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Transcriptional patterns reveal
tumor histologic heterogeneity
and immunotherapy response in
lung adenocarcinoma

Mengxue Jiao, Hui Liu* and Xuejun Liu*

School of Computer Science and Technology, Nanjing Tech University, Nanjing, China
Tumoral heterogeneity has proven to be a leading cause of difference in

prognosis and acquired drug resistance. High intratumor heterogeneity often

means poor clinical response and prognosis. Histopathological subtypes suggest

tumor heterogeneity evolved during the progression of lung adenocarcinoma,

but the exploration of itsmolecular mechanisms remains limited. In this work, we

first verified that transcriptional patterns of a set of differentially expressed genes

profoundly revealed the histologic progression of lung adenocarcinoma. Next, a

predictive model based on the transcriptional patterns was established to

accurately distinguish histologic subtypes. Two crucial genes were identified

and used to construct a tumor heterogeneous scoring model (L2SITH) to stratify

patients, and we found that patients with low heterogeneity score had better

prognosis. Low L2SITH scores implied low tumor purity and beneficial tumor

microenvironment. Moreover, L2SITH effectively identified cohorts with better

responses to anti–PD-1 immunotherapy.

KEYWORDS

intratumor heterogeneity, immune microenvironment, histologic progression,
prognostic model, transcriptional pattern
1 Introduction

Non–small cell lung cancer (NSCLC) is one of the malignant tumors over the world

(1), and its morbidity and mortality increased gradually in recent years. The 5-year

survival rate of patients with NSCLC is only 18%. Lung adenocarcinoma (LUAD) is the

main subtype, accounting for 40% of patients with NSCLC (2). LUAD has distinctive

histological stages during its progression. Pathologists have categorized difference of

histological phenotype, referred to as histologic subtypes, including lepidic, papillary,

acinar, and solid (3). With the histologic progression from lepidic to solid, LUADs

become increasingly aggressive and metastatic.
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The immune system was supposed to drive intertumor and

intratumor heterogeneity by exerting different selective pressures to

different regions of the solid tumor (4). Prior studies have shown

significant difference of stroma and immune infiltrating cells in

different intratumor regions, as well as interpatient tumors (5, 6).

Accordingly, the tumor microenvironment has been shown to play

an important role in tumor growth, angiogenesis, immune evasion,

and metastasis (7). Substantial evidence suggests that tumor

heterogeneity increases the likelihood that cancer cells survive

conventional chemotherapy and targeted anticancer drugs (8–

10). In addition, tumor heterogeneity affects the efficacy of

immunotherapies, especially immune checkpoint inhibitors (11–

13). However, the exploration of molecular mechanism underlying

the histologic heterogeneity remained nascent (14).

In fact, the potential molecular mechanism of histologic

heterogeneity of LUAD is multifaceted. The genomic aberrations,

epigenetic modifications, small-molecule RNA, malfunction of

transcriptional regulations, and environmental factors may lead

to phenotypic differences (15–17). Studies have found strong

associations between the histologic heterogeneity and prognosis

of LUAD, but the investigation of molecular signature underlying

each histologic subtype is scarce (18). In this paper, we set about to

find molecular determinations of tumor heterogeneity from the

perspective of histologic subtypes. The immunogenetic

transcriptional patterns showed strong link to the histologic

progression and tumor microenvironment. We established a

heterogeneous scoring model (L2SITH) based on the molecular

signatures to stratify patients and found that patients in the low-

scored group had better prognosis, which was more predictive than

the stratification based on histologic subtypes. In contrast,

histologic subtypes did not showed significant prognostic value

for patients with LUAD. Moreover, L2SITH effectively identified

cohorts with better responses to anti–PD-1 immunotherapy.
2 Materials and methods

2.1 Data sources

Two LUAD cohorts from The Cancer Genome Atlas

(TCGA) (N = 246) and Gene Expression Omnibus (GEO)

(GSE58772, N = 48) were included in our study. The RNA-seq

and clinical data were obtained from the Genomic Data

Commons (https://gdc.cancer.gov/) and GEO database

(https://www.ncbi.nlm. nih.gov/geo/), respectively.

