
the MRF to have a higher rate of correct model speci-
fication in the 2 × 2 design structure compared to the
RFM. Moreover, the MRF appears slightly worse under
a 3 × 2 × 4 structure, although this difference is dimin-
ished under a Bonferroni multiplicity correction (Section
3.3 of the Supplementary Material in Additional file 1).
Both methods have a higher rate of over-fitting compared
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b

a

Fig. 3 Simulation Study: Overall Type I and Type II error. Under a B-H control of the FDR: a Boxplots showing the distribution of the percentage of
responses (within a dataset) falsely identified as having non-constant mean response and b Boxplots showing the distribution of the percentage of
responses (within a dataset) falsely identified as having a constant mean response over all treatment groups

to the rate of under-fitting for the more complex design
structure (Fig. 4c and d).Moreover, in thesemore complex
design scenarios, the RFM generally has a higher rate of
under-fitting than theMRF (Fig. 4d) providing amore par-
simonious representation of the response but at the cost of
a conservative filtering of overall differential expression.

Case study: Lipidomics
Applying both RFM and MRF under a B-H correction to
control the FDR to the lipidomics dataset described pre-
viously, only minor differences in the number of lipids
identified as showing differential expression can be seen.
Specifically, of the 131 lipids, 129 were identified as



Hassall and Mead BMC Bioinformatics 2018, 19(Suppl 7):199 Page 118 of 154

a b

c d

Fig. 4 Simulation Study: Model misspecification. Under a B-H control of the FDR: a Percentage of responses with the correct model specification
identified from each of the RFM and MRF approaches compared to the true generating process. b Percentage of responses with a model
misspecification identified from each of the RFM and MRF approaches compared to the true generating process. c Percentage of responses that
have been over-fitted (the fitted model includes all terms from the true generating process with additional terms) under the RFM and MRF
approaches. d Percentage of responses that have been under-fitted (the fitted model includes only a subset of terms, and no others, from the true
generating process) under the RFM and MRF. A model misspecification is defined to be a model that differs from the true generating process in a
way not captured by over- or under-fitting. Red, green and blue correspond to simulations of 500, 1000 and 20000 responses respectively

showing differential expression between treatments under
RFM, whilst under MRF all 131 lipids were identified.
However, discrepancies between the methods become
apparent when assessing the selected predictive model,
with around 4% fewer lipids found to have a significant
interaction term under RFM compared with MRF. These

differences were exacerbated with the application of a
more stringent Bonferroni correction (not shown).
Although the identification of ‘significant’ response

variables is useful, greater insight can always be gained by
coupling the notion of statistical significance to biological
relevance. Within the ’omics framework, it is common to
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use high throughput technologies to identify a list of the
most ‘interesting’ response variables to investigate further.
In the simplest case, where comparisons are only made
between two treatment conditions, comparisons are often
visualised through volcano plots, which show the rela-
tionship between statistical significance (often scaled log-
arithmically) and biological relevance (often presented in
terms of fold change to a baseline condition). This enables
easy identification of the ‘most interesting’ responses
that are both statistically significant and biologically rele-
vant. However, for more complex explanatory (treatment)
structures, it is far from clear how to identify ‘interesting’
responses.

Overall assessment
In both the RFM and MRF approaches, a one-way F-test
is applied to obtain an overall level of significance. The
meaning of this one-way test is fundamentally different in
the two approaches since under RFM, it is a test of the
saturated model, whereas under MRF, it is a test of the
predictive model. Nevertheless, this measure of statistical
significance can be used to rank responses. Figure 5 shows
the discrepancy in the ranking of responses from the two
methods, with RFM giving a greater rank to response
variables with significant interaction components, whilst
MRF gives greater rank to responses with parsimo-
nious predictive models (relative to the corresponding
saturated model).
In addition, these approaches can be used to charac-

terise the response variables through the identified predic-
tive model. For example, the lipidomics response variables
can be categorised into 8 different groups, where each
group contains response variables with the same predic-
tive model. As shown in the simulation study, the predic-
tive models identified by the two approaches differ and
so different categorisations of the response variables are
obtained as shown in Fig. 5c and e.
More meaningful insight can be obtained by coupling

these overall measures of significance with measures of
biological relevance. One approach to obtaining measures
of biological relevance is through predictions obtained
from the predictive model selected in the two-step analy-
sis procedures. Since an overall assessment of significance
based on the saturated model (as under RFM) may have
very little relevance to predictions from the predictive
model, the overall assessment of significance based on the
predictive model (as under MRF) should be used.
Model predictions are a useful way of defining biological

relevance, for example through the predicted fold change
between two treatment conditions. However, when there
are more than two treatment conditions multiple mea-
sures of biological relevance can be obtained and the
most meaningful comparisons will be context specific.
For example, the treatment condition of the Arabidopsis

