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Abstract

Specialized brain structures encode spatial locations and movements, yet there is growing evidence that this
information is also represented in the rodent medial prefrontal cortex (MPFC). Disambiguating such information from
the encoding of other types of task-relevant information has proven challenging. To determine the extent to which
movement and location information is relevant to mPFC neurons, tetrodes were used to record neuronal activity while
limb positions, poses (i.e., recurring constellations of limb positions), velocity, and spatial locations were simultane-
ously recorded with two cameras every 200 ms as rats freely roamed in an experimental enclosure. Regression
analyses using generalized linear models revealed that more than half of the individual mPFC neurons were signifi-
cantly responsive to at least one of the factors, and many were responsive to more than one. On the other hand, each
factor accounted for only a very small portion of the total spike count variance of any given neuron (<20% and typically
<1%). Machine learning methods were used to analyze ensemble activity and revealed that ensembles were usually
superior to the sum of the best neurons in encoding movements and spatial locations. Because movement and
location encoding by individual neurons was so weak, it may not be such a concern for single-neuron analyses. Yet
because these weak signals were so widely distributed across the population, this information was strongly repre-
sented at the ensemble level and should be considered in population analyses.
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It is often difficult to determine exactly what is driving changes in the activity of single mPFC neurons. Basic
things such as movements or spatial locations can activate these neurons and interfere with the ability to
extract high-order task-related correlates. Here we applied a series of powerful techniques to carefully
quantify the relationship between a rat’s movements and the activity of mPFC neurons. Overall, the firing
related to limb movements, poses, and spatial locations had little impact on individual neurons, yet this
widely distributed information became prominent at the ensemble level. A framework where neurons
participate to varying degrees in encoding all events has certain advantages that could prove useful for
khigher-order cognitive processing and for guiding artificial intelligence approaches. j

ignificance Statement

Introduction
Prefrontal cortex (PFC) neurons encode a wide variety

of stimuli, actions, and outcomes and many neurons mul-
tiplex information across domains (Jung et al., 1998; Dun-
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A particularly notable example is the encoding of informa-
tion during working memory tasks. While it is clear that
some rat medial PFC (mPFC) neurons fire throughout the
delay period of such tasks (Durstewitz et al., 2000;
Laubach et al., 2000; Baeg et al., 2003; Hyman et al.,
2010; Cowen et al., 2012; Wang et al., 2011; Euston et al.,
2012; Horst et al., 2012), questions remain about the
information represented by this activity. Delay-period ac-
tivity has been linked to the prospective tracking of likely
trial outcomes (Hyman et al.,, 2012; Myroshnychenko
et al,, 2017), the encoding of reward-related feedback
from preceding trials (Laubach et al., 2015), or the active
tracking of spatial locations, which could be highly rele-
vant since most rat working memory tasks are spatial in
nature (Jung et al., 1998; Euston and McNaughton, 2006;
Laubach et al., 2015). Based on a series of careful anal-
yses, Euston and McNaughton (2006) and Cowen and
McNaughton (2007) argued that delay-period activity can
also be attributed to the encoding of the paths traversed
or the movements rats engage in during delay periods.
These latter studies raised the broader question of how
much of the activity recorded on any task is actually
movement or location related.

To gain a deeper perspective on this issue, we per-
formed a detailed video analysis of body and limb move-
ments in rats implanted with tetrode arrays aimed at the
mPFC. The goal was not to explore the absolute limits of
movement or location encoding of mPFC neurons, but
rather to get a realistic picture of how much movement or
location encoding affects firing in a typical task situation.
To approximate a task situation while avoiding overt task
correlates that could interfere with the ability to cleanly
extract movement or location signals, rats were trained on
a simple Pavlovian conditioning task, but no tones or
outcomes were delivered when the data were collected.
The first analysis involved a regression through a gener-
alized linear model (GLM) that assessed the contribution
of various movement factors (the inputs) to the observed
firing of individual neurons (the outputs). Because move-
ment information may not be completely contained in the
firing of individual mMPFC neurons taken one at a time, we
also performed several different types of ensemble anal-
yses. For these analyses, the firing rates of all neurons
were used to predict the rat’s spatial location, the position
of individual limbs, or constellations of limb positions (i.e.,
postures or poses). Because it was unlikely that all neu-
rons contributed equally to all of these factors, the ran-
dom forest (RF) algorithm was employed because it was
able to iteratively consider random subsets of neurons to
select the best candidates based on a measure of mutual
information between firing and a particular factor. Several
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neural network (NN) models were also used that consid-
ered relationships between small groupings of neurons
across a range of time scales (temporal lags and leads).
Results indicated that spatial location and movement in-
formation was distributed across the population but ac-
counted for at best <20% of firing rate variance in those
neurons maximally sensitive to a particular factor. Ensem-
bles, however, performed better, especially in terms of
spatial decoding.

