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Abstract Angiotensin-converting enzyme 2 (ACE2) has emerged as a key regulator of the renin–angiotensin system in cardio-
vascular (CV) disease and plays a pivotal role in infections by coronaviruses and influenza viruses. The present
review is primarily focused on the findings to indicate the role of ACE2 in the relationship of coronaviruses and in-
fluenza viruses to CV disease. It is postulated that the risk of coronavirus or influenza virus infection is high, at least
partly due to high ACE2 expression in populations with a high CV risk. Coronavirus and influenza virus vaccine us-
age in high CV risk populations could be a potential strategy to prevent both CV disease and coronavirus/influenza
virus infections.
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Background

The renin–angiotensin system (RAS) plays a critical role in maintaining
normal cardiovascular (CV) functions and contributes to a spectrum of
CV diseases, such as hypertension, coronary heart disease, myocarditis,
and congestive heart failure.1 Generally, the RAS is composed of angio-
tensinogen, renin, angiotensin II (Ang II), Ang II receptors (AT1 and AT2
receptors), and angiotensin-converting enzyme (ACE).2,3 ACE is ubiqui-
tously present in many cell types, tissues, and organs. ACE is an ectoen-
zyme that plays a role in the generation of Ang II by catalysing the
extracellular conversion of the decapeptide Ang I.4 In the past two deca-
des, a new homologue of the enzyme, termed angiotensin-converting
enzyme 2 (ACE2), was identified, and ACE2 can convert Ang II to
Ang(1-7) or convert Ang I to Ang(1-9).5,6 Although Ang II increases
blood pressure (BP), Ang(1-7) is a vasodilator, and the ACE2/Ang(1-7)
axis has been suggested to act as a natural damping mechanism for the
activation of the classical RAS.7

Besides its crucial role in CV disease, ACE2 has also been considered
as a functional potential coronavirus [including severe acute respiratory
syndrome (SARS) coronavirus, human coronavirus NL63 (HCoV-
NL63), and severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), also called 2019-nCoV] receptor that binds directly to the viral
spike protein.8–11 In addition, ACE2 plays an important role in acute lung
injury induced by influenza viruses, such as H1N1, H5N1, and H7N9,12–14

suggesting that ACE2 still has unexpected facets with clinical implications.

CV diseases are the most common non-communicable diseases glob-
ally.15 In addition, emerging viral infections also represent a major global
public health concern,16–18 such as coronavirus disease 2019 (COVID-
19,caused by SARS-CoV-2) in China19 and 2009 H1N1 in the USA and
Canada.20 ACE2 could be a novel therapeutic target for CV diseases and
a potential target for the treatment of coronaviruses and influenza vi-
ruses. The present review is primarily focused on the findings indicating
the role of ACE2 in the relationship of coronaviruses and influenza vi-
ruses to CV disease (Figure 1).

Coronaviruses/influenza viruses and
CV diseases

Both influenza viruses and coronaviruses are typically contagious viruses
that cause respiratory disease. Coronaviruses are members of the sub-
family Coronavirinae, in the Coronaviridae family and the Nidovirales
order, including four genera—Alphacoronavirus, Betacoronavirus, Gamma
coronavirus, and Deltacoronavirus.21 Coronaviruses cause respiratory and
intestinal infections in animals and humans. They were not considered to
be highly pathogenic to humans until the outbreak of SARS in 2003. Six
human-infecting types of coronaviruses were discovered before 2019.
Two highly pathogenic viruses [SARS-CoV and Middle East respiratory
syndrome coronavirus (MERS-CoV)] cause severe respiratory syndromes
in humans, and the other four human coronaviruses (HCoV-NL63,
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HCoV-229E, HCoV-OC43, and HKU1) induce only mild upper respira-
tory tract diseases in immunocompetent hosts.15,22,23 In 2019, a novel co-
ronavirus (SARS-CoV-2) was identified in China and all over the world. It
has infected >1 300 000 of the population and became a public health
emergency declared by the World Health Organization (WHO). So far,
the pathology of COVID-19 pneumonia is still not clear. Human influenza
viruses are members of the Orthomyxoviridae family. Based on the matrix
and nucleoprotein genes, influenza viruses have been classified as type A,
B, C, and D. In humans, only influenza A and B viruses (influenza A and B)
are of epidemiological and public interest,24 although other related viruses
(influenza C and D viruses) may also cause at least subclinical infections in
humans.15 Despite the production of annually designed vaccines and the
many improvements in public health surveillance and infrastructure, each
year, in the USA alone, seasonal influenza A and B viruses continue to
evolve and take the lives of 3000–48 000 people.25 Highly transmissible
and pathogenic virus outbreaks cause a significant disease burden in terms
of morbidity and associated complications, and have a huge economic im-
pact.11,26,27 Meanwhile, CV disease is also the leading cause of death and
disease burden worldwide.15

