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Background and Aims:Microvascular invasion (MVI) is a well-known risk factor for poor
prognosis in hepatocellular carcinoma (HCC). This study aimed to develop a deep
convolutional neural network (DCNN) model based on contrast-enhanced ultrasound
(CEUS) to predict MVI, and thus to predict prognosis in patients with HCC.

Methods: A total of 436 patients with surgically resected HCC who underwent
preoperative CEUS were retrospectively enrolled. Patients were divided into training
(n = 301), validation (n = 102), and test (n = 33) sets. A clinical model (Clinical model), a
CEUS video-based DCNN model (CEUS-DCNN model), and a fusion model based on
CEUS video and clinical variables (CECL-DCNN model) were built to predict MVI. Survival
analysis was used to evaluate the clinical performance of the predicted MVI.

Results: Compared with the Clinical model, the CEUS-DCNN model exhibited similar
sensitivity, but higher specificity (71.4% vs. 38.1%, p = 0.03) in the test group. The CECL-
DCNN model showed significantly higher specificity (81.0% vs. 38.1%, p = 0.005) and
accuracy (78.8% vs. 51.5%, p = 0.009) than the Clinical model, with an AUC of 0.865. The
Clinical predicted MVI could not significantly distinguish OS or RFS (both p > 0.05), while
the CEUS-DCNN predicted MVI could only predict the earlier recurrence (hazard ratio [HR]
with 95% confidence interval [CI 2.92 [1.1–7.75], p = 0.024). However, the CECL-DCNN
predicted MVI was a significant prognostic factor for both OS (HR with 95% CI: 6.03 [1.7–
21.39], p = 0.009) and RFS (HR with 95% CI: 3.3 [1.23–8.91], p = 0.011) in the test group.

Conclusions: The proposed CECL-DCNN model based on preoperative CEUS video
can serve as a noninvasive tool to predict MVI status in HCC, thereby predicting poor
prognosis.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most common
malignancy worldwide and the second leading cause of cancer-
related death in China (1). For small tumors less than 5 cm,
surgical resection is considered the first-line treatment. However,
approximately 50% of patients suffer early recurrence within 2
years after curative hepatectomy (2).

Microvascular invasion (MVI) is a well-known risk factor for
early recurrence and poor survival (3). Several studies reported
that accurate preoperative prediction of MVI status may help
determine surgical resection margins to improve prognosis (4, 5).
Patients with MVI-positive HCC can benefit from adjuvant
trans-arterial chemoembolization (TACE) (6, 7). Therefore,
preoperative prediction of MVI is of great importance for
effective treatment and subsequent improvement of prognosis.

However, preoperative prediction of MVI is still challenging
because it can only be obtained through histopathologic
examinations of the surgical resected specimens. Several studies
developed clinical models based on some clinical risk factors
including tumor number, size, and alpha-fetoprotein (AFP) to
predict MVI status (AUC not exceeding 0.81) (8–10). Recent
studies found that predictive models performed better when
incorporating some radiomic features on computed tomography
(CT) or magnetic resonance (MR) (11–13). However, CT or MR is
performed according to a predetermined timing regime and gets a
static image, which might miss typical diagnostic enhancing
patterns in early or late arterial phase due to the mistiming of the
arterial phase image acquisition (14).

Compared with enhanced CT and MR, contrast-enhanced
ultrasound (CEUS), which allows real-time monitoring of blood
perfusion of liver lesions, provides higher specificity for
diagnosing HCC (15, 16). Additionally, CEUS is a favorable
technique that can visualize small vascular beds during the
arterial phase (17), which can be recorded as a continuous
video. Hence, CEUS video may contain information regarding
tumor biological behavior. However, CEUS is a video that
dynamically changes with contrast injection and has a high
Frontiers in Oncology | www.frontiersin.org 2
spatial and temporal complexity. Therefore, the quantitative
assessment of CEUS is difficult.