Materials and Methods

Experimental subjects and operant chamber

Four male Long-Evans rats (Charles River Laboratories)
weighing between 400 and 470 g were used. They were
housed in an inverted 12-h day/12-h night cycle and were
food-restricted to 90% of their free-feeding weight but
given unlimited access to water for the duration of the
experiment. All procedures were conducted in accor-
dance with the Canadian Council of Animal Care and
approved by the Animal Care Committee of the University
of British Columbia. Recording sessions took place inside
a custom-made behavioral chamber (30 X 25 X 60 cm)
built for a Pavlovian conditioning task (Caracheo et al.,
2015). However, the presented data were recorded while
the rats moved freely in the chamber in the pretask period
in the absence of any tones or outcomes.

Surgery and electrophysiology data acquisition

Rats were surgically implanted with a custom-built 16-
tetrode hyperdrive array (Hyman et al., 2012; Ma et al.,
2016). Each rat was anesthetized under isoflurane gas,
the skull was surgically exposed, and a 4 X 3-mm hole
was drilled. The dura was removed to expose the brain
around coordinates 3.0 mm from bregma and +0.5 mm
from the midline. The tetrode microdrive implant was
positioned over the area and fixed to the skull with 11 skull
screws and dental acrylic. Two additional screws were
used as ground wires and were placed in the posterior
skull. Tetrodes were lowered ~1000 um on the day of
surgery, and then the rats were given 1-2 wk of recovery.
Tetrodes were advanced up to 1000 wm more before the
first recording session. Each day tetrode drives were
turned between 20 and 50 um to maximize the units
recorded and obtain different populations from days prior.
Based on tetrode advancement records, the positions
were estimated to have been in the medial wall, within the
anterior cingulate cortex (ACC) up to the border of the
prelimbic (PL) cortex. Tetrodes were attached to EIB;5TT
boards, plugged into two HS-36 headstages, and con-
nected via tether cables to a Digital Lynx 64-channel
system and then to a PC workstation. Electrophysiologi-
cal data and behavioral events were captured using
Cheetah 5.0. Files were exported into Offline Sorter
(Plexon) and manually sorted based on 3D projections of
wave form peaks, valleys, and principal components (Fig.
1B). Once cells had been sorted, spike data were ex-
ported to Neuroexplorer 4 (Nex Technologies) and then to
Matlab (Mathworks) for further analysis. When the exper-
iments ended, rats were perfused, and brains were col-
lected and sliced on a cryostat. Slices were mounted on
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Figure 1. A, Multicamera video annotation. A frame from the annotation set showing a rat moving freely in the operant chamber. The
colored dots on both views serve as markers for tracked limbs and body parts. The annotations from both camera views are combined
to produce an accurate 3D location of each tracked body part for each frame. The user can select the camera that provides the most
accurate view of a limb, and the xyz coordinates of the limb are simultaneously captured in both data streams. This software does
not automatically detect these points, but they are set by the user in each frame. B, Spike sorting based on waveforms recorded from
a single tetrode. Left, clouds of spiking events from different putative single units. The dimensions of the space are relative
peak-to-valley distances across three of the four tetrode wires. Right, four of the wave form collections corresponding to the four
similarly colored clouds shown at left. Each wave form comprises four perspectives of the unit’s spikes from the four wires of the
tetrode.

slides and viewed under a microscope to confirm the
anatomic locations of tetrode tracts.

Software and acquisition of video data

A camera was placed horizontally to capture a side-on
view of the chamber, and another camera was placed
below to capture a bottom-up view. The two video
streams were synchronized, coregistered, and imported
into a custom, purpose-built Python package for video
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annotation. This software allowed us to annotate body
and limb positions on a frame-by-frame basis for both
camera views (Fig. 1A). The software synchronized the
frame rate of the video with that of the neural data (200
ms) and allowed the user to position the points in each
frame. All point placements were done by hand and did
not involve automation of any kind. The camera that
provided the best view of a limb was used to score the
limb position in each frame. The central point of the
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skeleton was set to the center point of the rat’s body. The
Xx-y-z location of this point gave the spatial location of the
animal at each time bin. Changes in the x-y-z coordinates
across time bins were used to calculate the animal’s
velocity. The positions of nine body parts (head, mid-
shoulder, front left limb, front right limb, pelvis, rear left
limb, rear right limb, base of the tail, midpoint of tail) were
calculated relative to the center point of the body. Be-
cause the two camera views were coregistered, the body
positions could be collapsed to nine values/time bin.
Therefore, each time bin was associated with a spatial
location (the xyz coordinate of the center of mass), one
instantaneous velocity value, and nine body positions
(relative to center of mass) that were temporally aligned
with an N-item spike count vector (N = number of neu-
rons). This alignment was set by paired pulses to the
video and electrophysiology recording rigs, matching the
timing to within 1 ms.