variety Columbia under no salt stress can be considered
as a baseline or default status. In this scenario, a measure
of biological relevance can be obtained as the predicted
fold change (in each treatment condition) from the base-
line level. This results in a series of pairwise comparisons
to a baseline and can be represented through a set of vol-
cano plots (Fig. 6a) where the measure of significance is
constant across all plots, but with each subplot reflect-
ing the fold change from baseline due to each individual
treatment condition. Consequently, the set of ‘important’
response variables can be identified as those that are sta-
tistically significant overall and have a fold change greater
than some threshold in at least one treatment relative to
the baseline. From this, it can be seen that the conditions
identifying the greatest number of ‘important’ response
variables are associated with differences in lipid abun-
dance between the genotype Eutrema compared to the
abundance in the genotype Columbia. However, these
pairwise comparisons make no use of the explanatory
structure and it is arguably more appropriate either to
obtain a structured summary (see below) or to obtain a
single overall measure of biological relevance. For exam-
ple, Fig. 6b shows two volcano plots, where biological
relevance is calculated as the maximal fold increase (and
decrease) in any treatment condition compared to the
baseline, thus giving a single ranking of ‘importance’ over
the response variables.
It is important to emphasise that the (biologically rel-

evant measures of ) differences are not necessarily statis-
tically significant, and that the aim here is to produce
a ranking considering a measure of overall statistical
significance coupled with a notion of overall biological
relevance. For example, lipid X30.0 is considered to be
important as it shows both differential expression (a sta-
tistically significant one-way analysis) and the largest fold
increase in any treatment condition compared to the base-
line of no salt stress in Columbia.

Marginal assessment
With a complex treatment structure, it will usually be
preferable to assess statistical significance for particular
treatment terms in the linear model in order to answer
specific questions associated with the design of the treat-
ment structure. In a univariate framework, there are three
approaches to do this;

1. Assess individual model terms through the
appropriately structured ANOVA (or equivalent
analysis framework),

2. Incorporate a set of orthogonal contrasts into the
treatment structure of the linear model and assess
these terms (e.g. through ANOVA),

3. Compare predicted means through pairwise t-tests
(also referred to as multiple comparisons or post-hoc
tests).
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Fig. 5 Lipidomics Case Study: Overall Comparison. a Comparison of the ranking of the set of lipid species obtained from the overall measure of
statistical significance via the RFM approach compared to the MRF approach. Lipids above the grey dashed line are ranked higher under RFM,
whereas lipids below the dashed line are ranked higher under MRF. Colour of points indicates the associated type of each lipid species. b Lipids
ranked according to the overall test of significance under MRF (one-way ANOVA of the predictive model). c Lipids grouped according to the set of
effects included in the predictive model under MRF. d Lipids ranked according to the overall test of significance under RFM (one-way ANOVA of the
saturated model). e Lipids grouped according to the set of effects included in the predictive model under RFM. Information provided in tabular
form in Additional file 2 of the Supplementary Material
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a

b

Fig. 6 Lipidomics Case Study: Overall Assessment under the MRF. a Coupling the overall measure of statistical significance (of the one-way test
under MRF after a Benjamini-Hochberg multiplicity correction) with measures of biological relevance calculated as the predicted fold change in
abundance compared to the baseline treatment of no salt stress for the variety Columbia (Col). b Coupling the overall measure of statistical
significance (of the one-way test under MRF after a Benjamini-Hochberg multiplicity correction) with a generalised measured of biological relevance
calculated as the maximal fold increase (or decrease) under any treatment condition compared to the baseline treatment of no salt stress for the
variety Columbia (Col). Red lines indicate a p-value of 0.05. Green lines indicate a fold change of 4

In what follows, we consider extensions of only the
first two approaches to the mass univariate framework.
There are a multitude of reasons for not considering
the third (see, for example, references and discussion in
Chapter 8 of [27]).

Since such amarginal assessment will be focussed on the
statistical significance of individual model terms, multi-
plicity corrections should be applied before the predictive
model selection. Consequently, for such marginal assess-
ments, the RFM approach is more appropriate.
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In contrast to the overall assessments of the previous
section, it is now of interest to make multiple assessments
for each response variable. For example, consider the
subset of lipids found to have two significant main effects
but no significant interaction (under RFM). The response
variables can be ranked by the significance of the first
factor (the variety effect) and also by the significance of
the second factor (the salt effect). Unsurprisingly, these
give very different rankings of the lipids, both of which
are of biological interest. To give meaning to these mea-
sures of statistical significance, an associated measure of
biological relevance is required. For a two-level factor,
this is straightforward and simply results in the standard
volcano plot of difference (often presented in fold change)
vs. significance. For a factor with more than two levels,
a similar approach to the overall assessment could be
used. For instance defining relevance as a maximal fold
change to a baseline or, where no baseline exists, the max-
imal fold change between pairs of treatment conditions.
However, neither of these approaches maintain the factor
definition of a marginal assessment. A natural alternative
is to generalise the notion of biological relevance from
simple comparative predictions to estimated effects.
Explicitly, relevance can be defined by

