
1 3

Histochem Cell Biol (2017) 147:415–438
DOI 10.1007/s00418-016-1515-7

ORIGINAL PAPER

Golgi apparatus dis‑ and reorganizations studied with the aid 
of 2‑deoxy‑d‑glucose and visualized by 3D‑electron tomography

Carmen Ranftler1 · Claudia Meisslitzer‑Ruppitsch1 · Josef Neumüller1 · 
Adolf Ellinger1 · Margit Pavelka1 

Accepted: 7 November 2016 / Published online: 14 December 2016 
© The Author(s) 2016. This article is published with open access at Springerlink.com

Introduction

The Golgi apparatus in mammalian cells is a complex and 
dynamic organelle that is involved in multiple cellular tasks 
and built up from interconnected highly organized stacks of 
cisternae that form a central crossroads in both the secre-
tory and the endocytic pathways (Farquhar and Palade 
1981; Mollenhauer and Morré 1991; Berger 1997; Roth 
1997; Farquhar and Palade 1998; Lippincott-Schwartz 
et al. 1998; Pavelka et al. 2008; Klumperman 2011; Lowe 
2011; Nakamura et al. 2012; Day et al. 2013; Pavelka and 
Roth 2013; Papanikou and Glick 2014; Rothman 2014). 
Its structures and functions have been extensively studied, 
and advanced microscopic methods, including cryo-tech-
niques and correlative light-electron microscopy, together 
with three-dimensional reconstructions have provided 
better insights into the complex Golgi architectures and 
fine structure–function relationships (e.g., Ladinski et  al. 
1999; Grabenbauer et  al. 2005; Han et  al. 2013; Marsh 
and Pavelka 2013; Beznoussenko et al. 2014; Engel et al. 
2015; Koga et  al. 2016). On the other hand, many ques-
tions are unanswered, and the large number of controver-
sial results obtained with respect to the organization of the 
Golgi apparatus is confusing. To a large part, the difficul-
ties in the exploration of the Golgi organization are due to 
the high dynamics of the organelle and the rapid reorgani-
zations occurring concomitantly with functional changes, 
under pathological conditions, during the cell cycle and 
in response to environmental changes and drug treatments 
(e.g., Rabouille and Warren 1997; Dinter and Berger 1998; 
Vetterlein et  al. 2003; Mironov et  al., 2004; Wang and 
Seemann 2011; Villeneuve et  al. 2013; Dong et  al. 2014; 
Haase and Rabouille 2015; Machamer 2015; Kaneko et al. 
2016; Rabouille and Haase 2016). The present work aims 
to improve the insight into Golgi apparatus dynamics and 
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unravel processes of Golgi apparatus disorganizations 
and reorganizations. For this, we used 2-deoxy-d-glucose 
(2DG), a nonmetabolizable glucose analogue, which causes 
a reversible decrease of the cellular levels of adenosine 
triphosphate (ATP) and which is used in both experimen-
tal cell biology and medicine (e.g., Aft et al. 2002; Dwara-
kanath 2009; Kavaliauskiene et  al. 2015; Zhang et  al. 
2015). Since the Golgi apparatus changes its architecture 
under the influence of 2DG, this drug was found to be of 
great value in the context of Golgi apparatus research (del 
Valle et  al. 1999; Meisslitzer-Ruppitsch et  al. 2011; Ran-
ftler et al. 2015).

The sugar 2-deoxy-d-glucose (2-deoxy-d-arabino-hex-
ose) is the 2-deoxy derivate of d-glucose and d-mannose. Its 
synthesis from d-glucose has already been described more 
than 90 years ago by Bergmann and colleagues (Bergmann 
et al. 1922, 1923). During the past decades, 2DG has been 
much used in basic research and for medical applications. 
It has a wide range of effects, which include anti-viral and 
anti-tumor response, both tested in vitro and in vivo (e.g., 
Aft et al. 2002; Kang and Hwang 2006; Dwarakanath 2009; 
Diaz-Ruiz et al. 2011; Raez et al. 2013; Zhang et al. 2014). 
2DG is a potential drug for the treatment of epilepsy owing 
to its anti-convulsant properties (e.g., Stafstrom et al. 2009; 
Ockuly et al. 2012) being well tolerated at effective doses. 
Its capability of inducing ketogenesis and supporting or 
mimicking a ketogenic diet is important for the treatment 
of epilepsy (Garriga-Canut et  al. 2006), as well as other 
diseases, such as Morbus Alzheimer (Yao et  al. 2011) or 
malignant astrocytoma (Marsh et al. 2008). Moreover, 2DG 
has been found to enhance autophagy, or have discriminat-
ing effects on autophagy regulation (Wu et al. 2009; Wang 
et al. 2011; Xi et al. 2011; Jeon et al. 2015), another fact 
that is of particular interest in anti-tumor-application. The 
combined use of 2DG and cytostatic drugs and other sub-
stances offers promising new possibilities in tumor thera-
pies (Estañ et  al. 2012; Huang et  al. 2013; Mustafa et  al. 
2015; Oladghaffari et al. 2015; Li et al. 2015; Jangamreddy 
et al. 2015; Zhang et al. 2015). 2DG might also help in the 
treatment of systemic lupus erythematodes by normaliz-
ing the T cell metabolism (Yin et  al. 2015) and has been 
recognized as a caloric restriction mimetic (Ingram and 
Roth 2015). It has recently been shown that 2DG alters 
the levels and species compositions of several lipids; it 
becomes incorporated into the carbohydrate moiety of 
glycosphingolipids and protects cells against Shiga toxins  
(Kavaliauskiene et al. 2015).

Based on its chemical structure, 2DG acts by influenc-
ing N-glycosylation (d-mannose analogue) and glycolysis 
(d-glucose analogue), thereby changing the cells’ energy 
level by decreasing the amount of intracellular ATP (del 
Valle et  al. 1999; Ranftler et  al. 2015) and altering the 

structures of cell organelles and the endomembrane system 
(del Valle et  al. 1999; Grieb et  al. 2004; Wu et  al. 2009; 
Meisslitzer-Ruppitsch et  al. 2011; Ranftler et  al. 2015). 
Although 2DG has become a drug of high scientific and 
medical interest, only few reports have addressed its action 
with regard to the ultrastructure of cells. Previous studies in 
our laboratory (Meisslitzer-Ruppitsch et al. 2011; Ranftler 
et  al. 2015) have shown that treating cultured cells with 
2DG leads to extensive changes of the Golgi apparatus. In 
the present work, we followed the dissociations and re-for-
mations of the Golgi stacks that occur under the influence 
of 2DG and after administration of the drug had ended. We 
asked, whether these reorganizations are correlated with 
the changes in the cellular ATP-levels. Both chemically 
fixed and high-pressure frozen cells were analyzed ultra-
structurally, and the Golgi apparatus architectures were 
studied three-dimensionally by using electron tomogra-
phy. Initial Golgi apparatus reorganizations start few min-
utes after onset of 2DG treatment simultaneously with a 
rapid depression of the cells’ ATP-levels. Continued treat-
ment with 2DG leads to the disappearance of regular Golgi 
apparatus stacks, which are replaced by vesiculo-tubulo-
glomerular Golgi bodies. All these changes are completely 
reversible, which makes the substance best suitable for a 
close observation of the dynamics of the Golgi apparatus 
during disorganizations and reorganizations of the stacks; 
the results also help to understand the way, in which cells 
respond to the conditions of stress, which is particularly 
relevant, when 2DG is used in experimental cell biology 
and medical sciences, and is applied clinically.