Data analyses

The annotated positions were broken down into three
data sets for each session: (1) individual body positions as
defined by the xyz coordinates relative to the center of
mass of the animal (for analysis as single factors, these
relative coordinates were collapsed to a single distance
measure); (2) the velocity of the animal at each point in
time; and (3) the location in 3D space of the animal within
the enclosure.

Generalized linear model

The GLM modeled the firing response as a Poisson
sequence with a logarithmic link-function as follows: pre-
dictors m were linear combinations of parameters (n =
XB), linked to the mean p of the output by the link function
(XB = In(w)). Regressions that showed a significant rela-
tionship between a factor and firing rate (p = 0.01) de-
noted the neuron as responsive to that factor. The GLM
was run on each factor independently for each neuron.

Random forest

RF analysis was conducted using the Python Sci-Kit
Learn package (Pedregosa et al., 2011). The RFs were
tuned for forest size and split size using “out-of-bag”
(OOB) error across all sessions. OOB error, the error rate
on OOB samples, is calculated as follows. Each individual
tree in the RF is trained on a subset of the total training
set. Samples from outside this subset, or bag, which are
unseen during training by that tree, are used to validate
each tree. The average across all trees is referred to as
OOB error. The RFs were trained on a per-session basis
using a normalized, balanced (by class), random subset of
time bins (by cross-validation) and then tested by predic-
tion on the remainder of the time bins. The parameters
with the best average performance for each factor across
all sessions were reported. The RF architecture schematic
is shown in Fig. 2A.

Neural networks

The networks were coded using the Keras package for
Python (Chollet et al., 2015), which used Theano (Al-Rfou
et al., 2016) to perform tensor operations. Our networks
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were run with GPU parallelization using nVidia’s CUDANN
package (Nickolls et al., 2008). A multilayer convolutional
neural network (CNN) was used to evaluate the regression
between the multidimensional input (neuron spike count
data) and output (relative limb positions) space, as de-
scribed in Fig. 2B. The network comprised several con-
volution layers of rectified linear (relu) units, with a mean-
squared error loss [between predicted (y-hat) and the
actual (y), limb position as follows: E = 1/2N3N, |y, —
yiP). The network was trained on a per-session basis
using a normalized, random subset (80%) of time bins
with 10% held out as a validation set and then tested by
prediction on the remaining 10% to generate the reported
results. The recurrent neural network (RNN; Graves, 2016)
was used for spatial position encoding. After structural
testing and optimization, the multilayer RNN evaluated the
relationship between time series of the multidimensional
input (the binned firing rates) and output (the spatial loca-
tion factor) space, as described in Fig. 2C. It considered
not only the current time bin but the four to six time bins
that preceded or followed it to better inform its decisions
about the spatial location of the rat. The network com-
prised layers of long-short-term memory units (LSTMs), a
modification on the basic recurrent structure that mini-
mized the impact of numerical instability during back-
propagation (Hochreiter and Schmidhuber, 1997; Gers
et al., 2000). The output layer was a softmax layer (LeCun
et al.,, 1998; Bishop, 2006), trained using categorical
cross-entropy as the loss function (this measured the
cross-entropy between two distributions; an estimated
distribution, g, and the true distribution, p, computed as
follows: H(p, q) = —3,p(x)log(g(x)). As above, the network
was trained on a per-session basis using a normalized,
class-balanced, random subset of time bins, with 10%
held out as a validation set and was then tested by
prediction on the remaining 10% to generate the reported
results.

