

Received 6 March 2020 Accepted 9 April 2020

Edited by A. M. Chippindale, University of Reading, England

Keywords: crystal structure; dithiocarbazate ligand; nickel(II) complex; copper(II) complex; *cis-trans* configuration.

CCDC references: 1057808; 1403802

Supporting information: this article has supporting information at journals.iucr.org/e

Cis versus trans arrangement of dithiocarbazate ligands in bis-chelated Ni and Cu complexes

Khurshida Begum,^a* Sabina Begum,^b Chanmiya Sheikh,^c Ryuta Miyatake^d and Ennio Zangrando^e

^aDepartment of Physics, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh, ^bDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh, ^cDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, Gofuku, Toyama 3190, Japan, ^dCenter for Environmental Conservation and Research Safety, University of Toyama, Gofuku, Toyama 3190, Japan, and ^eDepartment of Chemical and Pharmaceutical Science, via Giorgieri 1/34127, Trieste, Italy. *Correspondence e-mail: china@sust.edu

The structures are described of two bis-chelated metal complexes of nickel(II) and copper(II) with *S*-*n*-hexyl 3-(1-phenylethylidene)dithiocarbazate Schiff bases in a *cis* configuration, namely, bis[*S*-*n*-hexyl 3-(1-phenylethylidene)dithiocarbazato- $\kappa^2 N^3$,*S*]nickel(II), [Ni(C₁₅H₂₁N₂S₂)₂], and bis[*S*-*n*-hexyl 3-(1-phenylethylidene)dithiocarbazato- $\kappa^2 N^3$,*S*]copper(II), [Cu(C₁₅H₂₁N₂S₂)₂]. In both complexes, the metals have distorted square-planar geometries. A search in the Cambridge Structural Database [Groom *et al.* (2016). *Acta Cryst.* B**72**, 171– 179] for bis-chelated nickel(II) and copper(II) complexes with similar Schiff bases retrieved 55 and 36 hits for the two metals, respectively. An analysis of the geometrical parameters of complexes showing *cis* and *trans* configurations is reported and the values compared with those for the complexes described in this work.

1. Chemical context

Thiosemicarbazones, semicarbazones, hydrazide/hydrazones and dithiocarbazate Schiff bases and their complexes have been widely studied for their significant bioactivities and pharmacological properties (Beraldo *et al.* 2004; Altıntop *et al.*, 2016). The presence of hard nitrogen and soft sulfur atoms enable these ligands to react with both transition and maingroup metals (Arion, 2019) and transition-metal complexes derived from these N,S Schiff bases occupy a central role in the area of coordination chemistry. The nature of the long alkyl substituent chains, when present, may play a role in determining the liquid crystalline behavior of the complexes and thus their mesomorphic potential (Tomma *et al.*, 2018; Lai *et al.*, 1998).

Therefore, considering the above facts and in a continuation of our interest in this field (Zangrando *et al.*, 2017), the present work reports a study on the synthesis and structural char-

OPEN OPEN

Table 1 Selected geome	etric parameters (Å,	°) for 1 .	
Ni1-N1	1.9295 (10)	Ni1-S1	2.1600 (4)

Symmetry	code:	(i)	-x	$^+$	1, y,	-z	$^+$	$\frac{3}{2}$.	

93.12 (2)

85.68 (3)

\$1-Ni1-\$1ⁱ

N1-Ni1-S1

acterization of Ni^{II} and Cu^{II} complexes **1** and **2** with the Schiff base derived from *S*-*n*-hexyldithiocarbazate and acetophenone (H*L*). The single crystal X-ray structures of these distorted square-planar complexes of nickel and copper, Ni L_2 and Cu L_2 , show *cis* configurations of the ligands. Since similar complexes can show both *cis* and *trans* configurations, we report herein a comparison with the geometry of structurally characterized complexes retrieved from the Cambridge Structural Database (Groom *et al.*, 2016).

 $N1 - Ni1 - S1^{i}$

N1-Ni1-N1

163.99 (3)

99.79 (6)

2. Structural commentary

2.1. Structure of complex 1

In the NiL₂ complex, the nickel atom is located on a crystallographic twofold axis and exhibits a distorted squareplanar geometry. An *ORTEP* drawing of the complex is depicted in Fig. 1 and selected geometrical data are reported in Table 1. The two Schiff bases, in their deprotonated imino thiolate form, are coordinated through the β -nitrogen atom, N1, and the thiolate sulfur atom, S1, donors to the metal center in a *cis*-planar configuration. The Ni-S and Ni-N bond distances are 2.1600 (4) and 1.9295 (10) Å, respectively, with an S-Ni-N chelating angle of 85.68 (3)°.

The square-planar geometry is tetrahedrally distorted and the dihedral angle formed by the mean planes through the two five-membered rings is 19.46 $(5)^{\circ}$. The distortion from a planar arrangement is effected in order to circumvent steric clashes between the phenyl rings due to the *cis* configuration of the ligands.

Figure 1

 $O\bar{R}TEP$ view (50% probability ellipsoids) of the nickel(II) complex (1) with the labeling scheme for the asymmetric unit. (Primed atoms are related by the symmetry operation -x + 1, y, $-z + \frac{3}{2}$).

Table 2	
Selected geometric parameters (Å, $^{\circ}$) for 2 .	