Materials and methods

General cell culture procedures

HepG2 cells (epithelial hepatoblastoma cells, HB-8065, 
ATCC) were grown in Minimum Essential Medium with 
Eagle salts (MEM) containing 10% Fetal Bovine Serum 
(FBS), 2  mM  l-glutamine and 1% NonEssential Amino 
Acid Solution (NEAA) in a 95% humidified atmosphere 
with 5% CO2 and a constant temperature at 37  °C. All 
agents were purchased from PAA Laboratories GmbH, Pas-
ching, Austria.

Experimental settings

To provide an experimental basis for correlative studies of 
morphologies and fine structures of cells and their ATP-
concentrations, we designed an assembly, which enabled us 
to use the same cultures for combined microscopic analy-
ses of chemically fixed and high-pressure frozen cells as 



417Histochem Cell Biol (2017) 147:415–438	

1 3

well as for ATP-measurements (Ranftler et al. 2013). Petri 
dishes, each containing a glass cover slip with a duplet of 
sapphire disks positioned on its surface, were prepared 
before the seeding of the cells. The cells grown on the bot-
tom of the Petri dishes were used to measure the intracel-
lular ATP-levels, while the cells on the glass cover slips 
were chemically fixed and the cells on the sapphire disks 
were taken for high-pressure freezing (HPF). Both chemi-
cally and HPF fixed cells were further prepared for electron 
microscopy and electron tomography.

Treatments with 2DG

HepG2 cell cultures (growing either on glass coverslips, 
sapphire disks or Petri dishes) were used for experiments 
48 h after seeding and 24 h after a medium change to Dul-
becco’s Modified Eagles Medium containing 1 g/l glucose 
(DMEM; Sigma-Aldrich, St. Louis, USA), 10% FBS, 1% 
NEAA, 4  mM  l-glutamine and 1% Antibiotic Antimy-
cotic Solution (PAA). In this medium, cells were grown 
at increased CO2-concentrations (7.5%). At the beginning 
of the experiments, the cells had reached a confluence of 
60–80%.

Before 2DG was applied, the HepG2 cell cultures were 
washed with glucose-pyruvate-free DMEM (GPF, Sigma-
Aldrich) supplemented with 1% NEAA, 1% dialyzed FBS 
(PAA) and 4 mM l-glutamine. For ATP-depletion, the cells 
were incubated in GPF containing 10, 25 or 50 mM 2DG 
(Sigma-Aldrich) for various periods (1  min to 24  h). For 
the purpose of ATP-replenishment, the cells were washed 
with GPF and subsequently incubated for various periods 
(up to 5 h) in GPF alone or with 50 mM d-glucose (Sigma-
Aldrich) and 1% pyruvate (Sigma-Aldrich) added.

Measurement of the intracellular ATP‑level

Adherent HepG2 cells grown on Petri dishes were used for 
measurements of their ATP-concentrations either untreated 
or following 2DG-treatment for various times, or vari-
ous post-incubation periods after 2DG-removal. For this, 
we used the ATPlite Luminescence ATP Detection Assay 
System (Perkin Elmer) based on the luciferase–luciferin 
method, according to the guidelines of the producer. The 
photon emission was measured by using a luminometer 
(PhL Luminometer, Mediators Diagnostika, Vienna; Aus-
tria). Control values were set as 100%; treated samples 
were referred to these as percentages. Furthermore, a cali-
bration curve was used to obtain the total amount of ATP in 
[pM].

In a single experiment, one approach was performed 
twice or thrice, and measurements of each sample were 
taken in quadruples, of which a mean value was deter-
mined. Experiments were repeated at least four times.

Electron microscopy

Chemical fixation

Cells grown on glass coverslips were fixed by using 2.5% 
glutaraldehyde (Sigma-Aldrich) in ice-cold 0.1  M caco-
dylate buffer pH 7.4 (Merck) for 90  min at 4  °C. Sub-
sequently, the cells were washed three times with 0.1  M 
cacodylate buffer (pH 7.4) before they were stained in 
osmium/potassium-ferrocyanide solution (2% OsO4: 
3% K4Fe(CN)6  =  1:1 vol/vol; both Merck) for 15  min 
at 4  °C and then in 1% veronal acetate (Merck)-buffered 
OsO4 solution for 4 h at 4 °C. Afterward, the OsO4 solu-
tion was discarded, and 70% ethanol (Merck) was added 
for 90 min at room temperature. The cells were dehydrated 
in a graded series of ethanol (70, 80, 96%, EtOHabsolute) 
and embedded in epoxide resin (Serva, Heidelberg, Ger-
many). After completed polymerization, 80-nm ultrathin 
sections for normal transmission electron microscopy or 
200–300-nm-thick sections for electron tomography were 
prepared (UltraCut-UCT microtome, Leica Inc., Vienna, 
Austria) and transferred onto copper-grids (Agar Scientific 
Elektron Technology UK Ltd, Stansted, Great Britain). 
The sections were stained in 1% uranyl acetate (Merck) for 
5 min. Alternatively, the sections were stained for 20 min 
with 0.2% OTE (Oolong Tea Extract, Nisshin EM Co. Ltd. 
Tokyo, Japan) in phosphate-buffered saline (PBS, Sigma-
Aldrich, pH 7.4). After that, the sections were incubated 
for other 5  min with 8% alkaline lead citrate (Merck). 
Each step was performed at room temperature. Finally, the 
sections were examined electron microscopically at 80 kV 
(Tecnai-20, FEI Company, Eindhoven, The Netherlands). 
Digital images were recorded by using an Eagle 4k CCD 
camera; chip size: 4.096 ×  4.096 pixels (FEI Company). 
Appropriate regions of interest were chosen for electron 
tomography.