One major concern with unconstrained predictors with
many parameters like NNs is the tendency to overfit,
particularly on small data sets like the one considered
here (Hastie et al., 2009). We utilized an effective method
to curb this overfitting by preventing complex co-
adaptations, or paired relationships between units in the
network from forming with a technique called dropout,
whereby connections between individual units were
dropped with some specified probability during training
(Srivastava et al., 2014; Gal and Ghahramani, 2016). We
formulated the problem as a categorical prediction to
further combat overfitting, compensate for uneven distri-
butions of locations in the data, and disambiguate loca-
tion from relative distance (each location was technically
treated as equidistant from every other location, so that
the algorithm learned the true location correspondence,
as opposed to some amalgamation of averaged dis-
tances). The enclosure was divided into two 4 X 4 grids
stacked on top of one another. The position for each time
bin was set as the cube containing the rat’s center of
mass. The training set data were always balanced for
cube occupancies. In all cases, our NN were trained and
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Figure 2. Model architectures. A, RF architecture. Diagrammatic representation of the RF utilized for ensemble regression/
classifications. Input in the form of binned spike counts was introduced at the bottom of the trees and progressed through each tree
to the top-layer output. The output layer consisted of the class votes of the all the individual trees in the forest. During training, the
trees were constructed decision layer by decision layer. At each layer of each tree, a random subset of the inputs (neurons) was
selected. A single input was then selected from this group based on maximal mutual information with the output and used to define
a single decision. This process continued until the classes were uniquely separated in each tree. The validation error for training was
done by out-of-bag testing on the constructed trees. B, CNN architecture. Diagrammatic representation of the CNN utilized for
ensemble regression on body part position. Input in the form of binned spike counts entered the network at the bottom and
progressed through the computational layers to the output layer at the top. The network contained two convolutional layers (yellow
boxes) of 64 filters, each of which was 4 to 7 X 1 units in size. The output of the first of these layers is condensed (orange boxes with
purple edges) by maximum pooling before being passed to the second convolutional layer. This output layer is flattened (orange
boxes with blue edges) before being passed to a final layer of fully connected output units which provide the predicted body/limb
position signals. During training, the output of the convolutional layers was subject to connection dropout to reduce overfitting and
improve performance. C, RNN architecture. Diagrammatic representation of the RNN utilized for ensemble categorization of
spatial locations. Input, in the form of a fixed length time series of binned spike counts (5 X 200-ms bins, or 1 s in length), entered
the network at the bottom and progressed through the computational layers to the output layer at the top. The network
contained three LSTM recurrent layers, each with 32 units. The first 2 layers (blue boxes with purple outlines) are fully connected
and passed the full 5 time-steps on to the next layer. The third layer (blue boxes with red outlines) only passed the last step in
the time series on to the final output of the layer, which consisted of 32 fully connected units with Softmax activation to provide
the predicted location. During training, the connections between the LSTM layers were subject to dropout to reduce overfitting
and improve performance.

evaluated using cross-fold validation to combat unin-
tended effects on performance due to evolving distribu-
tions in the data. Reported results are averaged across
folds for a given session.

Code accessibility

The code described in the paper is freely available
online at the following URLs: https://github.com/Loken85/
Lab_Video_Annotator and https://github.com/Loken85/
ephys_ML_repo.

March/April 2018, 5(2) e0023-18.2018

Results

Fig. 1A provides a screenshot of the custom-written
application used to track spatial locations and body po-
sitions throughout each of the sessions. The central point
of the rat’s body (the xyz coordinate of the midpoint
between shoulders and pelvis) was taken as the spatial
location of the animal at each time bin. Changes in this
point across time bins were used to calculate the animal’s
velocity. The positions of nine body parts (head, mid-
shoulder, front left limb, front right limb, pelvis, rear left
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Figure 3. Relationship between firing and the rats’ movement and spatial locations. The coefficient of determination (R?) between the
firing rate of individual neurons and each of the body position factors (A), the general movement/velocity factor (B), and the spatial
location factor (C). Only the R? values of the top 50 (A) or top 120 (B, C) neurons significant (p < 0.01) on a given factor are plotted.
Total significant neurons of each factor were head = 181, shoulders = 193, left front limb = 170, right front limb = 170, pelvis = 194,
left rear limb = 179, right rear limb = 157, tail base = 173, tail mid = 124.

limb, rear right limb, base of the tail, midpoint of tail) were
defined as the distance between the xyz coordinates of
the part relative to the xyz coordinates of the center point
of the body in each time bin. Consequently, each time bin
was associated with one spatial location, one instanta-
neous velocity value, and nine body position values that
were temporally aligned with an N-item spike count vector
(N = number of neurons).