Cu1-N1	2.023 (3)	Cu1-S1	2.2299 (9)
Cu1-N3	2.020 (3)	Cu1-S3	2.2414 (9)
S1-Cu1-S3	98.53 (4)	N1-Cu1-S3	152.51 (8)
N1-Cu1-S1	85.43 (8)	N3-Cu1-S3	85.37 (8)

2.2. Structure of complex 2

In CuL_2 , the whole copper(II) complex is crystallographically independent although it exhibits pseudo twofold symmetry. An ORTEP view is shown in Fig. 2, and selected geometrical data are reported in Table 2. The arrangement of the ligands is similar to that of the nickel derivative, but a different conformation of the two alkyl chains leads to a lack of symmetry. Here the Cu-S and Cu-N bond distances are 2.2299 (9) and 2.2414 (9) Å, and 2.023 (3) and 2.020 (3) Å, respectively, while the chelating angles are similar at 85.43 (8) and $85.37 (8)^{\circ}$. The square-planar geometry shows a more significant tetrahedral distortion than is found in complex 1, having a dihedral angle between the two five-membered rings of $40.41 (12)^{\circ}$. It is worth noting that compared to similar ligands in their uncoordinated state (see for example Begum et al., 2015), a rotation about the C9–N2 by 180° is observed in the metal complexes in order to allow the N,S chelating behavior towards the metal.

The configuration assumed by the ligands in each complex leads the phenyl hydrogen atoms to sit above and below the metal centres with a separation of ~2.6 Å, indicating the presence of $M \cdots H$ intramolecular interactions.

3. Supramolecular features

Figs. 3 and 4 display the crystal packing of the two complexes. The slightly shorter distance between the nickel ions in **1**

research communications

|--|

 $C-H\cdots\pi$ interation (Å, °) in **1**.

Cg is the centroid of the C1–C6 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$C14-H14A\cdots Cg^{ii}$	0.99	2.75	3.5892 (18)	143

Symmetry code: (ii) -x + 1, -y + 1, -z + 1.

(8.337 Å) compared to that of the copper atoms in **2** (8.518 Å) is likely the result of the different conformations of the alkyl chains. In both structures no significant π - π interactions involving phenyl rings are detected. C-H··· π interactions are observed in **1** (Table 3) but no such interactions are observed in **2**.

4. Database survey

Table 3 reports the mean values of the coordination bond lengths and angles of nickel(II) and copper(II) complexes bischelated by dithiocarbazate ligands, as retrieved from the CSD (version 5.40, update of August 2019; Groom et al., 2016). Whereas the number of trans-configured nickel complexes is higher than the number of *cis* complexes, for copper, the numbers of trans- and cis-planar complexes are almost equal. The Ni-N, Cu-N and Cu-S bond distances are comparable in the cis and trans isomers, while for the Ni-S bond distances, a slight shorter distance is observed for the *cis* isomers than for the trans isomers [2.157 (8) vs 2.174 (8) Å]. More significant is the dihedral angle between the five-membered rings of the chelating ligands, which has a value close to 0° in both the trans-configured Ni and Cu complexes, while in the cis-Ni complexes the angle does not exceed 31°, and in the cis-Cu complexes, the smallest value observed is 32.27°, indicating a

Figure 3 The crystal packing of the Ni complex viewed down the *b* axis (H atoms are not shown for clarity).

Table 4

Coordination bond lengths and angles (Å, $^{\circ}$) in the dithiocarbazate nickel and copper complexes with *trans* and *cis* configurations retrieved from the CSD.

 $\boldsymbol{\alpha}$ is the dihedral angle between the five-membered rings of the chelating ligands.

	trans-Ni L_2	cis -Ni L_2	$trans-CuL_2$	cis -Cu L_2
No. of structures	32	23	19	17
M-N mean	1.920 (13)	1.924 (20)	1.996 (37)	2.013 (22)
M-N range	1.878-1.952	1.851-1.995	1.923-2.043	1.986-2.066
M-S mean	2.174 (8)	2.157 (8)	2.244 (37)	2.240 (17)
M-S range	2.145-2.195	2.141-2.177	2.166-2.281	2.215-2.287
N-M-N mean	179.21	100.39	179.34	105.76
S-M-S mean	178.39	92.30	179.01	106.28
α mean	1.75	21.25	0.80	50.25
α range	0.00-19.41	10.24-30.10	0.00-10.93	32.27-81.61
-				

propensity for copper(II) to assume a tetrahedral configuration. In fact, in some of the *cis* copper complexes in Table 4, the metal is present in effectively a tetrahedral geometry with a dihedral angle between the five-membered rings of *ca* 80° (Mondal *et al.*, 2014; Santra *et al.*, 2016; Tarafder *et al.*, 2008). Another feature is a slight difference between the N–Ni–N and S–Ni–S angles in the *cis* complexes (100.39 and 92.30°, respectively), while the N–Cu–N and S–Cu–S angles are comparable (*ca* 106°) in the *cis*-Cu complexes.

Overall, it is difficult to assess what drives particular complexes to assume either a *cis* or a *trans* configuration upon crystallization and the most plausible reason may arise from crystal-packing requirements. Similar derivatives having thienylmethylene instead of the phenylethylidene fragments crystallize with a *trans* configuration (Begum *et al.*, 2016).

The crystal packing of the Cu complex viewed down the b axis (H atoms are not shown for clarity).

Table 5Experimental details.