High‑pressure freezing

In parallel, the HepG2 cells grown on sapphire disks (BAL-
TEC, Liechtenstein) were used for high-pressure freezing 
(BAL-TEC HPM 010 high-pressure freezing machine). 
Sandwiches of two sapphires facing each other with the 
surfaces containing the cell layers were positioned into the 
specimen holder. They were separated in the middle by a 
copper spacer and bordered by an aluminum spacer on each 
cell-free side of the sapphires (for illustration and step-by-
step description of the process see Ranftler et  al. 2013). 
After freezing, the specimens were stored in liquid nitrogen 
before substitution in a cocktail containing 1% OsO4 and 
0.4% uranyl acetate in acetone (Merck). For preparation of 
the cocktail, 0.04 g uranyl acetate dihydrate was dissolved 
in 10 ml acetone by ultrasonication, followed by addition 
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of 0.1 g OsO4. Substitution was performed in a Leica ASF 
system (Leica Microsystems, Vienna, Austria) for 8  h at 
−90  °C before raising the temperature to −60  °C within 
30 min. After 8 h at −60 °C, the temperature was increased 
to −30 °C within 30 min and then kept constant for a fur-
ther 8  h. All these steps were done by automatic devise 
control. Finally, the temperature was set to 0  °C within 
10 min manually prior to warming up the samples to ambi-
ent temperature. Then, after rinsing the samples in acetone, 
they were embedded in epoxide resin. After polymeriza-
tion, ultrathin sections (80  nm) for transmission electron 
microscopy and 200–300-nm-thick sections for electron 
tomography were prepared and stained as described above.

Electron tomography

Electron tomography was performed in a Tecnai-20 electron 
microscope at 200 kV using either a single high-tilt holder 
(FEI company) or a high-tilt rotation holder (Gatan, Inc., 
Pleasanton, CA), which allowed adjusting the structures in 
optimal position. Series of tilted images within an angu-
lar range of −65° to +65° and a tilt increment of 1° were 
recorded automatically by the Xplore 3D software (FEI 
company) using a 1k Gatan slow-scan CCD camera (chip 
size: 1.024  ×  1.024 pixels) or an Eagle 4k CCD camera 
(FEI Company; chip size: 4.096 ×  4.096 pixels). In order 
to reconstruct the volume of the 200–300-nm-thick sections 
into virtual slices, we used the Inspect 3D software (FEI 
company) or the IMOD software (Boulder Laboratory for 
3D Electron Microscopy of Cells, University of Colorado, 
USA; Kremer et al. 1996). For 3D-modeling, the structures 
of interest in each slice were traced with colored contours 
that were merged in the Z-axis with the help of the Amira 
5.3 software (Mercury Computer Systems, Merignac, Cedex, 
France). Concerning the analysis of vesicles, only those 
globular membrane structures, which were fully embedded 
within the volume studied by electron tomography, were 
denoted as “vesicles.” For a more detailed analysis, some of 
the 3D-models were cut horizontally or vertically at different 
levels numbered from 1 (uppermost position in the model) to 
100 (lowermost position); in Fig. 8, the positions of the cut 
face levels are indicated in the respective panels.

Results

Incubation of cultured cells in a glucose-pyruvate-free 
medium (GPF) containing 2DG effects a rapid reduction 
in the cells’ ATP-levels and prominent reorganizations of 
the Golgi apparatus (Figs. 1, 2, 3). The ATP-levels decline 
within the first minutes after 2DG-administration to approx-
imately 15–20% of those of the controls or even lower 
values and stay low during continued treatment (Fig.  3a). 

Simultaneously, regular Golgi apparatus stacks with typical 
flattened cisternae in parallel organization disappear and are 
replaced by bodies composed of loosely arranged vesiculo-
tubulo-cisternal membrane compartments, as depicted elec-
tron microscopically by studies of thin sections (Fig. 1a, b 
and inserts) and three-dimensionally by electron tomogra-
phy (Fig.  2a–c). For this work, we used cells of the well-
established human HepG2 hepatoblastoma cell line (Aden 
et al. 1979; Knowles et al. 1980; Schwartz et al. 1981; Zan-
nis et  al. 1981; López-Terrada et  al. 2009). Since tumor 
cells differ from nontumor cells in that they show generally 
higher rates of glycolysis (Cori and Cori 1925; Warburg 
1930, 1956a, b; reviewed by Ferreira 2010), they are most 
suitable for studying 2DG as anti-metabolite of glucose (for 
review, e.g., Kang and Hwang 2006). We studied high-pres-
sure frozen cells as well as chemically fixed cells and did 
not find differences in the changes of the Golgi apparatus 
induced by 2DG. In preliminary examinations, we tested the 
basic culture conditions, studied possible influences of dif-
ferent 2DG-concentrations and compared the 2DG-results 
with those obtained by starvation of the cells.

Basic analyses

The 2DG‑effects on ATP‑levels and Golgi apparatus 
morphologies are independent of the concentrations used

Since, in the literature, the concentrations of 2DG used vary 
strongly depending on the cell type and scientific interest 
(Table  1), we tested the effects of different 2DG-concen-
trations on the cells of our HepG2 cultures. ATP-levels and 
the cells’ morphologies were analyzed after 45 min and 5 h 
of treatment with 10, 25, and 50 mM 2DG. No differences 
between the three concentrations were found neither con-
cerning the 2DG-induced morphological Golgi apparatus 
changes nor the ATP-reductions (Fig. 2d).

The effects of 2DG treatments are specific and differ 
to those caused by starvation

In order to answer the question, whether the effects of 
2DG-treatment on the cellular ATP-levels and Golgi appa-
ratus morphologies can also be achieved by starvation, we 
compared the results obtained with cells incubated in GPF 
containing 50  mM 2DG with those obtained after incuba-
tion of the cells in GPF without 2DG. The ATP-levels after 
incubation in GPF without 2DG for various time periods 
ranging from 1 to 240 min were comparable to those of con-
trols or slightly reduced but were never found significantly 
depressed as seen after 2DG-treatment (Fig.  3a, b). The 
Golgi apparatus shows unchanged morphologies in the cells 
cultured in GPF (Fig.  3d), thus contrasting to the altered 
Golgi apparatus stacks, which are on display in Fig. 3c.
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The ATP‑lowering effects of 2DG can be inhibited 
by d‑glucose

Concomitant treatments of the HepG2 cells with 2DG 
(50  mM) and d-glucose (50  mM) block the ATP-lower-
ing effect of 2DG. This inhibition is effective at all times 
of treatment (Fig.  4a); the Golgi apparatus morphologies 
remain unchanged (Fig. 4b–d).

Structural Golgi stack reorganizations

The main parts of the work focus on the structural changes 
in the Golgi apparatus taking place in response to 2DG-
treatment and after its removal. The results underline that 
2DG is a substance that allows a controlled disorganization 
and re-formation of this complex organelle thus providing 
insight into the dynamics of its architecture.