Single-unit analysis

The database for the present study was derived from 8
recording sessions in 4 rats and contained a total of 492
neurons. The first analysis involved a GLM. For each
neuron, the input, or predictors to this GLM, were the
animal’s current spatial location, instantaneous velocity,
or limb positions, while the spike counts made up the
output. Across all factors, on average, 38% of the neurons
were significant on any single factor. 61% of the neurons
attained significance on at least one body position factor
(Fig. 3A). However, for those neurons that showed signif-
icant responses, the R? between the model factor and the
firing rate vector was relatively low (<0.1; Fig 3A), such
that any of these factors accounted for at most <20% of
a neuron’s sessionwide firing rate variance. Possibly ow-
ing to the small enclosure size, only 26% of the neurons
were found to be significant on the velocity factor, and in
none of these cases were high R? values observed (Fig.
3B). As a result, the velocity factor was not analyzed

March/April 2018, 5(2) e0023-18.2018

further. In total, 134 neurons (27 %) were significant on the
spatial location factor, but individually none of these neu-
rons were particularly good at accurately encoding spatial
location, and R? values >0.1 were found in only a few
cases (Fig. 3C). Fig. 4 shows the firing maps of two
neurons with relatively high R? values (0.15 and 0.08) on
the spatial location factor. Despite attaining statistical
significance, their firing was diffuse but nevertheless vari-
able across the enclosure.

Most neurons tended to be multiresponsive, as 42% of
limb-responsive neurons were responsive to spatial loca-
tion and 41% to body movement, while 13% were re-
sponsive to all three factors (Fig. 5). This high degree of
overlap is somewhat misleading, as the factors were not
independent in that they provided different perspectives
on the same moving object. This multi-collinearity could
not be avoided and was the reason the model was run
independently for each factor. As a consequence, it was
difficult to parse the relative contributions of the factors to
the overall firing rates of the neurons.

Ensemble encoding of individual limb positions

The ensemble analysis of body movements was formu-
lated as a regression problem using the RF algorithm with
the binned spike counts of all neurons as inputs and the
body/limb position factors as outputs. To facilitate com-
parisons with the single-neuron data, encoding perfor-
mance was evaluated by calculating an ensemble R?
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Figure 4. Single neuron location mappings. A, B, Normalized heatmaps of firing of two single neurons mapped to quantized 2D (x-y)
locations. The color in this case represents the relative firing of the neuron over the space. The box was divided into a 15 X 15 grid,
with each square of the grid measuring 2 cm (depth) X 1.67 cm (width).

relative to the model factors. The RF did a reasonable job
of predicting the animal’s relative head (Fig. 6A) or limb
positions, and R? values for the ensembles were relatively
high on most factors (Fig. 6B), with an overall average of
0.36. Direct comparisons to single units from the same
session (as shown in Fig. 6B) highlighted the superiority of
the ensemble, as R? values derived from the RF were
usually higher than the sum of the R? values derived from
the GLMs of all the significant individual neurons. While
the ensembles were better overall, part of this improve-
ment stemmed from the fact that the RF selectively con-
sidered only the informative portion of a given neuron’s
activity with regard to a particular factor.

A

Body Position Responsive Motion Responsive

Ensemble encoding of constellations of limb
positions

The single-neuron and ensemble analyses considered
each body/limb position factor in isolation, yet it seemed
unlikely that any mPFC neuron would be so precisely
tuned to the position of a single limb. Therefore, we
considered whether mPFC ensembles encoded poses or
constellations of body/limb positions. As an example,
rearing would be a well-known pose created by a recur-
ring constellation of relative limb position values; how-
ever, we refrained from providing labels for arbitrary
possible poses (limb positions were continuous variables,
yielding infinite possible arrangements). The RF was again

Location Responsive

' 66
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[EMotion Responsive
HlBody Position Responsive
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[ JResponsive

Figure 5. Proportions of neurons significant on a given movement/position factor. A, The percentages of neurons (of a total of 492)
that had a significant response (p < 0.01) to movement of a given body part (left), overall velocity (middle), or spatial location (right).
B, Venn diagram of neurons responsive to the three categories of factors and their overlap. Blue, number of neurons responsive to
at least one of the body position factors; green, number of neurons responsive to velocity; magenta, numbers of neurons responsive

to spatial location.
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Figure 6. Ensemble versus single-neuron encoding of body positions. A, An example of the actual head position across 180
frames/time bins (36 s; dotted gray line) versus the predicted head position (black line) derived from the RF. B, The overall average
(and SD) R? values between the RF-predicted and the actual body/limb positions are plotted alongside the ordered single neuron R?