Infection with the virus might be one of the pathogeneses of athero-
sclerosis and related CV disease. Atherosclerosis is a chronic inflamma-
tory disease of the arteries associated with pro-inflammatory lipid
abnormalities.28 Infectious diseases are suggested to be a causative fac-
tor, and several viruses have been studied for their relationship to CV
diseases.15,29 Influenza can trigger heart attacks, and vaccination against
influenza reduces the risk of CV events. For example, influenza infection
has long been thought to directly contribute to CV morbidity and mor-
tality.30 Various influenza viruses are involved in the development and
progression of atherosclerosis and related CV disease,31,32 and influenza
virus RNA has even been found in mouse and human atherosclerotic
plaques.33,34 Further, acute influenza infection has been shown to accen-
tuate the progression of atherosclerosis and related CV disease.35

Epidemiological data on the coronavirus and CV disease are scant.
However, it is shown that MERS-CoV patients have a high prevalence of
hypertension and CV disease. In MERS-CoV patients, the prevalence of
chronic heart disease and hypertension is 15% and 33%, respectively.36

More recently, there are new pieces of evidence which show that the
precondition of CV disease may increase the risk of SARS-CoV-2 infec-
tion. Among 41 admitted hospital patients infected with SARS-CoV-2 in
Wuhan, 15% had hypertension, and 15% had CV disease.15 Another
study included 138 patients infected with SARS-CoV-2 in Wuhan and
found that 31% of the patients had hypertension, and 15% had CV dis-
ease.37 In another retrospective study of 99 patients with pneumonia,
40% had CV and cerebrovascular diseases.38 The association between
coronaviruses and CV disease still needs further study.

ACE2 and CV disease

ACE2 has emerged as a key regulator of the RAS.39 Increasing evidence
suggests that ACE2 plays a protective role in CV disease and other pa-
thologies.40 In atherosclerosis-prone apolipoprotein E knockout mice,
ACE2 deficiency results in augmented vascular inflammation, and the in-
flammatory response contributes to increased atherosclerotic plaque
formation.41 In animal studies, Sarkissian et al. found that cardiac overex-
pression of ACE2 exerted a protective influence on the heart during
myocardial infarction by preserving cardiac function, left ventricular wall
motion, and contractility.42 Yamamoto et al. reported that ACE2 gene
knockdown resulted in severe cardiac dysfunction (i.e. reduced