Initial 2DG‑induced Golgi reorganizations take place 
within the stacks of cisternae

ATP-levels drop down to approximately 15–20% within 
the first 10 min and remain constantly low during all times 
tested (Fig. 3a). The early changes in the Golgi apparatus 
architecture in response to 10–15  min of 2DG-treatment 
can hardly be detected in thin sections (Fig.  3c, panel at 
the left-hand side) but they become clearly visible in the 
electron tomographic reconstructions (Figs. 5, 6). The vir-
tual tomographic slices depicted in Fig.  5a–f and the dif-
ferent aspects of the respective model in Fig.  5g–k show 
that the regular parallel order of cisternae is interrupted 
by arches, branches and wide pores, and reticular regions 
emerge within the stacks that are situated side by side with 
regularly organized cisternae (Fig.  5g). Slices and draw-
ings on display in Fig. 6 (panels a–d and e–g, respectively) 

Fig. 1   Ultrastructures of the 
Golgi apparatus in HepG2 
hepatoma cells, high-pressure 
frozen, freeze substituted and 
embedded in Epon, are shown 
on thin sections of a control cell 
(a, inset) and after 45 min of 
treatment with 2DG (b, inset). 
In the control cell (a), several 
regular stacks of cisternae 
in parallel organization are 
apparent (white arrows); in the 
2DG-treated cell (b), regular 
Golgi stacks are missing and 
instead Golgi bodies composed 
of irregular and loosely organ-
ized membranous compartments 
dominate (circles). In both pan-
els, areas marked by a rectangle 
are shown in the inset at higher 
magnification and respective 
ATP-values are indicated. In 
all pictures, RER-cisternae are 
found close to the Golgi stacks 
and Golgi bodies; the RER 
luminal contents appear denser 
in the 2DG-treated cells (b) than 
in the controls (a)
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show the presence of crossroads-like junctions that build 
up interlinked regions within the stack. In both cases, the 
3D-tomographic analyses provide evidence that almost all 
parts of the stack are connected with each other. This is 
accentuated by a color code and by numbering some of the 
cisternae (Fig. 6).

With ongoing 2DG‑treatment Golgi stacks disappear 
and are replaced by Golgi bodies

With progressing 2DG-treatment, ATP-levels remain low 
(Fig.  3a); both short- and long-time treatments lead to 
similarly depressed cellular ATP-concentrations (Fig.  7). 

Concomitantly, regular Golgi stacks become reduced 
in number, disappear and get replaced by Golgi bod-
ies, visible in thin sections in the electron microscope as 
loosely organized heterogeneous membrane compartments 
(Fig.  1b). Regular Golgi stacks are almost entirely lack-
ing after 1-h treatment and Golgi bodies dominate. With 
continuing 2DG-applications, the character of the bodies 
alters. They become smaller and increasingly compact 
and glomerular (Figs. 3c, 7). Figure 3c shows the change 
in the organization: loosely arranged bodies at 30  min 
and a compact body at 180  min 2DG-treatment. The 
tomographic slices and models (Figs.  2c, 8a–l) provid-
ing 3D-views and insights into the interior of the bodies 

Fig. 2   Tomographic slices and 
three-dimensional models of 
a control cell Golgi apparatus 
stack in a and b, and a Golgi 
body of a cell treated with 2DG 
for 45 min in c are shown. In 
both cases, the cell cultures 
were high-pressure frozen, 
freeze substituted and embed-
ded in Epon. In contrast to the 
parallel organization of the 
cisternae that build up a Golgi 
stack in the control cell (b), the 
2DG-treated cell shows various, 
in part tubular, cisternal and 
small vesicular compartments, 
that form a loosely arranged 
Golgi body (c). Branched and 
bifurcated structures (white 
arrows) are common. Volumes 
of the calculated tomograms (x, 
y, z): a, b 3.535 × 2.919 × 205 
pixels, pixel size 0,59 nm; c 
4.073 × 3.943 × 140 pixels, 
pixel size 0,46 nm. d The 
percentage ATP-values after 
45 min and 5 h of treatment 
of HepG2 cell cultures with 
2DG of different, 10, 25 and 
50 mM, concentrations. The 
graphic shows that a massive 
reduction of the ATP-levels 
is obtained with each of the 
2DG-concentrations tested. The 
data shown are taken from one 
representative experiment; com-
parable results were obtained in 
repeated experiments
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Fig. 3   a, b Percentage ATP-values are shown as obtained after dif-
ferent times of culture in either glucose-pyruvate-free medium (GPF) 
containing 50  mM 2DG or in GPF lacking 2DG, respectively. The 
curve of declining ATP-values in a indicates that the main ATP-reduc-
tion occurs within the first 10  min of treatment. By contrast to the 
considerably reduced ATP-levels measured in the 2DG-treated cell 
cultures, the results obtained with the cultures grown in GPF without 
2DG show ATP-values comparable to the controls or slightly reduced 
at the later times of treatment. The data are taken from one represent-
ative experiment; repeated experiments yielded comparable results. 
c, d The Golgi apparatus morphologies of cells cultured for 10, 30 

and 180 min in GPF with or without 2DG, respectively; the respec-
tive ATP-values are additionally indicated in the right upper corner of 
the pictures. c Alterations of the Golgi apparatus stack are hardly vis-
ible after 10  min of 2DG-treatment; the stack appears disorganized 
and in part changed in a loosely arranged Golgi body after 30 min; a 
Golgi body composed of densely packed membrane compartments is 
seen after 180 min of treatment. d By contrast, cells cultured in GPF 
without 2DG show unchanged Golgi apparatus stacks comparable to 
those of control cells. In all pictures, RER-cisternae are found nearby 
the Golgi stacks exhibiting denser contents in the 2DG-treated cells 
(c) than in those cultured without 2DG
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confirm the reorganizations. The early loosely arranged 
tubulo-cisternal Golgi body, accompanied by small vesi-
cles (Fig.  2c), contrasts with the late compact bodies 
(Fig.  8), which represent distinct glomerular organelles 
with densely packed membranes and only few vesicles 
nearby. Sections through the 3D-models show that convo-
luted tubules build up these compact organelles (Fig. 8d–f, 
j–l). Large parts of the bodies are connected among each 
other. A remarkably close spatial relationship of the ER is 
shown in Fig. 8b and h, where an ER-bud protruding into 
the body is visible (Fig. 8h).

After 2DG‑removal, Golgi stack re‑formation takes place 
in a close spatial relationship to Golgi bodies

Both the 2DG-induced ATP-decrease and the Golgi appa-
ratus reorganizations are reversible. The cellular ATP-
contents are rapidly replenished after removal of 2DG 
and incubation of the cells in medium containing 50 mM 
glucose and 1% pyruvate (Fig.  9a). The ATP-levels arise 
fast and reach those of controls after 60–180  min; simul-
taneously, regular Golgi apparatus morphologies re-appear 
(Fig. 9c). ATP-replenishment and reconstitution of regular 