(white bars) values from GLMs run on a single session.

used for this analysis but in a slightly different way. The
forests first learned the relationships between ensemble
activity and possible poses and were then used to predict
poses (i.e., provide a probability that the limbs were col-
lectively in certain positions) in unseen data based only on
ensemble activity. The mean squared error (MSE) was
used to evaluate the difference between the body/limb
positions that were predicted from ensemble activity ver-
sus those that were observed in the test data. In addition
to the RF, a CNN (Fig. 2B) was also used that attempted
to find the relationships between distinct poses and
unique activity patterns in sets of neurons taken four to
seven at a time. The CNN in essence treated each neuron
as a partial feature detector and learned the activity pat-
terns in local groups of these feature detectors that were
predictive of constellations of body/limb positions or
poses. It should be noted that these algorithms did not
quantify or categorize these constellations as a part of this
process. As such, no attempt was made here to further
investigate specific poses.

We found that both the RF and CNN were able to
provide reasonable predictions of learned poses in the
unseen test data. Despite some variance across the ses-
sions, the average MSE was significantly below what was
obtained when the time bins were shuffled (Fig. 7A, B) or
when the actual spike counts for each neuron were sub-
stituted with spike counts generated by random Poisson

March/April 2018, 5(2) e0023-18.2018

processes with identical means (not shown). To provide
context for these MSE values, Fig. 7C (right and left)
shows examples of the degree to which the poses pre-
dicted by the RF differed from the actual poses. In these
examples, the size of the spheres indicates the MSE of
the predicted body/limb positions depicted.

Ensemble encoding of spatial position

We used a similar approach to try to predict the location
of the animal within the enclosure. Again, we felt that it
would be unrealistic to expect that the ensembles could
predict exact locations on the scale of individual pixels, so
the operant chamber was divided into 32 cubes (two
stacked 4 X 4 grids), allowing us to frame location pre-
diction as a categorical problem. As in the analyses
above, we first tried the RF (Fig. 8A) and found that it
could provide reasonable predictions about the spatial
location of the rat based on ensemble activity. While the
quality of spatial location encoding was variable both
within (i.e., depending on which subsets of time bins were
used) and between sessions, accuracy was always higher
compared to chance performance assessed by shuffling
of the spatial location assignments in each time bin of the
original data (Fig. 8B). The ensembles exhibited a nearly
50% accuracy rate for determining the location of the rat,
although the chance rate was on average 1/32 or 3%. It
should be emphasized that these accuracy measure-
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Figure 7. Predictions of body positions. A, The overall mean squared error (MSE) between the true and predicted positions of all six
pose components used in the RF analyses. Black bars are test MSEs, gray bars are the MSEs when the firing rate matrix was shuffled
independently of the output poses. B, Same as A, but for the CNN. C, Two images of the animal taken from single video frames in
session 07J were overlaid by colored circles representing the MSE in the positions of the body/limbs positions as predicted from the
RF analyses. Each circle is centered at the actual position of the body part as originally scored using the software shown in Fig. 1,
while the radii of the circles denote the MSE in the RF-predicted positions (dot colors: head, white; front right paw, red; front left paw,
blue; rear right paw, dark red; rear left paw, dark blue; tail, pink). The overall average MSE across all body parts depicted in the images
were 69.7 (left) and 122.4 (right). Only the MSE spheres for those body parts that can be clearly seen in the example images are

depicted here.

ments were conservative in the sense that they were
calculated from the strict maximum of the probabilistic
output, and instances where the prediction probabilities
were split across two or more cubes were counted as
errors. Furthermore, all errors were equal regardless of
whether the predicted cube was adjacent to the actual
cube or on the other size of the chamber. The CNN
performed statistically no better than the RF, and there-
fore the results from the CNN were not shown.
Previously, Euston and McNaughton (2006) found that
some mPFC neurons were sensitive to the trajectory the
rat took through a task enclosure. For this reason, we also
considered whether the location predictions could be
improved by incorporating trajectory information as the
rat entered or exited a specific location. Based on the
observation that the ensembles carry information about
the rat’s spatial location (Fig. 8A), we reasoned that tra-
jectory information should be contained in the spike count
time series. A multi-layer RNN (Graves, 2016; Fig. 2C) was
chosen for this purpose that evaluated the relationship
between time series of multidimensional inputs (the
binned spike counts) and outputs (the spatial locations)

March/April 2018, 5(2) e0023-18.2018

across 1-s epochs (i.e., 5 X 200-ms time steps). During
training, spike counts from a given time bin plus the 4
time-bins that flanked it were used to update the weights
between the units in the RNN. An example of location
output prediction for the RNN is shown in Fig. 8C, while
accuracy measures for each session are shown in Fig. 8D.
Similar to the RF, the predictions made by the RNN were
probabilistic across possible locations, so results were
conservative measures of maximum probabilities. The
predictions were significantly better for the RNN than the
RF in 5 of the sessions (* in Fig. 8D). This improvement
was likely realized because the RNN learned which cubes
would likely be visited based on the evolution of ensemble
activity through time, thereby constraining the probable
output space.