	1	2
Crystal data		
Chemical formula	$[Ni(C_{15}H_{21}N_2S_2)_2]$	$[Cu(C_{15}H_{21}N_{2}S_{2})_{2}]$
$M_{\rm r}$	645.62	650.45
Crystal system, space group	Monoclinic, $C2/c$	Monoclinic, Cc
Temperature (K)	173	173
a, b, c (Å)	23.9721 (5), 8.3967 (2), 16.6739 (3)	22.7441 (7), 8.8636 (3), 17.0117 (6)
β(°)	101.046 (1)	109.158 (1)
$V(A^3)$	3294.05 (12)	3239.53 (19)
Z	4	4
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.87	0.96
Crystal size (mm)	$0.38\times0.30\times0.07$	$0.23 \times 0.10 \times 0.03$
Data collection		
Diffractometer	Rigaku R-AXIS RAPID	Rigaku R-AXIS RAPID
Absorption correction	Multi-scan (ABSCOR; Rigaku, 1995)	Multi-scan (ABSCOR; Rigaku, 1995)
T_{\min}, T_{\max}	0.684, 0.941	0.772, 0.976
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15965, 3768, 3589	7274, 7274, 6505
R _{int}	0.025	0.025
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.649	0.649
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.027, 0.081, 1.15	0.031, 0.074, 1.04
No. of reflections	3768	7274
No. of parameters	179	357
No. of restraints	0	2
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.32, -0.33	0.70, -0.22
Absolute structure	-	Refined as an inversion twin.
Absolute structure parameter	-	0.482 (10)

Computer programs: RAPID-AUTO and CrystalStructure (Rigaku, 2010), SIR92 (Altomare et al., 1994) and SHELXL2014 (Sheldrick, 2015).

5. Synthesis of the Schiff base ligand

Hydrazine hydrate (2.50 g, 0.05 mol, 99%) was added to an ethanolic solution (30 ml) of KOH (2.81 g, 0.05 mol) and the mixture was stirred at 273 K for 45 min. To this solution, carbon disulfide (3.81 g, 0.05 mol) was added dropwise under constant stirring for one h. Then 1-bromohexane (8.25 g, 0.05 mol) was added dropwise at 273 K under vigorous stirring for another hour. Finally, acetophenone (6.00 g, 0.05 mol) in ethanol (2.0 ml) was added and the mixture refluxed for 30 minutes. The hot mixture was filtered and then the filtrate cooled to 273 K to give a precipitate of the Schiff base product, which was recrystallized from ethanol at room temperature and dried in a vacuum desiccator over anhydrous CaCl₂.

5.1. Synthesis of the Ni complex, 1

A solution of nickel(II) acetate tetrahydrate (0.06 g, 0.25 mmol, 7 mL methanol) was added to a solution of the ligand, (0.147 g, 0.5 mmol, 10 mL methanol). The resulting mixture was stirred at room temperature for five h. An olive green precipitate was formed, filtered off, washed with methanol and dried in vacuo over anhydrous CaCl₂. Dark reddish brown single crystals of the compound, suitable for X-ray diffraction, were obtained by slow evaporation from a mixture of chloroform and toluene (5:1). Yield 85%. ESI-MS

(FAB) calcd. m/z for $C_{30}H_{42}N_4S_4Ni + H^+: 644.1646$ amu, found 645.1724 amu. M.p. 374 K.

5.2. Synthesis of the Cu complex, 2

The copper complex was prepared by a similar method to that used for nickel in the presence of $Cu(CH_3COO)_2 \cdot H_2O$. Dark reddish brown single crystals of the compound, suitable for X-ray diffraction, were obtained by slow evaporation from a mixture of chloroform and acetonitrile (4:1). Yield 83%. ESI-MS (FAB) calcd. m/z for $C_{30}H_{42}N_4S_4Cu + H^+$: 649.1588 amu, found 650.1665 amu. M.p. 418 K.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5. The hydrogen atoms were included as riding contributions with fixed isotropic displacement parameters in idealized positions $[C-H = 0.95-0.99 \text{ Å}; U_{iso}(H) = 1.2 \text{ or } 1.5U_{eq}(C)]$. The structure of **2** was refined as an inversion twin.

Acknowledgements

KB and SB are grateful to the Department of Chemistry, Shahjalal University of Science and Technology, for the provision of laboratory facilities. MCS acknowledges the Department of Applied Chemistry, Toyama University, for providing funds for the single-crystal X-ray analysis.

References

- Altıntop, M. D., Temel, H. E., Sever, B., Akalın Çiftçi, G. & Kaplancıklı, Z. A. (2016). *Molecules*, **21**, 1598.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Arion, V. B. (2019). Coord. Chem. Rev. 387, 348-397.
- Begum, M. S., Howlader, M. B. H., Miyatake, R., Zangrando, E. & Sheikh, M. C. (2015). *Acta Cryst.* E**71**, o199.
- Begum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). *Polyhedron*, **105**, 56–61.
- Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

- Lai, C. K., Tsai, C. & Pang, Y. (1998). J. Mater. Chem. 8, 1355-1360.
- Mondal, G., Bera, P., Santra, A., Jana, S., Mandal, T. N., Mondal, A., Seok, S. I. & Bera, P. (2014). New J. Chem. 38, 4774–4782.
- Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). *RAPID-AUTO* and *CrystalStructure*. Rigaku Corporation, Tokyo, Japan.
- Santra, A., Mondal, G., Acharjya, M., Bera, P., Panja, A., Mandal, T. K., Mitra, P. & Bera, P. (2016). *Polyhedron*, **113**, 5–15.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416– m417.
- Tomma, H. J., Ghali, S. T. & Al-Dujaili, H. A. (2018). Mol. Cryst. Liq. Cryst. 664, 85–94.
- Zangrando, E., Begum, M. S., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M., Hasnat, M. A., Halim, M. A., Ahmed, S., Rahman, M. N. & Ghosh, A. (2017). Arabian J. Chem. 10, 172–184.