contractility, increased hypertrophy, and dilation).43 In addition, ACE
inhibitors and AT1 receptor antagonists, which have been proven to be
beneficial for the treatment of myocardial infarction and heart failure, in-
crease ACE2 gene expression, attenuate ACE2 gene down-regulation,
and normalize AT1 receptor expression in the myocardium post-
myocardial infarction.44–46 Loss of ACE2 enhances adverse remodelling
and susceptibility to pressure and volume overload.47 Human recombi-
nant ACE2 suppresses myocardial hypertrophy, fibrosis, inflammation,
and BP.47 Feng et al. reported that ACE2 overexpression reduced Ang II-
induced cardiac hypertrophy partially through a decrease in sympathetic
drive in syn-hACE2 transgenic mice.48 Wysocki et al. found that, during
Ang II infusion, recombinant human ACE2 effectively degraded Ang II
and, in the process, normalized BP.49 One of the ACE2 activators, xan-
thenone, has been demonstrated to decrease BP and improve cardiac
function with inhibition of cardiac and renal fibrosis in spontaneously hy-
pertensive rats.50 The key role of ACE2 in the progressive deterioration
of cardiac remodelling and systolic dysfunction has further been found in
humans.51 Circulating ACE2 activity increases with increasing vascular
tone, which suggests that elevated ACE2 may be a compensatory re-
sponse to hypertension.15 Ohtsuki et al. reported that the up-regulation
of the ACE2 gene in the left ventricular myocardium of patients with se-
vere heart failure was associated with the degree of left ventricular dila-
tation and may thereby constitute an important adaptive mechanism to
retard the progression of adverse left ventricular remodelling.15 Studies
with recombinant human ACE2 have shown beneficial cardiac
effects.49,50

Coronaviruses/influenza viruses
and ACE2

Human ACE2 is an endothelium-bound carboxymonopeptidase with a
single active site catalytic region whose expression is limited mainly to
endothelial cells of the arteries, arterioles, and venules in various organs
including the heart, lungs, and kidneys.52 Loss of ACE2 leads to age-

Figure 1 The role of ACE2 in coronavirus/influenza virus-induced
cardiovascular and lung injury.
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.
dependent cardiomyopathy and kidney disease, while also enhancing pul-
monary, cardiac, and renal injuries.53 On the other hand, ACE2 was iden-
tified as a functional SARS coronavirus receptor.8 ACE2 and the AT2
receptor protect mice from SARS coronavirus-induced acute respira-
tory distress syndrome, whereas ACE, Ang II, and the AT1a receptor
promote the impairment of lung function in mouse models.9,54 Kuba
et al. provided the genetic proof that ACE2 is a crucial SARS-CoV recep-
tor in vivo, and SARS-CoV infections and the spike protein of SARS-CoV
reduce ACE2 expression.9 This study also found that blocking the renin–
angiotensin pathway can attenuate the worsened acute lung failure in-
duced by the injection of SARS-CoV spike protein in mice. Furthermore,
antibodies directed against ACE2 and soluble ACE2 molecules and
derivatives were demonstrated to be capable of blocking SARS-CoV in-
fection.55 Like SARS-CoV, HCoV-NL63 also employs ACE2 as a recep-
tor for cellular entry.56 Wevers and Hoek found that HCoV-NL63
infection induced a reduction of cellular ACE2 expression.57 Tseng et al.
demonstrated that transgenic mice expressing hACE2 were highly sus-
ceptible to SARS-CoV infection, resulting in a wide spectrum of clinical
manifestations, including death, depending upon the transgenic line-
ages.58 Letko and Munster first demonstrated that SARS-CoV-2 used
the same cell entry receptor, ACE2, as SARS-CoV,10 and subsequent
studies also confirmed this result.15,59–61

In experimental mouse models, Zou et al. found that infection with
highly pathogenic avian influenza A H5N1 virus results in a down-
regulation of ACE2 expression in the lung and increased serum Ang II
levels.12 Genetic inactivation of ACE2 causes severe lung injury in
H5N1-challenged mice, confirming the role of ACE2 in H5N1-induced
lung pathologies.12 Yang et al. reported that ACE2 could mediate the se-
vere acute lung injury induced by influenza A (H7N9) virus infection in
an experimental mouse model. Moreover, ACE2 deficiency worsened
the disease pathogenesis markedly, mainly by targeting the AT1 recep-
tor.13 This result is consistent with a study by Huang et al., who found
that plasma Ang II levels were linked to H7N9-induced disease severity
and predicted a fatal outcome in H7N9 patients.62