Recently, deep learning has demonstrated superior
performance in dynamic video recognition and classification
(18), and they provide a promising solution to quantitative
assessment of CEUS video. In this study, we proposed a deep
learning model based on CEUS video to predict MVI and
evaluated the prognostic value of the predicted MVI.
MATERIALS AND METHODS

Patients
The institutional ethics review board approved this single-center
retrospective study and waived the requirement for written
informed consent. An institutional database was searched for
all patients with pathologically proven HCC who underwent
preoperative CEUS during two periods, January 2012 to
December 2015 and August 2016 to December 2016, and
found 614 patients. The final cohort was made up of 436
patients who met the following inclusion criteria (Figure 1):
(a) nodules visible on the grayscale; (b) no previous liver cancer
treatment; (c) MVI status is available in pathologic reports or
sections; (d) CEUS quality appropriate to analyze; and (e) CEUS
arterial phase video available. The cohort was divided into a
training group (n = 301) and a validation group (n = 102) from
January 2012 to December 2015 according to a ratio of 3:1, and a
time-independent test group (n = 33) from August 2016 to
December 2016.

Clinical Parameters and
Histopathological Diagnosis
The presence of MVI was mainly determined from pathologic
reports and re-checked by one senior pathologist with 10-year
experience. MVI was defined as the presence of tumor emboli
within the vessels adjacent to HCC. Tumor maximum diameter,
AFP level, and the number of nodules were recorded. The tumor
maximum diameter was categorized as ≤33 mm, 33–40 mm, 40–
FIGURE 1 | The flowchart of study group enrollment.
July 2022 | Volume 12 | Article 878061

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Deep-Learning of CEUS Predicting MVI
50 mm, 50–60 mm, and >60 mm. AFP level was divided into ≤20
ng/ml, 20–400 ng/ml, and >400 ng/ml. The number of nodules
was categorized as single and multiple.

Follow-Up Surveillance
Patients were followed up regularly after surgery at intervals of 3
to 6 months, based on AFP and imaging studies. If patients were
unable to visit the clinic, they were consistently kept in touch
through the telephone.

CEUS Examinations
CEUS examination was performed on an Acuson Sequoia 512
(SiemensMedical Solutions, Mountain View, CA) US system with a
4C1 convex array probe. After identifying the target lesion on the
grayscale, the contrast pulse sequencing imaging mode (mechanical
index, 0.19) was transferred. At the start of the CEUS mode, a
volume of 2.0 ml of SonoVue (Bracco Imaging, Milan, Italy) was
injected into the antecubital vein followed by a volume of 5.0 ml of
saline flush. The target lesion was continuously scanned for at least 1
min immediately after the administration of the contrast agent to
collect the continuous dynamic images of the arterial phase and
partial portal phase. Then, the transducer ran over the entire liver
and returned to the target lesion at an interval of 20–30 s until 5 min
to capture the delay phase. Contrast clips were stored as video
sequences or still images in Dicom format.

Annotation and ROI Extraction of
CEUS Video
Tumor segmentation was performed with ITK-SNAP (http://
www.itksnap.org/) by a radiologist with 2 years of experience in
CEUS, and then revised by a senior radiologist with over 20 years
of CEUS experience. The tumor boundary was drawn manually
on the 1-min CEUS video, and 2- and 3-min still images. Since
each CEUS video consists of 430–520 frames, the workload
would be tremendous for the radiologist to annotate each
frame. Thus, annotations were given discontinuously and
about 50–70 frames in each video have segmentations,
covering all tumor moving trajectory due to patient’s breath
during the CEUS examination. According to the union of given
annotations in 1-min CEUS, a bounding box was extracted and
extended outward by 1/4 length of each side in every video as the
region of interest (ROI), as shown in Supplementary Figure 1.