Acta Cryst. (2020). E76, 692-696 [https://doi.org/10.1107/S205698902000506X]

Cis versus trans arrangement of dithiocarbazate ligands in bis-chelated Ni and Cu complexes

Khurshida Begum, Sabina Begum, Chanmiya Sheikh, Ryuta Miyatake and Ennio Zangrando

Computing details

For both structures, data collection: *RAPID-AUTO* (Rigaku, 2010); cell refinement: *RAPID-AUTO* (Rigaku, 2010); data reduction: *RAPID-AUTO* (Rigaku, 2010); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994). Program(s) used to refine structure: *SHELXL2014/6* (Sheldrick, 2015) for (I); *SHELXL2014/7* (Sheldrick, 2015) for (II). For both structures, molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2010).

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato- $\kappa^2 N^3$,S]nickel(II) (I)

Crystal data

[Ni(C₁₅H₂₁N₂S₂)₂] $M_r = 645.62$ Monoclinic, C2/c a = 23.9721 (5) Å b = 8.3967 (2) Å c = 16.6739 (3) Å $\beta = 101.046$ (1)° V = 3294.05 (12) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) $T_{min} = 0.684, T_{max} = 0.941$ 15965 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.081$ S = 1.153768 reflections 179 parameters 0 restraints F(000) = 1368 $D_x = 1.302 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 4789 reflections $\theta = 3.3-27.5^{\circ}$ $\mu = 0.87 \text{ mm}^{-1}$ T = 173 KPrism, purple $0.38 \times 0.30 \times 0.07 \text{ mm}$

3768 independent reflections 3589 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.3^{\circ}$ $h = -30 \rightarrow 30$ $k = -10 \rightarrow 10$ $l = -21 \rightarrow 21$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0458P)^2 + 1.5849P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.002$ $\begin{array}{l} \Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ni1	0.5000	1.00787 (2)	0.7500	0.02259 (8)
S1	0.47077 (2)	1.18475 (4)	0.65741 (2)	0.03381 (10)
S2	0.39340 (2)	1.11935 (4)	0.50136 (2)	0.03696 (11)
N1	0.49459 (4)	0.85983 (12)	0.66033 (6)	0.0216 (2)
N2	0.45428 (5)	0.89369 (13)	0.58858 (6)	0.0260 (2)
C1	0.60886 (5)	0.81446 (16)	0.75593 (8)	0.0270 (3)
H1	0.6020	0.9207	0.7371	0.032*
C2	0.65594 (6)	0.78033 (19)	0.81594 (8)	0.0344 (3)
H2	0.6814	0.8631	0.8376	0.041*
C3	0.66588 (6)	0.6262 (2)	0.84440 (9)	0.0379 (3)
H3	0.6981	0.6034	0.8857	0.046*
C4	0.62895 (7)	0.50520 (18)	0.81276 (10)	0.0363 (3)
H4	0.6354	0.3998	0.8331	0.044*
C5	0.58238 (6)	0.53742 (16)	0.75130 (8)	0.0283 (3)
Н5	0.5579	0.4534	0.7284	0.034*
C6	0.57150 (5)	0.69294 (15)	0.72306 (7)	0.0230 (2)
C7	0.52256 (5)	0.72868 (14)	0.65686 (7)	0.0220 (2)
C8	0.50807 (6)	0.61449 (16)	0.58659 (8)	0.0304 (3)
H8A	0.4700	0.5709	0.5851	0.046*
H8B	0.5358	0.5275	0.5935	0.046*
H8C	0.5090	0.6706	0.5353	0.046*
C9	0.44213 (6)	1.04365 (16)	0.58425 (8)	0.0269 (3)
C10	0.38023 (7)	0.9506 (2)	0.43216 (8)	0.0369 (3)
H10A	0.3617	0.9900	0.3776	0.044*
H10B	0.4173	0.9042	0.4267	0.044*
C11	0.34357 (6)	0.81914 (19)	0.45734 (8)	0.0347 (3)
H11A	0.3070	0.8649	0.4654	0.042*
H11B	0.3630	0.7733	0.5101	0.042*
C12	0.33199 (7)	0.6872 (2)	0.39342 (9)	0.0406 (3)
H12A	0.3093	0.7315	0.3425	0.049*
H12B	0.3687	0.6502	0.3811	0.049*
C13	0.30051 (6)	0.5448 (2)	0.41990 (9)	0.0359 (3)
H13A	0.3242	0.4961	0.4689	0.043*
H13B	0.2649	0.5824	0.4354	0.043*
C14	0.28614 (7)	0.4183 (2)	0.35383 (10)	0.0437 (4)
H14A	0.3219	0.3761	0.3408	0.052*