Intratumoral heterogeneity of these samples was annotated as

lepidic (L), papillary (P), acinar (A), or solid (S) subtypes,

according to the most popular histopathological classification

standard (3). The annotations of the TCGA cohort were from

(19), which included lepidic (N = 10), papillary (N = 50), acinar

(N = 69), and solid (N = 58) patients. The GEO GSE58772 cohort

included lepidic (N = 10), papillary (N = 18), acinar (N = 10). and

solid (N = 10) samples (20).
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The immune subtypes of 455 LUAD samples were marked by

Thorsson et al. (21), including C1 (wound healing, N = 82), C2

(Interferon (IFN)-dominant, N = 147), C3 (inflammatory, N =

178), C4 (lymphocyte depleted, N = 20), and C6 (Transforming

Growth Factor (TGF)-dominant, N = 28).

The cohort treated with the PD-1 inhibitor Nivolumab was

obtained from GEO (GSE126044, N = 16). This cohort included

11 non-responders (11 PD cases) and five responders (one SD

case and four partial response (PR) cases).
2.2 Differential expression and
enrichment analysis

The DESeq2 R package (22) was used to conduct differential

analysis between normal and two most representative subtypes,

including lepidic vs. normal, solid vs. normal, and lepidic vs.

solid. The differentially expressed genes were chosen using the

filtering criterion of absolute ǀ log2FoldChange ǀ > 1 and p.adj <

0.05. The differential expression genes overlapped with immune-

related genes from InnateDB were filtered out for further

analysis. Out of the 1,952 immune genes, we got 96 immune-

related differentially expressed genes.

The clusterProfiler R package (23) was applied for Gene

Ontology (GO) functional annotation and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analysis.

The GOPlot R package (24) was used to calculate the z-score

with the filtering threshold of P.adj < 0.05 to select statistically

significant pathways.
2.3 Histologic subtype clustering analysis

To visualize the molecular signature difference among

histologic subtypes, ComplexHeatmap package (25) was used

to draw the heatmap of expression profiles. The tSNE (26) and

UMAP (27) tools were used to perform dimensionality reduction

and clustering of expression profile of genes underlying the

tumor heterogeneity. The ggplot2 package (28) was used to

display the clusters.
2.4 MLP model for histologic subtype
classification

A multilayer perceptron (MLP) model was constructed

using the Neuralnet (29) package. The input layer included 38

nodes corresponding to differentially expressed immune-related

genes. The two hidden layers include 11 and 9 nodes,

respectively. There were three nodes in the output layer for

classification of histologic subtypes. The performance of the

classification model was evaluated by ROC curve and Receiver

Operating Characteristic (ROC)-Area Under Curve (AUC)
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values. The sklearn and matplotlib tools were used to calculate

the ROC-AUC values and plot ROC curves.
2.5 Random forest for immune subtype
classification

The transcriptomic data offiltered genes were transformed to z-

scores and then fed into a random forest model to predict immune

subtypes (C1, C2, C3, C4, or C6). The samples were split to training

and test set by 7:3 ratio. The random forest model included 50

decision trees with a maximum tree depth of 5 and a maximum

number of leaf nodes of 50. The sklearn and matplotlib tools were

used to calculate the ROC-AUC values and plot ROC curves.
2.6 Tumor purity and immune
microenvironment analysis

The ESTIMATE (30) tool was used to calculate the tumor

purity, stromal, and immune scores. The t-test was used for

statistical significance. The corrplot (31) package was used to plot

heatmap, in which p < 0.05 was denoted by *, p < 0.01 by **, and

p < 0.001 by ***.
2.7 Establishment of L2SITH score model

We performed univariate and multivariate Cox regression

analysis regarding the set of genes related to histologic subtype.