Developing a Clinical Parameter-
Based Model
Age, sex, AFP level, tumor maximum diameter, and the number
of nodules were potential clinical parameters to predict the MVI
status (8–10). Univariate and multivariate logistic regression
analyses were performed in the combination of the training
and validation group. The parameters significant with p < 0.05 in
the univariate analysis were taken in the multivariate analysis.
The independent significant parameters made up the clinical
parameter-based model (Clinical model) and participated in the
later clinical parameter combining CEUS video deep learning
model (CECL-DCNNmodel). The predictive performance of the
Clinical model was evaluated in the test group.
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Developing a CEUS Video-Based Deep
Learning Model
A CEUS-based DCNN model (CEUS-DCNN model) was
constructed to predict the MVI status. We developed a deep
learning model that considered both temporal and spatial
features. The whole network was divided into two parts, a
Gated Recurrent Unit (GRU)-based module for extracting
temporal features of contrast perfusion and a Convolution
neural network (CNN)-based module for extracting spatial
distribution features of contrast agents. The overall structure of
the proposed model is shown in Figure 2A.

The GRU-based module was seamlessly composed by
Inception V4 as the backbone and two-stage cascade
Bidirectional GRU (19). The input of the GRU-based module
was the 8-frame sequence uniformly extracted from a 1-min
CEUS video. Each ROI was shrunk or enlarged to the same size,
in order to be spliced into the input. An ImageNet pre-trained
Inception V4 was used to extract the most significant feature of
each frame—brightness. Then, the results were delivered to the
first-stage GRU. As shown in Figure 2B, the second-stage GRU
took the concatenation of adjacent outputs from the first stage as
the input. The two-stage GRU extracted information about the
changes in contrast brightness at different time intervals. When
all frames were passed through the network, the temporal
features of the whole CEUS video were obtained.

The CNN-based module was developed based on ResNet50
(20). The input of the CNN-based module was the 16-frame
spliced image uniformly extracted from the 1-min CEUS video.
As a backbone feature extractor, ResNet50 could produce
intermediate features with a different number of channels,
widths, and lengths of the feature map. In the proposed
module, we used three different scales of extracted feature
maps from ResNet50. As shown in Figure 2C, these selected
feature maps on three different scales would then be fed into a
similar pipeline separately to get a prediction based on its input.
Specifically, there were three pipelines in the presented module.
In each pipeline, features were first fed into Conv Blocks and
then delivered to fully connected (FC) Blocks. The output of an
FC Block would become the prediction of each pipeline. A
saliency map was used to help visually explain the feature
extractions (21).

As a network with fusion of temporal and spatial features, this
deep learning model reasonably fused a GRU-based module and
a CNN-based module, and solved the training problem of the
fusion network by a progressive training strategy, which was
inspired by the Progressive Multi-Granularity (PMG) training
framework (22). The specific approach was to input the temporal
features extracted by the GRU-based module into the FC Block
of the CNN-based module (Figure 2C).

Developing a CEUS Combining a Clinical
Parameter-Based DCNN Model
Incorporating significant clinical parameters, we proposed the
CECL-DCNNmodel based on the CEUS-DCNNmodel. Clinical
parameters were concatenated with the output of the FC Blocks
or the two-stage fully connected layers (Figure 2C). Another
July 2022 | Volume 12 | Article 878061
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fully connected layer was added in each stage. The fused feature
was fed into such a layer to obtain the prediction for each stage.
Clinical parameters, the GRU-based module, and prediction of
the stage using features obtained in the three pipelines made up
the final prediction of the combined model. The detailed
calculation method and training strategy are described in
Supplementary Materials—Network Architecture.

Statistical Analysis
Analysis of variance (ANOVA, for continuous variables) and the
Mann–Whitney rank-sum test (for categorical variables) were
used to compare the basic characteristics among the training,
validation, and test groups. The area under the receiver operating
characteristic curve (AUC) was used to quantify the
discriminative efficacy for MVI prediction. The DeLong test
was performed to compare the AUCs of different models.
Comparisons of the sensitivity, specificity, and accuracy were
performed using the chi-square test. Recurrence-free survival
(RFS) and overall survival (OS) were defined as the interval
between diagnosis and radiographic detection of recurrence, last
follow-up, or death. Survival curves were generated with the
Kaplan–Meier method and compared by a two-sided log-rank
test according to the predicted MVI.