H14B	0.2645	0.4686	0.3037	0.052*
C15	0.25158 (8)	0.2802 (2)	0.37790 (12)	0.0532 (4)
H15A	0.2721	0.2320	0.4286	0.080*
H15B	0.2458	0.2002	0.3343	0.080*
H15C	0.2146	0.3195	0.3863	0.080*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.02882 (14)	0.01537 (12)	0.02345 (13)	0.000	0.00467 (9)	0.000
S 1	0.0469 (2)	0.01795 (16)	0.03453 (18)	0.00174 (13)	0.00255 (15)	0.00438 (12)
S2	0.0389 (2)	0.03350 (19)	0.03533 (19)	0.00545 (14)	-0.00088 (15)	0.01283 (14)
N1	0.0239 (5)	0.0193 (5)	0.0213 (5)	-0.0007 (4)	0.0033 (4)	0.0022 (4)
N2	0.0268 (5)	0.0271 (5)	0.0226 (5)	0.0012 (4)	0.0012 (4)	0.0033 (4)
C1	0.0269 (6)	0.0278 (6)	0.0272 (6)	-0.0019 (5)	0.0077 (5)	-0.0024 (5)
C2	0.0265 (6)	0.0456 (8)	0.0306 (6)	-0.0044 (6)	0.0043 (5)	-0.0074 (6)
C3	0.0269 (7)	0.0561 (9)	0.0294 (6)	0.0087 (6)	0.0021 (5)	0.0032 (6)
C4	0.0313 (7)	0.0396 (8)	0.0386 (8)	0.0105 (5)	0.0078 (6)	0.0116 (6)
C5	0.0268 (6)	0.0244 (6)	0.0344 (7)	0.0033 (5)	0.0077 (5)	0.0024 (5)
C6	0.0222 (6)	0.0250 (6)	0.0231 (5)	0.0017 (4)	0.0071 (4)	-0.0004 (5)
C7	0.0243 (6)	0.0191 (5)	0.0231 (5)	-0.0020 (4)	0.0057 (4)	0.0005 (4)
C8	0.0367 (7)	0.0246 (6)	0.0291 (6)	0.0000 (5)	0.0039 (5)	-0.0056 (5)
C9	0.0282 (6)	0.0249 (6)	0.0274 (6)	0.0010 (5)	0.0052 (5)	0.0061 (5)
C10	0.0378 (8)	0.0472 (8)	0.0250 (6)	0.0008 (7)	0.0040 (5)	0.0060 (6)
C11	0.0303 (7)	0.0472 (8)	0.0263 (6)	-0.0003 (6)	0.0048 (5)	0.0002 (6)
C12	0.0391 (8)	0.0529 (9)	0.0310 (7)	-0.0024 (7)	0.0100 (6)	-0.0052 (7)
C13	0.0292 (7)	0.0482 (8)	0.0296 (7)	0.0020 (6)	0.0039 (5)	-0.0044 (6)
C14	0.0380 (8)	0.0549 (10)	0.0398 (8)	-0.0032 (7)	0.0116 (6)	-0.0123 (7)
C15	0.0461 (10)	0.0583 (11)	0.0551 (10)	-0.0091 (8)	0.0095 (8)	-0.0104 (9)

Geometric parameters (Å, °)

Ni1—N1 ⁱ	1.9295 (10)	С7—С8	1.5023 (17)
Ni1—N1	1.9295 (10)	C8—H8A	0.9800
Ni1-S1 ⁱ	2.1600 (4)	C8—H8B	0.9800
Ni1—S1	2.1600 (4)	C8—H8C	0.9800
S1—C9	1.7443 (14)	C10-C11	1.519 (2)
S2—C9	1.7493 (13)	C10—H10A	0.9900
S2—C10	1.8163 (17)	C10—H10B	0.9900
N1—C7	1.2963 (16)	C11—C12	1.526 (2)
N1—N2	1.4151 (14)	C11—H11A	0.9900
N2-C9	1.2913 (17)	C11—H11B	0.9900
C1—C2	1.3872 (19)	C12—C13	1.524 (2)
C1—C6	1.3984 (17)	C12—H12A	0.9900
C1—H1	0.9500	C12—H12B	0.9900
C2—C3	1.383 (2)	C13—C14	1.521 (2)
С2—Н2	0.9500	C13—H13A	0.9900
C3—C4	1.384 (2)	C13—H13B	0.9900

C2 112	0.0500	G14 G15	1 500 (0)
C3—H3	0.9500	C14—C15	1.523 (3)
C4—C5	1.390 (2)	C14—H14A	0.9900
C4—H4	0.9500	C14—H14B	0.9900
C5—C6	1.3956 (18)	C15—H15A	0.9800
С5—Н5	0.9500	C15—H15B	0.9800
C6—C7	1.4794 (17)	C15—H15C	0.9800
S1—Ni1—S1 ⁱ	93.12 (2)	N2—C9—S1	124.67 (10)
N1—Ni1—S1	85.68 (3)	N2—C9—S2	120.52 (11)
N1—Ni1—S1 ⁱ	163.99 (3)	S1—C9—S2	114.81 (8)
N1—Ni1—N1 ⁱ	99.79 (6)	C11—C10—S2	115.51 (10)
N1 ⁱ —Ni1—S1 ⁱ	85.68 (3)	C11—C10—H10A	108.4
N1 ⁱ —Ni1—S1	163.99 (3)	S2-C10-H10A	108.4
C9—S1—Ni1	93.62 (4)	C11—C10—H10B	108.4
$C_{9} = S_{2} = C_{10}$	103 11 (7)	S2_C10_H10B	108.4
C7N1N2	114.09(10)	H_{10A} C_{10} H_{10B}	107.5
C7 N1 Ni1	128 55 (0)	C10 C11 C12	107.5 111.85(12)
N2 N1 N1	128.33(9) 117.24(9)	$C_{10} = C_{11} = C_{12}$	100.2
$N_2 = N_1 = N_1$	117.34(6) 110.70(10)	C12 - C11 - H11A	109.2
C_{2} C_{1} C_{2}	110.70(10)		109.2
$C_2 = C_1 = C_6$	120.22 (13)	CIQ-CII-HIIB	109.2
C2—C1—H1	119.9	CI2—CII—HIIB	109.2
C6—C1—H1	119.9	HIIA—CII—HIIB	107.9
C3—C2—C1	120.23 (13)	C13—C12—C11	113.67 (12)
С3—С2—Н2	119.9	C13—C12—H12A	108.8
C1—C2—H2	119.9	C11—C12—H12A	108.8
C2—C3—C4	120.03 (13)	C13—C12—H12B	108.8
С2—С3—Н3	120.0	C11—C12—H12B	108.8
С4—С3—Н3	120.0	H12A—C12—H12B	107.7
C3—C4—C5	120.20 (13)	C14—C13—C12	113.20 (13)
C3—C4—H4	119.9	C14—C13—H13A	108.9
C5—C4—H4	119.9	C12—C13—H13A	108.9
C4—C5—C6	120.18 (13)	C14—C13—H13B	108.9
С4—С5—Н5	119.9	C12—C13—H13B	108.9
С6—С5—Н5	119.9	H13A—C13—H13B	107.8
C5—C6—C1	119.09 (12)	C13—C14—C15	113.56 (14)
C5—C6—C7	120.78 (11)	C13—C14—H14A	108.9
C1—C6—C7	120.07 (11)	C15—C14—H14A	108.9
N1-C7-C6	118.82 (11)	C13—C14—H14B	108.9
N1-C7-C8	122.19(11)	C15—C14—H14B	108.9
C_{6}	118 96 (11)	$H_{14} - C_{14} + H_{14}B$	107.7
C7 C8 H8A	100.5	C_{14} C_{15} H_{15A}	107.7
C7 - C8 - H8B	109.5	C14 $C15$ $H15R$	109.5
	109.5	$U_{15} = U_{15} = U$	109.5
110A - 0 - 110D	109.5	$\Pi JA = \bigcup J = \Pi J D$	109.5
	109.3		109.3
	109.5	HISA-UIS-HISC	109.5
Н8В—С8—Н8С	109.5	H15B—C15—H15C	109.5