√
MST , where

MST is the treatment mean square for the explanatory
term T. A larger value of the treatment mean square
indicates a greater variation in the mean response of the
levels of the treatment factor. Consequently, a biologically
relevant threshold, ThresB, can be defined such that only
response variables showing a MST > ThresB are deemed
relevant. Moreover, under the RFM, each treatment mean
square is explicitly tested against the null hypothesis
that MST/MSres = 1 at a significance level corrected for
multiplicity according to the associated one-way analysis.
Since the residual mean square, MSres, is an estimate
of background variation, this hypothesis test provides
the corresponding assessment of statistical significance
having adjusted for multiplicity. Thus, a generalisation
of the volcano plot is obtained (Fig. 7a) for individual
explanatory terms.
In addition, the adjusted p-values for each treatment

term can be obtained for each response variable. This
is shown for the lipidomic data in Fig. 7b, where lipids
can be identified according to the most significant treat-
ment factor. For instance, the majority of PC lipids are
seen to have more significant effects associated with salt
stress, while MGDG lipids have more significant effects
associated with differences in genotype.
The above assessment of individual factors extends the

analysis obtained from ANOVA to the mass univariate
framework. In a similar way to a single univariate analysis,
a greater level of detail can be obtained by decompos-
ing the explanatory model structure. If each term within
the linear model can be parameterised into a set of one

degree of freedom terms (or contrasts), than marginal
assessment boils down to a set of hypothesis tests that can
be directly related to a treatment difference and hence tra-
ditional volcano plots can be used. In practice, this will
rarely occur but as exemplified in the lipidomics experi-
ment, contrasts can be included to extract a greater level
of detail. For example, rather than simply analysing the
factor associated with three levels of salt stress, this factor
can be decomposed into two parts in order to test for evi-
dence of a linear trend and deviations from such a trend
in the quantitative levels of salt stress. Similarly, the fac-
tor associated with four different genotypes ofArabidopsis
can be decomposed into two parts in order to test for a)
differences in ecotypes (Eutrema vs. Others) and b) differ-
ences in genotypes within the same ecotype (Columbia,
Ta-0 and Shadara). These effects are shown in Fig. 7c and
again groups of responses showing similar patterns can be
extracted.
It is clear that as more complex models are consid-

ered this approach of marginal assessment becomes more
involved. However, the generalised visualisations extend-
ing the interpretation of ANOVA into three dimensions
(term, effect size, response) can greatly aid the biological
interpretation.

Discussion
In this paper, two methods have been introduced for
incorporating multiplicity corrections in a mass uni-
variate analysis for non-trivial explanatory (treatment)
structures. Each approach has its own advantages and
the choice between them will depend upon the con-
text of any analysis. The RFM approach has been shown
to be conservative in identifying statistically significant
response variables, as multiplicity is applied to the one-
way test of the saturated model, whereas the MRF
approach overcomes this conservativeness through an
inflation of the residual degrees of freedom due to a one-
way test of the predictive model. Inflating the residual
degrees of freedom under MRF may not always be desir-
able and an alternative would be to partition the treatment
sums of squares into two parts, one associated with the
one-way treatment structure of the predictive model and
the other associated with a ‘lack-of-fit’ term. In this way, a
one-way test of the predictive model can be defined whilst
maintaining the residual degrees of freedom for which the
experiment was designed.
The approach to use will be influenced by the type

of analysis used downstream. Overall assessments (a
single assessment per response), such as a single rank-
ing, a classification by predictive model or a categori-
sation of differentially expressed vs. non-differentially
expressed response variables naturally fit within the MRF
framework. In comparison, marginal assessments (mul-
tiple independent assessments per response), such as
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a

b

c

Fig. 7 Lipidomics Case Study: Marginal Assessment under the RFM. a Generalised volcano plots for each explanatory treatment term within the
saturated model, where the term specific p-value has been adjusted via the corresponding one-way multiplicity correction under RFM and
biological relevance is defined through the treatment mean square. b Heatmap of the term specific p-values (−log10(p)) adjusted via the
corresponding one-way multiplicity correction under RFM. Grey indicates an adjusted p-value <0.05. C) Heatmap of the term specific p-values
(−log10(p)) for the extended contrast model adjusted via the corresponding one-way multiplicity correction under RFM. Grey indicates a
non-significant adjusted p-value <0.05
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individual treatment effects or an incorporation of con-
trast effects are more naturally expressed in the RFM
framework.