Discussion

In the present study, we precisely tracked nine points
on a freely moving rat’s body every 200 ms in the absence
of an overt task and then quantified the relationship be-
tween this body position data and the firing of multiple
single neurons recorded simultaneously in the mPFC.
While a significant relationship was found between firing
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Figure 8. Predictions of spatial locations. A, Spatial location predictions generated by the RF for unseen test data across a 10-s period
(50 video frames/time bins). The true location is indicated by a black dot, the circles indicate correct location predictions, and X’s
indicate incorrect location predictions. This figure contains only the subset of 4 locations (i.e. cubes, ordered on the y-axis) the animal
happened to visit during the chosen time period. B, The location accuracy per session for the RF classifiers. Black bars, accuracy of
predictions for the test data; gray bars, accuracy of predictions when position assignments were shuffled independently of the firing

rate matrix. C, D, Same as A, B, but for the RNN.

and the rat’s movements or spatial locations, the relation-
ship was uniformly quite weak for individual neurons. The
ensemble analyses exploited the signals of the best neu-
rons and as a result returned better results. The superior
performance of the RNN over the other ensemble algo-
rithms in predicting spatial location indicated that addi-
tional information was contained in the time series of firing
activity that evolved as the rat moved through the enclo-
sure.

March/April 2018, 5(2) e0023-18.2018

Jung et al. (1998) performed the first detailed study of
mPFC correlates and described >20 different movement
correlates as well as the broad spatial tuning properties of
these neurons. Euston and McNaughton (2006) and Co-
wen and McNaughton (2007) later highlighted that move-
ment/location signals and putative cognitive signals can
be difficult to disambiguate. Expanding on this work, we
sought to provide a detailed assessment of the degree to
which movements or locations affect the firing of mPFC
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neurons in a typical task setting. It should be noted that
the apparatus and environment were not designed spe-
cifically to optimize movement or location encoding, and
a more repetitive task, performed over many days, would
likely more strongly entrain neurons. The enclosure was
also quite small, and it is possible that exploration of a
larger or novel enclosure would have evoked stronger
neural responses. Furthermore, the recordings were per-
formed outside the context of an overt task (but in a
typical task environment) so as to preclude nonmovement
correlates from interfering with the analysis. While there
are obvious advantages to this approach, movement sig-
naling in mPFC is highly plastic, and action correlates can
be altered if the action leads to a motivationally relevant
outcome (Kennerley et al., 2009; Ma et al., 2014). As a
result, the present results do not speak to the absolute
strength of movement or spatial encoding in mPFC neu-
rons but rather provide a picture of how strongly this
information is encoded under baseline conditions when
rats are placed in an operant chamber used for prior
behavioral training. We found that although a large pro-
portion of neurons showed significant responses to
movement of a single body part, their individual contribu-
tions were small, and even the activity of the best single
neurons was insufficient to accurately decode the posi-
tion of a single limb. These data therefore suggest that
under baseline conditions, most mPFC neurons are
weakly responsive to a wide range of proprioceptive,
posture, and position information. Any component of
these diffuse representations could conceivably become
strengthened depending on the prevailing task demands.

Ensembles generated more complete descriptions of
movement and location encoding than single neurons,
although the level of improvement depends to some ex-
tent on how one sets up the analyses. One issue is
whether to treat all neurons equally or weigh certain neu-
rons (or some portion of the firing range of certain neu-
rons) more than others. In the present study, this selection
process was automated in an informed manner by the RF
algorithm. Generally speaking, an RF is a collection of
decision trees that decides on an output using a process
of aggregate voting and selection of maximum probability
(Breiman, 2001). RFs have an advantage in unconstrained
problem spaces in that they are resistant to overfitting,
because the estimate quickly approaches the expectation
of the distribution as the number of estimators (irees)
grows (Hastie et al., 2009). Each branching point of a tree
in the forest considers only a randomly selected subset of
the input dimensions (in this case neurons) and selects
the candidates from that subset based on a measure of
mutual information with the output (in this case segments
of a limb position or spatial location vector). Therefore,
each decision tree could be viewed as a weighting of
neurons on a given factor (or portion of a given factor),
with the forest providing an aggregate of single neuron
mappings to all the model factors. In the GLM analyses,
the firing rate of each neuron was correlated (via a link
function) to a limb position vector across all time bins. By
contrast, the RF created trees with neurons responsive to
portions of a limb position vector, and these trees biased
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the forest consensus, which in turn helped to make the RF
predictions more accurate.