Symmetry code: (i) -x+1, y, -z+3/2.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C14—H14 A ···C g^{ii}	0.99	2.75	3.5892 (18)	143

F(000) = 1372 $D_x = 1.334 \text{ Mg m}^{-3}$

 $\theta = 3.3-27.4^{\circ}$ $\mu = 0.96 \text{ mm}^{-1}$ T = 173 KPlatelet, brown $0.23 \times 0.10 \times 0.03 \text{ mm}$

Mo $K\alpha$ radiation, $\lambda = 0.71075$ Å Cell parameters from 4858 reflections

Symmetry code: (ii) -x+1, -y+1, -z+1.

Bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato- $\kappa^2 N^3$,S]copper(II) (II)

Crystal data

$[Cu(C_{15}H_{21}N_2S_2)_2]$
$M_r = 650.45$
Monoclinic, Cc
<i>a</i> = 22.7441 (7) Å
b = 8.8636 (3) Å
c = 17.0117 (6) Å
$\beta = 109.158 \ (1)^{\circ}$
$V = 3239.53 (19) Å^3$
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer	7274 independent reflections 6505 reflections with $I > 2\sigma(I)$
Detector resolution: 10.000 pixels mm ⁻¹	$R_{\rm int} = 0.025$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.3^{\circ}$
Absorption correction: multi-scan	$h = -29 \rightarrow 29$
(ABSCOR; Rigaku, 1995)	$k = -11 \rightarrow 11$
$T_{\min} = 0.772, \ T_{\max} = 0.976$	$l = -22 \rightarrow 22$
7274 measured reflections	