CEUS-DCNN and CECL-DCNN model building and
evaluation were conducted using Python (version 2.7, https://
www.python.org/). Statistical analyses were performed using a
statistical software package (SPSS version 26, SPSS, Inc., Chicago,
IL). Differences of p < 0.05 were considered statistically significant.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

Patient Characteristics
The clinical characteristics of the patients in the training,
validation, and test groups are listed in Table 1. There was no
significant difference in characteristics among the three cohorts.
A total of 103 patients (34.2%) in the training cohort, 35 patients
(34.3%) in the validation cohort, and 12 patients (36.4%) in the
test cohort were pathologically identified with MVI.

Performance of the MVI Prediction Model
All clinical variables were obtained preoperatively. In the
combination of training and validation groups, AFP level,
tumor maximum diameter, and the number of nodules were
significantly associated with MVI. These three important clinical
variables made up the Clinical model. The detailed results of
univariate and multivariate logistic analysis are presented in
Table 2. The performance of the Clinical model was evaluated
in the test group.

The visual explanation of the spatial–temporal features
extracted by the DCNN model is shown in Figure 3. The areas
that the CNN module paid most attention to were the periphery
and neighboring of the tumor, conforming to the regions where
MVI probably existed (Figures 3A, B). Generally, the early
arterial phase of contrast agent perfusion into the liver is the
most sensitive period for visualization of the vascular bed. The
first two bars in Figure 3C, representing the pre-arterial phase
and the beginning of the arterial phase, were the tallest of all,
FIGURE 2 | Workflow of deep convolution neural network (DCNN) analysis. (A) Network Structure Overview. Eight-frame sequence was the input of the Gated
Recurrent Unit (GRU)-based module. Sixteen-frame spliced image, output of the GRU-based module, and the clinic variables were the inputs of the convolution
neural network (CNN)-based module. (B) GRU-based module. The feature extracted by the CNN-based Extractor was fed into a two-stage cascade GRU to get a
one-dimension output. (C) CNN-based module. In the training stage, a jigsaw puzzle generator was applied to randomly generate three different patch sizes of image
inputs based on the 16-frame spliced image. Three generated image inputs and the original image were then fed into pipelines composed by Conv Blocks and fully
connected (FC) Blocks, respectively.
July 2022 | Volume 12 | Article 878061
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which means they made the most contributions to the prediction
of MVI status. The contributions of the frames declined
afterwards, but got high at the sixth frame when the arterial
phase alternated with the portal vein phase, which is important
for diagnosis. These changes in the frames’ contributions
produced by the GRU-based module were consistent with the
clinical experience.

Table 3 summarizes the predictive performances of the three
models. Compared with the Clinical model, the CEUS-DCNN
model exhibited similar sensitivity, but higher specificity (76.1%
vs. 63.4%, p = 0.05 in the validation group; 71.4% vs. 38.1%, p =
0.03 in the test group). The CECL-DCNN model, which
incorporated CEUS video and clinical parameters, achieved not
only higher specificity (86.6% vs. 63.4%, p < 0.001 in the
validation group; 81.0% vs. 38.1%, p = 0.005 in the test group)
but also higher accuracy than the Clinical model (81.4% vs.
68.0%, p = 0.008 in the validation group; 78.8% vs. 51.5%, p =
0.009 in the test group). Additionally, the CECL-DCNN model
Frontiers in Oncology | www.frontiersin.org 5
had a promising diagnostic performance (AUC = 0.879 in the
validation group and AUC = 0.865 in the test group).