Fig. 4   a Unchanged cellular percentage ATP-levels after 45, 120 and 
300  min of concomitant treatment of the HepG2 cell cultures with 
2DG (50 mM) and d-glucose (50 mM) indicating that the ATP-low-
ering effect of 2DG is inhibited. The likewise unchanged morpholo-

gies of the Golgi apparatus stacks, as they are found after 45, 120 
and 300 min of concomitant treatment with 2DG and d-glucose, are 
shown in b, c and d
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Fig. 5   a–f Tomographic slices obtained from different levels of a 
Golgi stack reconstruction after 10 min of 2DG-treatment; the respec-
tive 3D-model is on display in g–k. Both the slices and the model, 
in part sectioned vertically (g1 and g2) and horizontally (h–k), pro-
vide views inside the stack. The image shows that a parallel organiza-
tion of cisternae still exists but is interrupted by arches, branches and 
wide pores resulting in the occurrence of reticular regions within the 
stack. Regularly ordered cisternae and reticular areas are located side 

by side, as is particularly clearly shown in g. In e, slice 48 is shown 
together with the respective horizontal section through the model, 
and the connecting arches present within the stack are accentuated by 
dotted lines. The numbers in the left lower corner of a–f indicate the 
respective slice numbers within the reconstructed stack. Volume of 
the calculated tomogram (x, y, z): 989 × 976 × 61 pixels, pixel size 
1.84 nm
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Golgi apparatus stacks after removal of 2DG also take place 
in GPF, but are delayed under such conditions (Figs. 9b, d, 
10, 11). In cells incubated in medium with 50 mM glucose, 
the ATP-levels increase rapidly (Fig. 9a) and regular Golgi 
apparatus stacks are found as early as after 45 min (Fig. 9c, 
picture in rightmost position), whereas ATP-replenishment 
takes place more slowly (Fig.  9b) and most of the Golgi 
stacks are at this time still in a state of re-formation, when 
glucose-free medium is used (Fig. 9d, picture in rightmost 

position). Bodies of densely compacted membranes 
(Fig. 10e, f) and multi-cisternal mini-stacks of short pore-
less cisternae in a ladder-like arrangement (Fig. 10c) pre-
cede the re-appearance of regular Golgi apparatus stacks. 
In the compacted bodies narrow, particularly regular inter-
membrane spaces are dominant (Fig. 10f). Mini-stacks are 
formed that are closely related to compact Golgi bodies 
as shown in the electron tomographic slices and sections 
through the model on display in Fig. 11. Almost all of the 

Fig. 6   Tomographic slices in 
a–d obtained from different 
levels of a Golgi apparatus 
reconstruction at 15 min of 
2DG-treatment show that dif-
ferent sites within a stack are 
interlinked by crossroads-like 
junctions, accompanied by 
frequent bifurcations. A repre-
sentative area is on display in a, 
b and d and is further accentu-
ated by means of drawings 
and by numbering some of the 
cisternae (c, e–g). Two different 
sites within the stack are labeled 
in red and blue and their spatial 
relationship traced within the 
reconstructed volume. The 
colored regions are found apart 
from each other in slice 200 (a, 
e); in slices 131 and 142, they 
can be seen joined forming parts 
of a crossroads-like junction 
(b, c, f), and they are separated 
again in slice 80 (d, g). The 
numbers in the left lower corner 
of a-d indicate the respective 
numbers of the slices. Volume 
of the calculated tomogram 
(x, y, z): 3.585 × 3.604 × 242 
pixels, pixel size 0.39 nm
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short cisternae of the forming mini-stack are connected 
among each other via complex continuities located in the 
tubulo-glomerular part of the body (Fig. 11a–i, j–m).

Golgi apparatus dis‑ and reorganizations correlate 
with the cellular ATP‑concentrations

The 2DG-induced reorganizations of the Golgi apparatus 
can be correlated with the changes in the cellular ATP-
levels. We performed ATP-measurements at short intervals 
and electron microscopic analyses of cells of the same 
cultures in parallel. The results showed that the amounts 
of cellular ATP and the Golgi apparatus structures change 
concomitantly during both the ATP-decrease and the ATP-
replenishment periods. A summary depicting the ATP-
values of one representative experiment and characteris-
tic electron micrographs obtained from cells at the same 
times of treatment is shown in the artwork of Fig. 12. In 
the experiment on display (see also Fig. 3a), the ATP-lev-
els decline within 10 min to 15% of those of the controls 
(Fig. 12a, b). In parallel, the first changes occur within the 
Golgi apparatus stacks. The initial membrane reorganiza-
tions are inconspicuous and can be easily missed if only 
thin sections are analyzed, but they are evident in the 
three-dimensional reconstructions (cf. Figs.  5, 6). During 
the subsequent periods of 2DG-treatment from 10  min 
up to 4  h, the ATP-levels remain low ranging between 
15 and 27% of those of the controls; these periods are 

characterized by the absence of regular Golgi apparatus 
stacks and the dominance of vesiculo-tubulo-glomerular 
Golgi bodies (Fig. 12c). The increase of the ATP-levels in 
the ATP-replenishment period after removal of 2DG and 
addition of glucose and pyruvate to the culture medium 
is accompanied by a re-formation of regular Golgi appa-
ratus stacks. In the experiment shown (see also Fig.  9a), 
the ATP-levels reach 52% of the controls after 10 min of 
incubation in glucose-containing replenishment medium; 
at this time, the Golgi apparatus stacks are not yet com-
pletely re-formed, but mini-stacks are visible within the 
Golgi bodies (Fig.  12d). After 1  h, the cellular ATP has 
reached 80% of that of controls and regularly structured 
Golgi stacks dominate (Fig. 12e).

Discussion

The nonmetabolizable glucose analogue 2DG is used in 
experimental cell biology as well as in medical and clinical 
domains. Here, we show that 2DG also is a greatly valuable 
agent for analyzing organization and dynamics of the Golgi 
apparatus. With the usage of 2DG, the Golgi apparatus 
can be disorganized and subsequently again reorganized, 
thus permitting a close view of the processes of its disso-
ciation, the remodeling of the stacks of cisternae, formation 
of Golgi bodies that replace the stacks and eventually the 
stacks’ re-formation.

Fig. 7   Percentage ATP-values 
after different short- and long-
time 2DG-treatments are shown. 
The data are taken from two 
representative experiments and 
show that the ATP-concentra-
tions are persistently depressed 
throughout the entire times of 
the experiments. The electron 
micrograph shows parts of the 
cytoplasm of a HepG2 cell 
treated with 2DG for 5 h. Regu-
lar Golgi apparatus stacks are 
lacking; instead, Golgi bodies 
with densely packed membrane 
compartments dominate closely 
adjacent to cisternae of the 
RER filled with electron dense 
contents
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Our measurements taken at frequent intervals indi-
cate that addition of 2DG to the glucose- and pyruvate-
free culture medium causes a rapid ATP-decrease within 
10–15 min to some 15–20% of the control levels or even 
lower, remaining low over the entire time of treatment, 
whereas the ATP-contents rise again, as soon as 2DG is 
removed. The cells adapt to the altered environment and 
respond with structural changes that all are reversible after 
removal of the substance. Such investigations using 2DG 
are highly interesting not only concerning analyses of 
both Golgi stack dissociation and re-formation, but as they 

provide insights into the cells’ response to metabolic stress 
at the same time.