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.031$ Hydrogen site location: inferred from $wR(F^2) = 0.074$ neighbouring sites S = 1.03H-atom parameters constrained 7274 reflections $w = 1/[\sigma^2(F_o^2) + (0.0443P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ 357 parameters 2 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.70 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.482 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	0.76372 (2)	0.47483 (4)	0.64581 (2)	0.02901 (10)
S1	0.72319 (5)	0.66910 (10)	0.56233 (6)	0.0427 (2)
S2	0.65326 (5)	0.65000 (14)	0.38556 (6)	0.0541 (3)
S3	0.80973 (4)	0.60386 (9)	0.76328 (5)	0.0377 (2)
S4	0.87369 (5)	0.46750 (11)	0.92560 (6)	0.0422 (2)
N1	0.76458 (13)	0.3684 (3)	0.54100 (16)	0.0298 (6)
N2	0.72530 (14)	0.4255 (4)	0.46522 (18)	0.0372 (7)
N3	0.75419 (12)	0.3083 (3)	0.72177 (16)	0.0283 (6)
N4	0.79439 (13)	0.3123 (3)	0.80456 (16)	0.0320 (6)
C1	0.83534 (16)	0.1791 (4)	0.6128 (2)	0.0328 (7)
C2	0.83552 (19)	0.0237 (4)	0.6288 (3)	0.0449 (9)
H2	0.8092	-0.0422	0.5884	0.054*
C3	0.8741 (2)	-0.0326 (5)	0.7033 (3)	0.0593 (13)
Н3	0.8732	-0.1374	0.7144	0.071*
C4	0.9139 (2)	0.0595 (6)	0.7618 (3)	0.0577 (12)
H4	0.9401	0.0185	0.8129	0.069*
C5	0.91577 (18)	0.2123 (5)	0.7460 (3)	0.0498 (9)
Н5	0.9436	0.2763	0.7860	0.060*
C6	0.87702 (16)	0.2717 (4)	0.6720 (2)	0.0366 (8)
H6	0.8787	0.3764	0.6611	0.044*
C7	0.79159 (15)	0.2419 (4)	0.5351 (2)	0.0339 (7)
C8	0.7800 (2)	0.1604 (5)	0.4547 (2)	0.0489 (10)
H8A	0.7354	0.1395	0.4299	0.073*
H8B	0.8031	0.0651	0.4648	0.073*
H8C	0.7938	0.2230	0.4166	0.073*
C9	0.70540 (17)	0.5602 (5)	0.4723 (2)	0.0389 (8)
C10	0.6477 (2)	0.5274 (5)	0.2988 (3)	0.0504 (10)
H10A	0.6293	0.5855	0.2468	0.061*
H10B	0.6904	0.4983	0.3016	0.061*
C11	0.6101 (2)	0.3855 (6)	0.2931 (3)	0.0636 (13)
H11A	0.5700	0.4110	0.3010	0.076*
H11B	0.6329	0.3158	0.3383	0.076*
C12	0.5971 (2)	0.3049 (5)	0.2076 (3)	0.0570 (11)
H12A	0.6346	0.3124	0.1906	0.068*
H12B	0.5892	0.1965	0.2143	0.068*
C13	0.54203 (19)	0.3702 (5)	0.1394 (2)	0.0470 (9)
H13A	0.5509	0.4772	0.1308	0.056*
H13B	0.5051	0.3677	0.1578	0.056*
C14	0.5267 (2)	0.2878 (5)	0.0568 (3)	0.0598 (11)
H14A	0.5221	0.1788	0.0661	0.072*
H14B	0.5618	0.2997	0.0350	0.072*
C15	0.4673 (2)	0.3451 (5)	-0.0081 (3)	0.0626 (12)
H15A	0.4326	0.3366	0.0137	0.094*
H15B	0.4584	0.2845	-0.0589	0.094*
H15C	0.4728	0.4509	-0.0209	0.094*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C16	0.67196 (15)	0.1824 (4)	0.6188 (2)	0.0299 (7)
C17	0.65939 (18)	0.0441 (4)	0.5760 (2)	0.0390 (8)
H17	0.6801	-0.0451	0.6016	0.047*
C18	0.6168 (2)	0.0384 (4)	0.4966 (3)	0.0469 (10)
H18	0.6090	-0.0543	0.4670	0.056*
C19	0.58533 (18)	0.1674 (5)	0.4601 (2)	0.0453 (9)
H19	0.5562	0.1628	0.4053	0.054*
C20	0.59591 (16)	0.3024 (4)	0.5024 (2)	0.0395 (8)
H20	0.5736	0.3902	0.4773	0.047*
C21	0.63895 (15)	0.3099 (4)	0.5813 (2)	0.0316 (7)
H21	0.6461	0.4033	0.6104	0.038*
C22	0.71886 (15)	0.1898 (4)	0.7031 (2)	0.0299 (7)
C23	0.72371 (19)	0.0637 (4)	0.7638 (2)	0.0434 (9)
H23A	0.7662	0.0234	0.7822	0.065*
H23B	0.6944	-0.0165	0.7368	0.065*
H23C	0.7137	0.1019	0.8120	0.065*
C24	0.82018 (17)	0.4433 (4)	0.8252 (2)	0.0338 (8)
C25	0.87310 (19)	0.2823 (4)	0.9736 (2)	0.0451 (9)
H25A	0.8390	0.2782	0.9978	0.054*
H25B	0.8659	0.2022	0.9309	0.054*
C26	0.93557 (19)	0.2566 (5)	1.0418 (2)	0.0471 (9)
H26A	0.9364	0.1523	1.0630	0.057*
H26B	0.9691	0.2650	1.0167	0.057*
C27	0.94983 (18)	0.3651 (5)	1.1151 (2)	0.0408 (8)
H27A	0.9467	0.4700	1.0941	0.049*
H27B	0.9183	0.3519	1.1432	0.049*
C28	1.01432 (18)	0.3406 (5)	1.1781 (2)	0.0501 (10)
H28A	1.0200	0.2315	1.1909	0.060*
H28B	1.0458	0.3709	1.1524	0.060*
C29	1.02664 (18)	0.4269 (5)	1.2592 (2)	0.0477 (9)
H29A	1.0719	0.4248	1.2901	0.057*
H29B	1.0143	0.5335	1.2462	0.057*
C30	0.99290 (19)	0.3655 (5)	1.3133 (2)	0.0534 (10)
H30A	0.9480	0.3716	1.2842	0.080*
H30B	1.0036	0.4245	1.3648	0.080*
H30C	1.0048	0.2600	1.3266	0.080*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.03446 (19)	0.02179 (16)	0.03268 (19)	-0.00067 (18)	0.01359 (15)	-0.00063 (18)
S1	0.0537 (6)	0.0254 (4)	0.0478 (5)	0.0061 (4)	0.0151 (4)	0.0052 (4)
S2	0.0525 (6)	0.0622 (7)	0.0448 (5)	0.0179 (5)	0.0124 (4)	0.0183 (5)
S3	0.0465 (5)	0.0260 (4)	0.0391 (5)	-0.0078 (4)	0.0120 (4)	-0.0041 (3)
S4	0.0466 (5)	0.0408 (5)	0.0335 (5)	-0.0107 (4)	0.0054 (4)	-0.0032 (4)
N1	0.0329 (13)	0.0283 (13)	0.0301 (13)	0.0021 (11)	0.0129 (11)	0.0022 (11)
N2	0.0380 (16)	0.0435 (17)	0.0314 (14)	0.0007 (14)	0.0129 (12)	0.0036 (13)
N3	0.0305 (14)	0.0255 (13)	0.0300 (13)	-0.0037 (11)	0.0115 (11)	-0.0044 (11)