Long-Term Prognosis of Predicted MVI
The study was censored on September 30, 2020. The median follow-
up was 63.6 months (interquartile range, 46.2–77.5) in all 436
patients. The mean RFS was 37.2 months (95% confidence interval
[CI]: 30.6–43.9) for those with histologic MVI and 63.5 months
(95% CI: 58.6–68.5) for those without histologic MVI (p < 0.001).
The mean OS was 62.3 months (95% CI: 22.9–68.7) for those with
histologic MVI and 88.9 months (95% CI: 85.5–92.4) for those
without histologic MVI (p < 0.001). Histologic MVI was confirmed
to be an important prognostic factor for poor prognosis.

The predicted MVI of the three models could significantly
distinguish the patients with poor outcomes in the validation
group (p < 0.05, seen in Supplementary Figure 2), but in the test
group, the prognostic results of the three models were different
(Figure 4). The prognostic effects of the Clinical model predicted
TABLE 2 | Univariate and multivariate logistic analysis of MVI based on clinical variable.

Variable Univariate Multivariate

OR (95% CI) p OR (95% CI) p

Age, years 0.99 (0.97–1.00) 0.100 —— ——

Sex, female vs. male 0.72 (0.41–1.29) 0.268 —— ——

AFP, ng/ml
20–400 vs. ≤20 1.43 (0.84–2.45) 0.186 1.62 (0.89–2.95) 0.112
>400 vs. ≤20 2.97 (1.73–5.10) <0.001 2.76 (1.50–5.10) 0.001

Tumor Maximum Diameter, mm
33–40 vs. ≤33 1.66 (0.83–3.33) 0.177 1.65 (0.80–3.39) 0.117
40–50 vs. ≤33 5.19 (2.60–10.35) <0.001 4.69 (2.30–9.56) <0.001
50–60 vs. ≤33 3.11 (1.45–6.67) 0.004 3.14 (1.44–6.84) 0.004
>60 vs. ≤33 11.41 (6.09–21.36) <0.001 10.43 (5.43–20.05) <0.001

Nodule number, single vs. multiple 4.43 (2.29–8.60) <0.001 2.74 (1.30–5.79) 0.008
July 2022 | Volume 12 | Article
AFP, alpha-fetoprotein; OR, odds ratio.
TABLE 1 | The clinical characteristics of training, validation, and test groups.

Training (n = 301) Validation (n = 102) Test (n = 33) p

Age, years 51 ± 11 52 ± 13 55 ± 11 0.144
Sex
Male 254 (84.4%) 82 (80.4%) 27 (79.4%)
Female 47 (15.6) 20 (19.6%) 7 (20.6%)

AFP 0.329
≤20 ng/ml 129 (42.9%) 38 (37.3%) 16 (47.1%)
20–400 ng/ml 77 (25.6%) 35 (34.4%) 10 (29.4%)
>400 ng/ml 95 (31.6%) 29 (28.4%) 8 (23.5%)

Tumor Maximum Diameter 0.969
≤33 mm 125 (41.5%) 42 (41.2%) 14 (41.2%)
33–40 mm 48 (15.9%) 18 (17.6%) 6 (17.6%)
40–50 mm 40 (13.3%) 10 (9.8%) 4 (11.8%)
50–60mm 31 (10.3%) 9 (8.8%) 2 (5.9%)
>60 mm 57 (18.9%) 23 (22.5%) 8 (23.5%)

Number of nodules 0.940
Single 269 (89.4%) 90 (88.2%) 30 (88.2%)
Multiple 32 (10.6%) 12 (11.8%) 4 (11.8%)

MVI 0.992
Positive 103 (34.2%) 35 (34.3%) 12 (35.3%)
Negative 198 (65.8%) 67 (65.7%) 22 (64.7%)
8