Myocardial injury has been observed during coronavirus infection.63,64

Pulmonary infection with human SARS-CoV in mice led to an ACE2-
dependent myocardial infection, and myocardial damage was found in
patients who had SARS-CoV in their hearts.53 Thus, the use of cardio-
protective medications is essential. The effect of ACE inhibitor (ACEI)
treatment during coronaviruses/influenza virus infections in humans is
unclear. Lei et al. reported that fusion proteins (ACE2–Ig) exhibit potent
inhibitory activity against SARS-CoV and SARS-CoV-2 in vitro.65

Huentelman et al. identified N-(2-aminoethyl)-1 aziridine-ethanamine as
a novel ACE2 inhibitor that was effective in blocking the SARS coronavi-
rus spike protein-mediated cell fusion.66 A case study found that treat-
ment with an ACEI together with plasma exchange improved the
condition of a patient with scleroderma renal crisis complicated with
thrombotic microangiopathy triggered by influenza B virus infection.67

Another case study of a woman positive for H1N1 and with severe acute
left ventricular failure found that aggressive initial therapy followed by
beta-blockers and ACEIs led to restoration of the patient’s left ventricu-
lar function and an associated marked improvement in symptoms.68

Angiotensin II receptor blockers (ARBs), a first-line therapy of hyperten-
sion, could inhibit the actions of Ang II through selective binding of AT1
receptors in vascular smooth muscle,69 and are effective in lowering BP
and preventing major CV outcomes.70 Previous studies suggest that
ARBs could up-regulate ACE2 in both rats and humans.71,72 A recent
commentary suggested that ARB could be used as a therapy for reducing
the aggressiveness and mortality from coronavirus infections.73 There is

now an urgent need to study the effect of ACEI and ARB treatment dur-
ing coronavirus/influenza virus infections in humans.

Coronavirus/influenza virus vaccines
and CV disease prevention

Vaccination constitutes the primary approach for controlling influenza.
In recent decades, numerous advances have been made in the develop-
ment of vaccines against influenza viruses, such as the replacement of
inactivated whole-virus vaccines with split or subunit vaccines, which
comprise less reactogenic alternatives.74 The majority of available annual
trivalent influenza vaccines contain two influenza A strains (H1N1 and
H3N2) and only one influenza B virus.75 More recently, inactivated quad-
rivalent vaccines containing both Victoria and Yamagata lineages of type
B IV have become available.76,77 Several epidemiological and clinical stud-
ies have demonstrated the beneficial effects of the influenza vaccine in
patients with CV disease.35,78,79 In a meta-analysis of randomized clinical
trials, Udell et al. reported that the use of the influenza vaccine was asso-
ciated with a lower risk of major adverse CV events.80 In another meta-
analysis including eight trials with 12 029 participants, Clar et al. reported
that influenza vaccination may reduce CV mortality and combined CV
events in patients with CV disease.81 Furthermore, a recent meta-
analysis including six cohort studies and 179 158 participants also con-
firmed that influenza vaccination was associated with a significant de-
crease in all-cause mortality in patients with heart failure.82

To date, no vaccine has been developed to prevent SARS-CoV-2 or
other coronavirus infections. Scientists across the world are racing to
develop a vaccine, which is also a promising tool to prevent CV disease,
for the coronavirus to tackle the outbreak of COVID-19.

Conclusions and future prospects

A role for ACE2 in involvement in vascular protective actions has been
postulated. We therefore hypothesize that the risk of coronavirus or in-
fluenza virus infection is high among the CV disease-susceptible popula-
tion, at least partly due to high ACE2 expression in this population,
which needs to be confirmed in the future. Our hypotheses suggest that
more protection should be employed for patients with CV disease.
Coronavirus or influenza virus vaccine usage in the high CV risk popula-
tion could be a potential strategy to prevent both CV disease and coro-
navirus/influenza virus infections. Furthermore, there is an urgent need
to develop a vaccine for coronavirus prevention and control, and it will
be important to evaluate the effect of coronavirus vaccines on CV
protection.

Conflict of interest: none declared.
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