The genes significantly related to prognosis were used to

construct the heterogeneity score model L2SITH. The survival

tepallison2010survival package was used to run survival analysis

for high- and low-scored group, and the Kaplan-Meier (K-M)

curves were plotted by survminer (32) package. The pRRophetic

(33) package was used for drug proposal based on Cancer Cell

Line Encyclopedia drug sensitivity dataset.
3 Results

3.1 Transcriptional patterns reflect
histologic progression

Prior studies have reported the histologic heterogeneity of

LUAD, which mainly included four subtypes: lepidic, papillary,

acinar, and solid during tumor progression (3). From lepidic to

solid, tumor aggressiveness and metastasis increase. For simplicity,

we mainly focused on lepidic and solid patterns, regarding papillary

and acinar as intermediate state. On the basis of the differential

expression analysis between normal, lepidic, and solid samples, 96

differentially expressed genes related to immunologic function were

filtered out, as shown in Figure 1. After dimensionality reduction and
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visualization by tSNE and UMAP tools, the transcriptional patterns

clearly distinguished the histologic subtypes, as shown in Figure 2.

The enriched GO annotations of 96 differentially expressed immune

genes were shown in Figure S1. The 38 significantly upregulated

immune genes showed positive correlation (Figures S2, S3).

As shown in Figure 3, these screened genes showed distinctive

transcriptional patterns among different histologic subtypes.

Interestingly, their expression levels increased significantly from

lepidic to solid pattern. This may implied the activation of the

immune response during tumor progression so that more and

more immune cells infiltrated into the tumor. Our analysis

preliminarily verified that transcriptional patterns of

immunologic genes reflected the histologic heterogeneity in LUAD.
3.2 Transcriptional patterns accurately
predict histologic subtypes

As molecular mechanism underlies the cell phenotype, we

supposed transcriptional patterns should be predictive of

phenotypic label. For this purpose, a MLP model was trained to

classify histologic subtypes. We split the 187 samples into three

types according to histologic subtypes: lepidic (N = 10), papillary

and acinar (N = 119), and solid (N = 58). This was a typical multi-

class classification task, based on the molecular signature of the set

of immune-related genes. Expectedly, the MLP model achieved

extremely high performance. The ROC-AUC was close to 1, and

the accuracy rate reaches 97%, as shown in Figure 4A. In

particular, 8 of 10 lepidic samples were correctly classified, 117

of 119 papillary and acinar samples were correctly classified, and

all 58 solid samples were correctly classified. Moreover, we found

that, as the histologic pattern progressed, a higher accuracy of the

model is achieved. This implied that progressive tumor tended to

develop distinctive molecular signatures that dominate the

histological morphology and cell phenotype.

To verify the generalization, we verified the classification

model on a GEO cohort (N = 48, where L = 10, P&A = 28, and

S = 10). We were pleased to find that the model can completely

distinguish the three types of histologic subtypes correctly, as

shown in Figure 4B. The independent test set fully validated the

outstanding potential of immunogenetic molecular signature in

differentiating tumor histologic heterogeneity.
3.3 Establishment of heterogeneity
scoring model L2SITH

We further performed Cox regression and survival analysis to

screen genes significantly related to prognosis and obtained two key

genes KIR2DL4 and SLC7A7. It has been reported that KIR2DL4

was highly associated with cancer development (34), and its lower

expression level means better prognosis (Figure 5A). SLC7A7 was a

suppressor gene inhibiting the progression of LUAD (35), and its
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higher expression level yielded to better prognosis (Figure 5B).

Therefore, we established the heterogeneity score model L2SITH

using these two genes, using the regression coefficients and the

transcriptional levels of these two genes. Its formal definition is

L2SITH = −0.0003708 * SLC7A7 (express) + 0.0047614 * KIR2DL4

(express). Using the L2SITH score, we divided the 62 lepidic and

solid patients into high- and low-scored groups. The KM survival

curves showed that the low-scored group had significantly high

overall survival rate, as shown in Figure 5C. However, if the patients

were divided into groups by histologic subtype (lepidic vs. solid),

then the overall survival has no significant difference (Figure 5D).