Golgi stack dissociation and formation of Golgi bodies

In multiple publications, function-dependent Golgi appa-
ratus changes, alterations during mitosis and in diseased 
cells and effects of Golgi-disturbing substances have 
been reported and described as Golgi apparatus dissocia-
tion, disassembly, breakdown, vesiculation or fragmenta-
tion (e.g., Rabouille and Warren 1997; Dinter and Berger 

Fig. 8   Panels depict various 
views of 3D-models of compact 
Golgi bodies (numbered 1, 2 
and 3) after 60 min of 2DG-
treatment. b, h Indicate the 
close relationship to the ER 
(colored in green); an ER-bud 
protruding into the body is 
shown in panel h. All 3 bodies 
are similarly composed of 
convoluted tubules, the loops of 
which can be identified in the 
models and are particularly well 
visible in the sections through 
the models, exhibited in d–f and 
j–l. The differentiated color‑
ing of bodies 2 and 3 in c and 
i points to the connected parts 
of the bodies, the largest being 
highlighted in yellow. As seen in 
i, body 3 is almost completely 
composed of one continuous 
compartment. The numbers 
in the left lower corner of d–f 
and j–l indicate the respective 
positions of the sections through 
the model. Volumes of the 
calculated tomograms (x, y, 
z): a–f 4.004 × 3.892 × 310 
pixels, pixel size 0,39 nm; g–l 
3.977 × 3.887 × 370 pixels; 
pixel size 0.39 nm
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1998; del Valle et al. 1999; Wang and Seemann 2011; Vil-
leneuve et al. 2013; Dong et al. 2014; Haase and Rabouille 
2015; Machamer 2015; Schuberth et  al. 2015; Kaneko 

et  al. 2016); in most cases, the descriptions reflect the 
fluorescence microscopic patterns or are obtained by elec-
tron microscopy of thin sections. In our work, for the first 

Fig. 9   a Rising cellular ATP-levels at different times ranging from 1 
to 240 min after removal of 2DG and incubation in a 50 mM glucose- 
and 1% pyruvate-containing DMEM. b The respective ATP-values 
obtained after 2DG-removal and incubation of the cells in glucose-
pyruvate-free medium (GPF). A comparison of the diagrams in pan-
els a and b makes it clear that ATP-replenishment also takes place 
without addition of glucose but is delayed. The pictures in c, d show 

the Golgi apparatus morphologies 10, 30 and 45  min after 2DG-
removal and incubation in either glucose-containing or glucose-free 
medium, respectively. With either protocol, an increased regularity 
of the membranes and short cisternae in parallel orientation can be 
seen within the Golgi bodies as early as after 10 min. Mini-stacks are 
formed that are particularly well visible in the rightmost picture of d
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time, 3D-electron tomography was used for studying the 
effects of a Golgi-disturbing substance. The results show 
that the Golgi apparatus does not simply “break down” 

under the influence of 2DG but that its compartments are 
remodeled leading to a disappearance of the organization 
of the stacks and their replacement by Golgi bodies. The 

Fig. 10   All panels show Golgi apparatus bodies after 2DG-removal 
following a 45 min treatment time and a 30 min subsequent incuba-
tion in GPF. Various types of Golgi bodies are on display, as they 
also may reside in cells side by side. The bodies shown in a, b are of 
tubular-reticular character; e, f particularly compact glomerular Golgi 
bodies with densely packed membranes, and c and d initial stack 
formations. c Multi-cisternal mini-stack, as is characteristic for this 

recovery period. The cisternae are conspicuously short, lack pores 
and are in a ladder-like arrangement. A combined body is shown in d 
consisting of a compact part with densely packed membranes on the 
right-hand side; in the stack on the left-hand side, pores can be seen 
and pairs of cisternae appear connected at their rims. Narrow, particu-
larly regular inter-membrane spaces are apparent in the compact body 
shown in f
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reorganizations are not sudden events but take place within 
30–60 min and more. Initial signs, however, recognized by 
3D-analyses only can be seen within the first 10–15  min 
of treatment coinciding with the fast reduction in the cel-
lular ATP-concentrations. Electron tomography made vis-
ible that early membranous intra-stack networks consist of 
arches, branches and crossroads-like structures connecting 
sites within the stacks located at a distance from each other. 
Their structures and extensions suggest that they could 
have a role in signaling (Cancino et al. 2014; Luini and Par-
ashuraman 2016) or open novel traffic routes, which might 
be important during such early times of Golgi apparatus 
remodeling, when the stacks of cisternae increasingly dis-
appear and Golgi bodies become apparent.

How membranes and contents in the secretory and 
endocytic systems traverse the Golgi apparatus stacks en 
route to their final destinations, thereby becoming modi-
fied, is one of the most debated questions in the areas of 
cellular transport and traffic. Different transport mecha-
nisms, including vesicular traffic, membrane maturation 
and transport via membrane continuities and contact sites, 
have been shown and apply to different types of cells, 
depending on the molecules and materials to be trans-
ported but are possibly active in the same cell side by side 
(e.g., Trucco et  al. 2004; Mironov et  al. 2013; Glick and 
Nakano 2009; Pfeffer 2013; Pellett et al. 2013; Rizzo et al. 
2013; Lavieu et al. 2013, 2014; Rothman 2014; Beznous-
senko et  al. 2014, 2016; Lee et  al. 2014; Cheung et  al. 

Fig. 11   a–i and j–m Tomo-
graphic slices and pictures 
of the respective 3D-model 
of a re-forming Golgi stack 
located within a compact Golgi 
body. The investigated cells 
are obtained from a culture 
after removal of 2DG follow-
ing 45 min of 2DG treatment 
and subsequent incubation in a 
glucose-pyruvate-free medium 
for 45 min. The body consists of 
a tubulo-glomerular and a cis-
ternal part (in e highlighted by a 
dotted line and termed gl and ci, 
respectively). Almost all of the 
short cisternae of the mini-stack 
emerge from the tubulo-glomer-
ular part of the body and are 
connected among each other via 
wide hanger-like arches in part 
extending from one to the other 
side of the stack. In the series 
of slices (a–d, f–i) and sections 
through the model (j–m) some 
of the cisternae are accentuated 
by colors to be able to follow 
up their extensions throughout 
the body more easily. Volume of 
the calculated tomogram (x, y, 
z): 3.223 × 2.847 × 200 pixels, 
pixel size 0.39 nm
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2015; Nakano 2015; Dancourt et  al. 2016). The reorgani-
zations in response to 2DG show an increasing appearance 
of membrane continuities and connections, which start in 
the early phases of treatment with the occurrence of intra-
stack networks and proceed with the formation and further 
remodeling of the Golgi bodies. Intercisternal connections, 
although they are not common, can be seen in unperturbed 
cells as well, mainly in connection with the formation of 
pathways for transport and traffic (e.g., Trucco et al. 2004; 
Mironov et al. 2013; Beznoussenko et al. 2014); our find-
ings with 2DG at the very early times of treatment might 
express similar dynamics. However, the architectures are 
different; comparable structures with crossroads-like con-
nections as seen in our 2DG-treated cells are not known to 
occur in unperturbed cells. It is remarkable, how many dif-
ferent cellular conditions lead to a disassembly or “break-
down” of the Golgi apparatus but little is known about the 