Another advantage of the ensemble analysis was that it
allowed us to search for the encoding of constellations of
co-occurring limb positions that we referred to as poses.
The CNN (Dumoulin and Visin, 2016) searched for func-
tional relationships within small groups of neurons, taken
four to seven at a time. Each neuron was treated as a
partial feature detector, and patterns in local groups of
feature detectors encoded specific portions of a given
pose. The complete pose was encoded by the combined
information across many such subgroups of neurons.
Although the relationship between neural activity and the
poses were statistically significant, both of our predictive
algorithms work agnostically of predefined constellations
of body positions, and as such, the output or pose space
does not necessarily yield separation into meaningful or
behaviorally relevant and recurring poses, such as groom-
ing, rearing, etc.

Ensembles were also superior to single neurons for
spatial decoding. While the RF performed well, adding
complexity to the model with a CNN did not result in
significant improvements. However, adding the additional
temporal dimension made the RNN superior to single
neurons, the RF, and the CNN. This was likely because
the animals were moving from one location to another,
and by using the time series information, the RNN limited
the range of possible future or past locations on which to
base its predictions. Interestingly, improvements from
temporal signals (Karpathy et al., 2015) were not observed
in the decoding of pose (the RNN did not perform better
than the RF or CNN), as one might expect. This type of
time series—based encoding would complement the real-
time tracking of movement trajectories by individual
mPFC neurons as identified by Euston and McNaughton
(2006). The mPFC could in theory use knowledge about
where the rat has been, where it is going, and the path
taken between these two points to inform ongoing deci-
sions.

The finding that ensembles performed better than the
best single neurons is not surprising and is consistent with
past studies conducted on neurons from various brain
areas (Foldiak and Young, 1995; Riehle et al., 1997;
Shadlen and Newsome, 1998; Laubach et al., 2000; Car-
mena et al., 2005). One reason the individual neurons
performed poorly in the present study was their inherent
unreliability in that they did not respond the same way
every time a limb was in a particular position. While this is
disadvantageous when considering each neuron in isola-
tion, it may be beneficial for ensemble encoding. We have
observed that a given mPFC neuron can respond to a
certain task element on one ftrial, only to respond to
another task element or not at all on the next trial (Ma
et al., 2016). But the nonresponsive trials tend not to be
shared across the population, so that when one neuron
drops out another fills in, thereby maintaining a constant
level of overall responsivity in the network (Ma et al., 2014,
2016). In the field of computer science, the phenomenon
of dropout has proven to be an advantageous feature for
neural network—-based machine learning algorithms. In
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this case, dropout occurs when individual connections
are eliminated with some probability during the training of
networks, as was the case for our CNNs and RNNs. This
dropout helps to suppress the formation of strict depen-
dencies between individual units and a particular output
feature. This prevents overfitting and overspecialization
(Srivastava et al., 2014; Gal and Ghahramani, 2016) and
makes the network better able to generalize across tasks.
Although direct comparisons between biological brains
and “neural” network models should be made with cau-
tion, it may be that frontal cortex networks use their
inherent unreliability for similar purposes. Specifically,
multiresponsivity coupled with high trial-to-trial variability
would ensure that the neurons do not become entrained
to specific events. On the other hand, because the vari-
ability or dropout is not synchronized across the popula-
tion, the ensembles always maintain an accurate
representation through time. As discussed above, most
neurons were minimally responsive to most of the factors,
and this may have extended to all neurons if the recording
periods had been extended or the significance criteria had
been slightly relaxed. Since past studies have reported an
almost innumerable array of other frontal cortex neuron
correlates, it may be that all frontal cortex neurons are at
least minimally responsive to all events. Like the superior
performance of the RF algorithm, frontal cortex ensem-
bles may produce coherent and consistent representa-
tions via an aggregate voting process across groups of
highly variable and unreliable neurons. These properties
may be what gives the frontal cortex the flexibility required
to respond to both the similarities and differences inher-
ent in complex, ever-changing environments. Endowing
artificial neural networks with similar properties could
conceivably expand their flexibility and functionality as
well.

Lab Video Annotator Repository: https://github.com/
Loken85/Lab_Video_Annotator

Electrophysiology Machine Learning Repository:
https://github.com/Loken85/ephys_ML_repo
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