This suggested that the L2SITH model captured molecular factors

underlying tumor progression, thereby acquired better prognostic

power than the histologic heterogeneity. To verify this point, we

further divided the solid samples (N = 52) using L2SITH scores and

showed that the low-scored subgroup still had better overall

survival, as shown in Figure 5E.
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3.4 L2SITH revealed beneficial tumor
microenvironment

To validate the association between transcriptional patterns

and tumor microenvironment, we adopted the immune subtypes

established by Thorsson et al. (21) for analysis. We divided the

890 samples by 7:3 for training and test and built a random

forest model to predict the immune subtypes from molecular

signature. On the training and test set, the accuracy reached

0.867 and 0.813, respectively. The detail of each immune

subtypes was shown in Figures 6A, B, and the ROC curve was

shown in Figure 6C. This demonstrated that the transcriptional

patterns of the key immune-related genes can significantly

differentiate immune subtypes of LUAD.

We used ESTIMATE tool to evaluate the immune

infiltration level of the high- and low-scored group, to explore

the significance of the L2SITH in the stratification of tumor
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FIGURE 1

Differential analysis between normal, lepidic, and solid histologic subtypes. (A) Differential expression genes between lepidic and normal samples
(LvsN). (B) Differential expression genes between solid and normal samples (SvsN). (C) Differential expression genes between lepidic and solid
samples (LvsS). (D) Intersection of differentially expressed genes and immune genes (ImmuGene).
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microenvironment. As shown in Figure 7, we found that low-

scored L2SITH group had higher stromal level, immune

infiltration, and ESTIMATE scores than high-scored group.

Conversely, when samples were grouped by histologic subtype,

we observed a different trend, that is, the solid samples had

higher stromal level, immune infiltration, and ESTIMATE

scores than lepidic samples. The results indicated that the

patients with low L2SITH scores had low tumor purity and

beneficial tumor microenvironment to immunotherapy.
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3.5 L2SITH accurately predicts clinical
immunotherapy response

To validate the effectiveness of the L2SITH score model in

predicting response to immunotherapy, we analyzed a cohort of

patients with NSCLC received Nivolumab PD-1 inhibitor

treatment. Using the L2SITH to divide the sample into high-

and low-scored groups, we observed significant difference in

clinical response (Figures 8A, B). Clearly, the low-scored group
FIGURE 3

Heatmap of transcriptional patterns reflected histologic progression from lepidic to solid subtype.
tSNE UMAPA B

FIGURE 2

Dimension reduction and visualization of histologic subtypes. The LUAD samples showed separate distribution by (A) tSNE and (B) UMAP
dimension reduction on transcriptional profiles.
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TCGA cohort GEO GSE58772 cohortA B

FIGURE 4

RCO curves of MLP model for histologic subtype prediction using transcriptional pattern. (A) ROC curve on TCGA cohort. (B) ROC curve on
GEO GSE58772 cohort.
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FIGURE 5

Survival analysis of two key genes, L2SITH heterogeneity score, and histologic phenotype. Panels (A, B) showed the K-M survival curves of
patients grouped by KIR2DL4 and SLC7A7 gene, respectively. (C) K-M survival curve of patients grouped by L2SITH heterogeneity score. (D) K-M
survival curve of patients grouped by lepidic and solid subtypes. (E) K-M survival curve of the solid group patients divided by L2SITH
heterogeneity score.
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had notably better OS and PFS than high-scored group.

Furthermore, we found that the patients who responded to

Nivolumab treatment were all in the low-scored group, as

shown in Figure 8C. The clinical response to immunotherapy

in the high-scored group was weak, and these patients suffered

progressive disease (Figure 8D). This confirmed the reliable

performance of L2SITH in predicting the immune response

of NSCLC.

In addition to the prognostic value, we further utilized the

L2SITH scores to screen potential beneficial drugs. Three

approved drugs, vinorelbine, gemcitabine, and etoposide, were

predicted to have higher potential sensitivity to the low-scored

group stratified by L2SITH (Figure 9). Vinorelbine is an anti-

mitotic chemotherapy drug that was approved in 1990s for the

treatment of non-NSCLC (29). According to a recent study,

vinorelbine is a suitable choice for elderly patients with NSCLC

and also a partner drug with immunochemotherapy (36).