detailed courses of the stacks’ dissociations and whether 
there exists a general principle for the changes and those 
occurring during mitosis, in diseased cells and in response 
to treatments with various drugs are comparable with the 
2DG-effects shown here. Interestingly, our 3D-results show 
continuing reorganizations of the Golgi bodies; the primar-
ily formed bodies consisting of loosely arranged branched 
tubulo-cisternal and vesicular compartments are intermedi-
ates and replaced by compact organelles of densely packed 
convoluted tubules with only few vesicles nearby. The 
presence of vesicles accompanying the early Golgi bod-
ies suggests that vesicular traffic into and out of the bod-
ies takes place during these early times. Vesicles and other 
transport carriers might be derived from the ER and reflect 
the regular ER-Golgi pathway (for review Rothman 2014); 
frequently seen close proximities of Golgi bodies to sheets 
of the ER might reflect such a path, although this route is 

Fig. 12   Artwork shows the results of correlative ATP-analyses and 
ultrastructural analyses highlighting the ATP-levels and the corre-
sponding Golgi apparatus morphologies at 10 and 30  min of 2DG-
treatment and 10 and 60  min after 2DG-removal and incubation in 
glucose-containing medium. a Regularly structured Golgi apparatus 
stack of a control cell. The results shown in b and c make evident that 

the processes leading to a replacement of the regular Golgi stacks by 
Golgi bodies occurs in a phase of low cellular ATP-concentrations. d 
The occurrence of mini-stacks within the Golgi bodies, indicating the 
beginning of Golgi apparatus re-formation, coincides with the ATP-
level increase after removal of 2DG. The picture in panel e exhibits a 
control-like regularly structured Golgi stack after ATP-replenishment
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presumably impaired due to the 2DG effects on N-glyco-
sylation, as discussed below. Vesicular structures might fur-
thermore originate from the endocytic system (Vetterlein 
et al. 2002; Pavelka et al. 2008) or represent buds or frag-
ments of the transforming Golgi compartments. The reduc-
tion in vesicles over the course of time can be considered, 
at least in part, to be connected with processes leading to 
their fusion and uptake into the Golgi bodies; such pro-
cesses might contribute to the transformations of the early 
loosely arranged bodies, rich in vesicles, to the late com-
pact organelles, in which vesicles are almost entirely lack-
ing. On the other hand, vesicles may decrease in number 
through elimination by autophagy, which has been shown 
to be enhanced by 2DG-treatment (Wu et  al. 2009; Wang 
et al. 2011; Xi et al. 2011; Jeon et al. 2015). Moreover, it 
should not be ignored that 2DG influences the early secre-
tory pathways, because the impairment of N-glycosylation 
leads to an accumulation of miss-folded proteins in the ER. 
This becomes visible by electron microscopy, since the 
accumulated proteins appear as dense luminal ER-contents. 
The resulting impediment of the secretory transport and 
the impaired release from the ER might be another reason 
for the reduced number of vesicles nearby the compact 
Golgi bodies. The bodies’ different characters at early and 
late times, with abundant and rare vesicles, respectively, 
suggest that vesicular traffic into and out of a Golgi body 
declines with time. Our 3D-tomography analyses, on the 
other hand, show that the late compact Golgi bodies mainly 
consist of continuous convoluted tubules, which could pro-
vide alternative pathways for transport and substitute for 
traffic via vesicles.

Golgi stack re‑formation

In this work, for the first time, the reconstitution of a Golgi 
stack is analyzed by using 3D-electron microscopy; the 
results show a close spatial relation of the newly form-
ing stacks of cisternae and compact tubulo-glomerular 
Golgi bodies. It is notable that the initially visible stacks 
are mini-forms containing very short cisternae that usually 
lack pores and are in a ladder-like arrangement; they often 
appear in a combined organelle consisting of a tubulo-glo-
merular part with densely packed membranes and a cister-
nal mini-stack part. The 3D-studies provide evidence that 
almost all of the short cisternae of the mini-stack emerge 
from the tubular-glomerular part of the body and almost 
all parts of the body are interconnected. This architecture 

prompts the consideration that the densely packed tubular 
membranes of the body may represent a membrane reser-
voir from which the membranes emerge for the formation, 
enlargement, and elongation of the cisternae of the mini-
stack. The wide branched arches connecting the different 
sides and various sites of the body might constitute connect-
ing roads for traffic across the re-forming stacks. They dis-
appear with time, just as the tubulo-glomerular Golgi bod-
ies disappear with the concomitant re-appearance of regular 
Golgi stacks. Obviously, neither structure is required any 
longer after the final formation of a regular Golgi stack and 
after the restart of other traffic mechanisms.

The particularly densely packed membranes and the nar-
row, regular inter-membrane spaces seen in some of the 
Golgi bodies (e.g., Figure 10f) point to possible membrane 
contact sites, where tethers, stacking proteins and/or signal-
ing sites (Cancino et al. 2014; Rabouille and Linstedt 2016; 
Cheung and Pfeffer 2016; Zhang and Wang 2016; Levine 
and Patel 2016; Luini and Parashuraman 2016) might have 
important roles in the re-formation of the Golgi stacks and 
provide sites for lipid transfer.

Correlation of Golgi morphologies and cellular 
ATP‑levels

Our findings point to a close relation between the 2DG-
induced structural alterations of the Golgi apparatus and 
the changes of the cellular ATP-concentrations, which are 
evident in all phases of the experiments. In the first phase 
of 2DG-treatment, when ATP drops, intra-stack-networks 
occur, and the stack organization loses its regularity; in the 
phases of continuous 2DG-treatment at consistently low 
ATP-levels, regular stacks are not apparent but are replaced 
by tubulo-glomerular Golgi bodies; in the ATP-replenish-
ment-phase after 2DG-removal, the stacks re-form. These 
findings suggest that the highly organized classic Golgi 
stack architecture is impeded, while the cells are exposed 
to 2DG and the cellular ATP-concentrations are low, but 
the Golgi apparatus is preserved in the more simple form 
of Golgi bodies, in which continuous convoluted tubules 
might provide pathways for traffic. However, Golgi bodies 
can sustain functionalities, as recent studies in our labora-
tory have shown (Meisslitzer-Ruppitsch et  al. 2011; Ran-
ftler et al. 2015).