Alternative approaches
In this paper, attention has been focussed on control-
ling the multiplicity of tests of the full explanatory model
over the R response variables, i.e. at the response vari-
able level within an experiment, through a stage-wise
hypothesis testing procedure. Alternatives to this stage-
wise paradigm can be found in the literature, but have lim-
itations to the response-level interpretation. Specifically,
rather than controlling the FDR at the response-level, an
alternative would be to correct for multiplicity over the R
responses for each of the p explanatory terms, i.e. at the
explanatory term level within an experiment.
The naïve approach might consider that for p explana-

tory terms over R response variables, a total of R × p
tests are required. As such, a global multiplicity correc-
tion over this full set of R × p tests could be applied.
However, this approach will be vastly over-conservative.
Moreover, for all but the simplest form of correction,
interpretation becomes difficult as each of the explana-
tory terms for a single response variable will be assessed
at a different level of significance as, for example, under
a Benjamini-Hochberg correction. This prevents the use
of a model-based interpretation that combines statistical
significance with biological relevance as in the examples
above.
In orthogonal balanced designs, it is conceivable that

controlling multiplicity for each explanatory term sep-
arately is desirable. Specifically, p separate multiplicity
corrections can be applied for each of the p explanatory
terms. This then results in the identification of groups
of responses that are statistically significant for each sep-
arate explanatory term as implemented in [15]. As with
the approaches derived in this paper, an additional model
selection step can be included to base the multiplicity
corrections on the predictive rather than saturated mod-
els. Applying these approaches to the simulated data in
scenario 1 (Section 4 of the Supplementary Material in
Additional file 1), large discrepancies can be seen, par-
ticularly in the assessment of significance of the main
effects. This is unsurprising, since this Model, Subset,
Filter (MSF) approach does not respect the ‘bottom-
up’ marginality interpretation of the ANOVA, with main
effects potentially omitted without the prior removal of
the associated interaction terms.Moreover, the final inter-
pretation becomes limited, as again one cannot analyse
the output in a model-based framework as the assessment
of individual terms is not consistent within a response
variable.
Both the global multiplicity corrections (for all R × p

tests) and separate multiplicity corrections (over all p tests

for each ofR terms) are incorporated in the limma package
[24] for differential expression analysis of RNAseq and
microarray data.

Extensions
This paper has focussed attention on designed experi-
ments where all terms within a linear model are factors
and the associated analysis can be extracted through
ANOVA. In practice, many ’omics datasets may be bet-
ter suited to alternative univariate analysis approaches
such as linear mixed models (to account for unbalanced
designs), linear and generalized linear models to account
for covariates or non-normal responses and hierarchi-
cal models to account for known dependence structures.
Regardless of the complexity of the individual univariate
technique, so long as there is a clear definition of a satu-
rated and predictive model, the principles introduced in
this paper will hold.

Conclusions
Mass univariate approaches provide a valuable comple-
ment to multivariate techniques to analyse and inter-
pret ’omics data. In particular, univariate approaches are
often well developed for problematic data, for instance,
in dealing with missing values, unequal replication,
unbalanced designs and autocorrelated error structures,
which can be difficult to incorporate in a multivari-
ate setting. Moreover, mass univariate approaches enable
statistical significance and biological relevance to be
assessed at an individual response variable level in
addition to the profile level assessment obtained through a
multivariate analysis.
However, as demonstrated in this paper, when analysing

’omics data through a mass univariate approach, a choice
of procedures for incorporating multiplicity corrections is
available. To gain a deeper understanding of the mech-
anisms underlying a particular response variable, it is
particularly important to assess the full treatment struc-
ture of the design rather than the simplified one-way
analysis common in the literature. When coupled with an
approach to control the multiplicity rate, different analy-
sis approaches give more or less influence to either fitting
the predictive model or correcting for multiplicity. Thus,
it is important to be aware of the implicit choice that
is being made.
It is often the case that as the number of responses

increases, ‘simple’ and ‘easy to interpret’ analyses are pre-
ferred. This often comes at the cost of statistical rigor,
but equally the interpretation of model-based approaches
can be cumbersome. However, models generally provide
a deeper insight, for instance, defining the classifica-
tion of responses into subgroups based on the statistical
significance of terms in a model or clustering responses
based on predictions in different conditions. Two different



Hassall and Mead BMC Bioinformatics 2018, 19(Suppl 7):199 Page 125 of 154

procedures for obtaining the predictive model whilst also
incorporating multiplicity corrections have been intro-
duced and illustrated on data. The approach to use
will be driven by the specific aims of the analysis,
namely whether a marginal or overall assessment is most
appropriate.
Since this choice in methods arises due to the pres-

ence of non-trivial (more complex) explanatory treatment
structures, this consideration will become increasingly
important as the ability to include more complex treat-
ment structures and collect observational covariates
becomes more accessible due to the influx of accessible
’omics technologies.
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