AFP, alpha-fetoprotein; MVI, microvascular invasion.
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MVI on survival and recurrence did not reach any statistical
significance (both p > 0.05), while in the same group, the CEUS-
DCNN predicted MVI was a significant prognostic factor only
for RFS (hazard ratio [HR] with 95% CI: 2.92 [1.1–7.75], p =
0.024). Nevertheless, the CECL-DCNN predicted MVI could
significantly distinguish the patients with shorter survival (mean
OS = 37.3 vs. 59.7 months, HR with 95% CI: 6.03 [1.7–21.39], p =
0.009) and earlier recurrence (mean RFS = 23.5 vs. 45.3 months,
HR with 95% CI: 3.3 [1.23–8.91], p = 0.011). The survival curves
of the CECL-DCNN predicted MVI were the most similar to that
of the histologic MVI (Figure 4). The patients with positive MVI
had shorter survival (mean OS = 32.9 vs. 60.5 months, HR with
Frontiers in Oncology | www.frontiersin.org 6
95% CI: 8.45 [2.24–31.86], p = 0.001) and earlier recurrence
(mean RFS = 20.8 vs. 44.6 months, HR with 95% CI: 3.87 [1.32–
11.31], p = 0.002).
DISCUSSION

In the present study, we proposed a CECL-DCNN model, which
integrated clinical information and temporal–spatial
information from the CEUS video, to predict histologic MVI
in patients with HCC. The CECL-DCNN model showed
significantly higher specificity and accuracy than the Clinical
TABLE 3 | Predictive efficacy of the clinical, CEUS-DCNN, and CECL-DCNN models.

Model Sensitivity Specificity Accuracy AUC

Clinical model Validation* 76.8% 63.4% 68.0% 0.765
Test 75.0% 38.1% 51.5% 0.732

CEUS-DCNN model Validation 71.4% 76.1% † 74.5% 0.832
Test 75.0% 71.4% † 72.7% 0.734

CECL-DCNN model Validation 71.4% 86.6% † 81.4% † 0.879 †

Test 83.3% 81.0% † 78.8% † 0.865
Jul
y 2022 | Volume 12 | Article
AUC, area under the curve. *Multivariate logistic analysis was used. †The comparison with the clinical model was significant, p < 0.05.
FIGURE 3 | Visual explanation of the deep convolution neural network (DCNN) model. (A) Input of CNN-based module made by 16-frame sliced images extracted
from the 1-min video. (B) Corresponding gradient-weighted class activation map. Highlighted areas were the network paid attention for MVI prediction. (C) Bar chart
of the sum of the saliency maps of each input frame for the GRU-based module. The value indicates the degree of the importance for this frame predicting MVI.
CNN, convolution neural network; MVI, microvascular invasion.
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model in validation and test groups, achieving a satisfying
diagnostic performance (AUC = 0.879 and 0.865 in two
groups, respectively). Additionally, the CECL-DCNN predicted
MVI was a prognostic factor to poor long-term outcomes,
indicating its impact on clinical decisions before surgery.

Compared to CT and MR, US has the advantages of being
readily accessible, radiation-free, and easy to operate and having
economic benefits. Furthermore, CEUS allows real-time
evaluation of the enhancement of a nodule, providing more
sensitive detection of arterial phase enhancement (APHE) than
CT or MR, which may fail to demonstrate APHE due to the
arterial phase mistiming (23). Previously, Zhang et al. found that
the CEUS radiomics nomogram could predict MVI with an AUC
of 0.788 in the validation dataset, but the specificity was only
70.83% (24). Zhou et al. found that CEUS LR-M combining
clinical features could predict MVI with an AUC of 0.84, but the
specificity was slightly lower than the clinical model (78.6% vs.
85.7%, p = 0.06) (25). In this study, the CEUS-DCNN model,
which only used CEUS information, could predict MVI with a
significantly higher specificity than the Clinical model. As
regards clinical information, the CECL-DCNN model could
achieve better specificity (86.6% in the validation group and
81.0% in the test group) and accuracy (81.4% in the validation
group and 78.8% in the test group). The specificity of our study
was much higher than the results of the above two CEUS studies.
Xu et al. (12) reported that radiomics of enhanced CT predicted
MVI with an AUC of 0.889 and a specificity of 79.2%, and Yang
et al. (26) found that enhanced MR could predict MVI with an
AUC of 0.861 and a specificity of 81.4%. Our result was as good
as theirs. Furthermore, many studies lacked survival analysis to
validate the model’s validity. In this study, the CECL-DCNN
predicted MVI demonstrated the most similarity to true
histologic MVI of the three models in the comparison of
survival curves, indicating the reliability of this model.
Frontiers in Oncology | www.frontiersin.org 7
Accordingly, our study provided another straightforward,
noninvasive, and robust approach for predicting MVI
before surgery.