Although our results show that changes to the Golgi 
apparatus correlate with the cellular ATP-values, it cannot 
be concluded that the 2DG-effected Golgi disorganizations 
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and formations of Golgi bodies are necessarily the results 
of the lowered cellular ATP-concentrations and impaired 
ATP-dependent cell functions. The Golgi apparatus and 
ATP-changes might occur in parallel, independently 
of each other, and there might be other actions of 2DG 
accounting for the Golgi stack reorganizations. In particu-
lar, it should be considered that a disrupted transport in the 
secretory systems due to the 2DG-interferance with N-gly-
cosylation and an impaired release from the ER, leading 
to a reduction in the anterograde flow arriving at the cis 
Golgi side, might affect the Golgi stacks’ structures. Other 
2DG-effects that might have an impact on the Golgi archi-
tecture comprise those on cellular lipids. It has recently 
been shown that 2DG alters the levels and species com-
positions of several lipids (Kavaliauskiene et  al. 2015). 

This might affect membrane properties, possibly altering 
trans-membrane area asymmetries (Beznoussenko et  al. 
2015) and influence vesicle selection at the entrance of the 
Golgi apparatus (Magdeleine et al. 2016); both might con-
tribute to structural changes and altered Golgi apparatus 
architectures.

Summary

In conclusion, 2DG can be used for studying courses of 
Golgi stack remodeling. The changing architectures visual-
ized in this work and summarized in Fig. 13 reflect Golgi 
stack dynamics that may be significant for basic cell physi-
ologic and pathologic processes and help to learn, how 
cells respond to conditions of stress.

Fig. 13   Summary of the 
dynamics of a Golgi apparatus 
stack during ATP-decrease in 
response to 2DG-application, 
upon constantly low ATP-levels 
during continued 2DG-treat-
ment, and during ATP-replen-
ishment after 2DG-removal
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Table 1   Overview of cell lines and 2DG-concentrations used in various scientific studies

Cell line Source Concentration of 2DG 
(mM)

References

1420 Pancreatic cancer
(Homo sapiens)

4 Xi et al. (2011)

A549 Lung carcinoma
(Homo sapiens)

5 and 100 Djuzenova et al. (2009)

100 Wu et al. (2007)

BAEC Aortic endothelial cells (Bovine) 5 Wang et al. (2011)

BT-549 Breast cancer
(Homo sapiens)

4-12 Aft et al. (2002)

C2C12 Myoblast
(Mus musculus)

25 Hong and Hagen (2015)

DU145 Prostate cancer
(Homo sapiens)

20 Li et al. (2015)

GaMG Glioblastoma
(Homo sapiens)

5 and 100 Djuzenova et al. (2009)

GIST-T1
GIST48
GIST48B
GIST430
GIST882

Metastatic gastrointestinal stromal tumor
(Homo sapiens)

0.01–10 Mühlenberg et al. (2015)

GL15 Glioblastoma
(Homo sapiens)

5 Zhang et al. (2006)

H460 Large cell lung cancer
(Homo sapiens)

100 Wu et al. (2007)

H1299 Nonsmall cell lung carcinoma, derived from metastatic 
site: lymph node

(Homo sapiens)

1–100 Kobayashi et al. (2015)

HCT116 Colorectal cancer
(Homo sapiens)

0.5–20 Ahadova et al. (2015)

1–100 Kobayashi et al. (2015)

HEK293T Embryonic kidney
(Homo sapiens)

25 Hong and Hagen (2015)

HeLa Cervix cancer
(Homo sapiens)

1–10 Kobayashi et al. (2015)

4–10 Lin et al. (2003)

45 Maehama et al. (1998)

Hep-2
(CCL-23)

Epithelial cells from HeLa contaminant tissue
(Homo sapiens)

10 Kavaliauskiene et al. (2015)

HepG2 Epithelial hepatoblastoma
(Homo sapiens)

5 Zhang et al. (2006)

25 Hong and Hagen (2015)

50 Ranftler et al. (2015)

HMEC Mammary epithelial cells
(Homo sapiens)

20 Li et al. (2015)

HT29-D4 Colon carcinoma
(Homo sapiens)

5 Zhang et al. (2006)

HT29
(HTB-38)

Colon adenocarcinoma
(Homo sapiens)

10 Kavaliauskiene et al. (2015)

HT1080 Fibrosarcoma
(Homo sapiens)

5 and 100 Djuzenova et al. (2009)

IGROV1 Ovarian carcinoma
(Homo sapiens)

5 Zhang et al. (2006)

LN-229 Glioblastoma
(Homo sapiens)

1.6–50 Wu et al. (2009)

MCF-7 Breast cancer
(Homo sapiens)

0.5 Oladghaffari et al. (2015)

4–12 Aft et al. (2002)
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Table 1   continued

Cell line Source Concentration of 2DG 
(mM)

References

MDA-MB-231 Breast cancer
(Homo sapiens)

20 Li et al. (2015)

MDA-MB-435 Melanoma
(Homo sapiens)

10 Xi et al. (2011)

MDA-MB-468 Breast cancer
(Homo sapiens)

4–12 Aft et al. (2002)

MDCK Madin-Darby canine kidney epithelial
(Dog)

25 Hong and Hagen (2015)

MSTO-211H Lung mesothelioma
(Homo sapiens)

5 Zhang et al. (2006)

NCI-H28 Lung mesothelioma
(Homo sapiens)

5 Zhang et al. (2006)

NRK Normal kidney
(Rat)

50 del Valle et al. (1999)

PC3 Prostate cancer
(Homo sapiens)

0.005 Jangamreddy et al. (2015)

0–20 Jeon et al. (2015)

20 Li et al. (2015)

RPMI-2650 Squamous cell carcinoma of the nasal septum
(Homo sapiens)

4 Keenan et al. (2004)

SCC61 Head and neck squamous cell carcinoma
(Homo sapiens)

5 Zhang et al. (2006)

SH-EP Neuroblastoma
(Homo sapiens)

15 Hagenbuchner et al. (2015)

SKBR3 Breast cancer
(Homo sapiens)

0.5 Oladghaffari et al. (2015)

4–12 Aft et al. (2002)

10 Xi et al. (2011)

SKOV3 Ovarian carcinoma
(Homo sapiens)

5 Zhang et al. (2006)

SQ2OB Head and neck squamous cell carcinoma
(Homo sapiens)

5 Zhang et al. (2006)

SVEC4-10 Lymphoid endothelial
(Mus musculus)

0–20 Huang et al. (2015)

STA-NB1
STA-NB4
STA-NB8
STA-NB15

Neuroblastoma
(Homo sapiens)

15 Hagenbuchner et al. (2015)

SW480
(CCL-228)

colorectal adenocarcinoma
(HOMO sapiens)

10 Kavaliauskiene et al. (2015)

SW620 Colorectal cancer
(Homo sapiens)

1–20 Muley et al. (2015)

T47D Breast cancer
(Homo sapiens)

20 Mustafa et al. (2015)

T98G Glioblastoma
(Homo sapiens)

1.6–50 Wu et al. (2009)

U87-MG Glioblastoma-astrocytoma
(Homo sapiens)

5 and 100 Djuzenova et al. (2009)

U251 Glioblastoma
(Homo sapiens)

5 Zhang et al. (2006)
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