Gemcitabine is a nucleoside metabolism inhibitor approved by

FDA in combination with cisplatin for the treatment of NSCLC

(37). Low-dose gemcitabine treatment is sufficient to inhibit

tumor growth with few side effects in vivo. Gemcitabine can also

activate antitumor immune response in patients with normal

immune system (38). Etoposide, a coccine toxin derivative, has
Frontiers in Immunology 07
also been shown to be useful in the treatment of small cell lung

tumors (39). Etoposide plus cisplatin chemotherapy improved

the efficacy and safety of small cell lung cancer (40).
4 Discussion

At present, the prognosis of patients with cancer depends

mainly on the clinical staging and pathological grading. In recent

years, more and more studies have shown that intratumor

heterogeneity is an important factor of clinical treatment efficacy

and prognosis. Tumors with high heterogeneity tend to be more

aggressive and indicate poor prognosis. In fact, interpatient and

intratumor heterogeneity is prevalent in both lymphoma and solid

tumor. Apart from the molecular feature difference, the

heterogeneity is also reflected in immune microenvironment,

such as different immune infiltration level and tumor purity.

This study tried to reveal the underlying molecular features

of histologic heterogeneity in LUAD. Through in-depth

exploration of the transcriptional profiles of immune-related

genes, we constructed a machine learning model to predict

histologic subtypes. In addition, the transcriptional profiles

were highly predictive of tumor immune subtypes. From these
TCGA cohort GEO cohort

ROC curve of the validation set

A B

C

FIGURE 6

Performance of immune subtypes prediction based on transcriptional pattern. (A) Immune subtype prediction results of TCGA cohort. (B)
Immune subtype prediction results of GEO cohort. (C) ROC curve of immune subtype prediction on GEO cohort.
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results, the molecular signature reflects the essential causes of

phenotypic differences.

We found significant correlation between the transcriptional

pattern of immune genes and the histologic progression

(Figure S4). During the early stage, most immune genes were

not activated and showed low transcriptional levels. With the

histologic progression, immune genes were activated along with

the tumor immune infiltration increased. This was reflected by

the significant positive correlation between the expression of

immune genes and histologic subtypes from lepidic to solid. We

also explored the correlation of the differentially expressed

immune genes with mutation type, but no significant

association was found (Figure S5).

From the perspective of histologic progression, the lepidic

cells were more differentiated, whereas solid cells were poorly

differentiated and aggressive, but we did not observed significant

difference in overall survival between lepidic and solid groups.

This motivated us to find the molecular factors that really lead to

differences in histologic subtypes and survival. Upon the

transcriptional profiles, we developed L2SITH, a simple but

predictive two-gene score model. The patient stratified by

L2SITH scores showed statistically significant differences in

overall survival. Within the solid group, L2SITH score model

was still effective in distinguishing patients with better prognosis.

On the other hand, this suggested that patients grouped in the

same histologic subtypes still have significantly different

molecular mechanisms. Rather than phenotypic differences,

molecular mechanisms are the real reasons for tumor

progression. In fact, a prior study (14) has explored the impact

of epigenetic factors on histological heterogeneity. It concluded

that the LUAD histological progression from lepidic to solid was

mainly caused by epigenetic and transcriptional factors. We

were exactly inspired by this prior study and focused on the

transcriptomic mechanism that actually drove the histological
Frontiers in Immunology 09
progression but has not been explored before. In addition, we are

also interested in the small-molecule RNAs that are potentially

associated to histological subtypes and plan to explore such

association analysis in the near future work.

Finally, we tried to explore the association of genomic

mutations with the histologic progression in LUAD. However,

the mutation landscape of driver genes cannot reveal the

histologic progression. Moreover, we inspected the most highly

mutated genes in LUAD but found no consistent trends of

histologic progression driven by highly mutated gene (Figures

S6, S7). These were consistent with the conclusion that the

histologic progression is not dominated by genetic mutations

(14). Further, we explored the relationship between L2SITH

grouping and genomic mutations. The samples within each

histologic subtype were split into high- and low-scored

subgroups, and the mutations of each subgroup were shown in

Figures S8–S10. Although our L2SITHmodel cannot distinguish

the mutations, we found that, as the sample size increased, the

number of genes with significant differences between high- and

low-scored subgroups increased.
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