Deep learning is a state-of-the-art machine learning
approach. Early studies of deep learning applied to MVI
prediction based on enhanced CT or MR have reported
superior performances (27, 28), but they did not evaluate the
model in an independent group. Liu et al. (29) found that deep
learning of enhanced CT could predict MVI with an AUC of
0.777, and Wei et al. (30) reported that deep learning of
enhanced MR and enhanced CT could predict MVI with an
AUC of 0.812 and 0.736, respectively, in the external test group.
Our study established an independent test group in addition to
the training and validation groups, and the deep learning model
based on CEUS and clinical variables made excellent diagnostic
performances with an AUC of 0.865 in the test groups.

At present, there are no studies about deep learning of CEUS to
predict MVI. This is probably because CEUS was a dynamic video
with a high spatial and temporal complexity, and quantitative
analysis of CEUS is difficult. Previously, Xie and Tian’s team
found that a deep learning radiomics-based CEUS model could
accurately predict the response to TACE for HCC patients (31) and
could predict prognosis literally after surgery and radiofrequency
ablation to help patients with treatment decision-making (32),
which inspired us to use deep learning to analyze CEUS video.
Compared to the traditional radiomics method, our DCNN model
did not pre-define features in terms of feature selection and
extraction. Moreover, DCNN algorithms have great advantages at
learning features in a data-driven mode and thus make predictions
more practical (33). In this study, we developed a DCNN model
made up of the GRU-based module and the CNN-based module,
focusing on temporal information and texture information,
respectively. Considering the computing cost and redundant
information in CEUS video, frames were uniformly sampled from
A

B

FIGURE 4 | Survival curves of histologic microvascular invasion (MVI) and predicted MVI of the three models in the test group (n = 33). (A) Overall survival (OS)
curves. (B) Recurrence-free survival (RFS) curves. Comparisons between curves were performed with the log-rank test. CEUS-DCNN: CEUS video-based deep
convolution neural network model. CECL-DCNN: clinical parameter combining CEUS-based deep convolution neural network model.
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videos, and short-time and long-time intervals were used separately
when forming the inputs of the CNN-based and GRU-based
modules. Inputs of the CNN- and GRU-based modules included
frames in both the arterial phase and the portal phase, and thus, our
model could thoroughly use the information in the video.

It should be noted that this study has some limitations. On the
one hand, this was a single-center retrospective study. Therefore,
results from our center should be supplemented with further
prospective validation by larger cohorts from other centers. On
the other hand, although manually segmenting the tumor is
relatively precise, it is tedious and laborious. Next, we will
develop an algorithm for automatic video object segmentation.
CONCLUSION

The proposed CECL-DCNN model, based on preoperative CEUS
video and clinical parameters, can serve as a noninvasive tool to
predict MVI status in HCC, thereby predicting poor long-term
outcomes, indicating its impact on clinical decisions before
the surgery.
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Supplementary Figure 2 | Survival curves of histologic microvascular invasion
(MVI) and predicted MVI of the three models in validation group (n=102). (A) Overall
survival (OS) curves. (B) Recurrence-free survival (RFS) curves. Comparisons
between curves were performed with the log-rank test. CEUS-DCNN: CEUS video-
based deep convolution neural network model. CECL-DCNN: clinical parameter
combining CEUS-based deep convolution neural network model.
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