N4	0.0240(14)	0.0204(14)	0.0212(14)	-0.0054(12)	0.0115(11)	-0.0022(11)
IN4 C1	0.0349(14)	0.0304(14)	0.0312(14)	-0.0034(12)	0.0113(11) 0.0227(15)	-0.0032(11)
	0.0534(16)	0.0209(10)	0.0433(19)	0.0024(14)	0.0227(13)	0.0011(13)
C2	0.051(2)	0.0243 (16)	0.000 (3)	0.0055 (16)	0.027(2)	0.0049 (18)
C3	0.064 (3)	0.039 (2)	0.085 (3)	0.012(2)	0.039 (3)	0.020 (2)
C4	0.052 (2)	0.062 (3)	0.062 (3)	0.025 (2)	0.024 (2)	0.025 (2)
C5	0.038 (2)	0.060 (2)	0.051 (2)	0.0027 (19)	0.0147 (17)	0.001 (2)
C6	0.0342 (17)	0.0313 (16)	0.049 (2)	0.0042 (15)	0.0195 (15)	0.0038 (16)
C7	0.0374 (17)	0.0298 (16)	0.0390 (18)	-0.0010 (15)	0.0189 (14)	-0.0029 (14)
C8	0.059 (2)	0.045 (2)	0.044 (2)	0.0051 (19)	0.0178 (19)	-0.0100 (18)
C9	0.0375 (19)	0.0437 (19)	0.0378 (19)	0.0053 (17)	0.0155 (16)	0.0115 (17)
C10	0.041 (2)	0.067 (3)	0.043 (2)	0.0022 (19)	0.0135 (17)	0.0181 (19)
C11	0.053 (2)	0.082 (3)	0.053 (3)	-0.010 (2)	0.014 (2)	0.027 (2)
C12	0.056 (3)	0.049 (2)	0.067 (3)	-0.002 (2)	0.022 (2)	0.013 (2)
C13	0.046 (2)	0.049 (2)	0.053 (2)	-0.0027 (19)	0.0261 (18)	0.0005 (19)
C14	0.069 (3)	0.047 (2)	0.072 (3)	-0.002 (2)	0.034 (2)	-0.008 (2)
C15	0.078 (3)	0.055 (3)	0.055 (3)	-0.009 (2)	0.024 (2)	-0.014 (2)
C16	0.0310 (16)	0.0278 (15)	0.0340 (16)	-0.0067 (13)	0.0149 (13)	-0.0032 (13)
C17	0.045 (2)	0.0290 (18)	0.044 (2)	-0.0014 (16)	0.0158 (16)	-0.0034 (16)
C18	0.052 (2)	0.041 (2)	0.046 (2)	-0.0160 (19)	0.0134 (18)	-0.0131 (18)
C19	0.043 (2)	0.053 (2)	0.0363 (19)	-0.0130 (18)	0.0079 (16)	-0.0038 (17)
C20	0.0335 (17)	0.043 (2)	0.0417 (19)	-0.0036 (16)	0.0125 (15)	0.0017 (17)
C21	0.0328 (16)	0.0302 (16)	0.0348 (17)	-0.0050 (14)	0.0150 (13)	-0.0046 (14)
C22	0.0339 (17)	0.0264 (15)	0.0333 (16)	-0.0009 (13)	0.0163 (13)	-0.0024 (13)
C23	0.051 (2)	0.0363 (18)	0.042 (2)	-0.0107 (18)	0.0138 (17)	0.0035 (17)
C24	0.0337 (18)	0.0371 (19)	0.0301 (17)	-0.0023 (15)	0.0098 (14)	-0.0044 (15)
C25	0.055 (2)	0.0394 (19)	0.0387 (19)	-0.0092 (18)	0.0131 (17)	-0.0028 (16)
C26	0.054 (2)	0.048 (2)	0.0388 (19)	0.0107 (19)	0.0141 (17)	-0.0030(18)
C27	0.044 (2)	0.041 (2)	0.0378 (18)	0.0061 (17)	0.0138 (16)	-0.0044 (16)
C28	0.042 (2)	0.061 (3)	0.044 (2)	0.0095 (19)	0.0111 (17)	-0.0032 (19)
C29	0.039 (2)	0.050 (2)	0.046 (2)	-0.0037(18)	0.0040 (16)	-0.0035 (19)
C30	0.047 (2)	0.065 (3)	0.045 (2)	-0.010 (2)	0.0096 (17)	-0.008(2)
		(-)	- ()			

Geometric parameters (Å, °)

Cu1—N1	2.023 (3)	C13—H13A	0.9900
Cu1—N3	2.020 (3)	C13—H13B	0.9900
Cu1—S1	2.2299 (9)	C14—C15	1.524 (7)
Cu1—S3	2.2414 (9)	C14—H14A	0.9900
S1—C9	1.742 (4)	C14—H14B	0.9900
S2—C9	1.752 (4)	C15—H15A	0.9800
S2—C10	1.804 (5)	C15—H15B	0.9800
S3—C24	1.740 (4)	C15—H15C	0.9800
S4—C24	1.755 (4)	C16—C21	1.391 (5)
S4—C25	1.835 (4)	C16—C17	1.406 (5)
N1—C7	1.298 (4)	C16—C22	1.481 (4)
N1—N2	1.400 (4)	C17—C18	1.381 (5)
N2—C9	1.296 (5)	C17—H17	0.9500
N3—C22	1.297 (4)	C18—C19	1.383 (6)

N3—N4	1.406 (4)	C18—H18	0.9500
N4—C24	1.296 (5)	C19—C20	1.376 (5)
C1—C6	1.399 (5)	С19—Н19	0.9500
C1—C2	1.404 (5)	C20—C21	1.380 (5)
C1—C7	1.478 (5)	C20—H20	0.9500
C2—C3	1.377 (7)	C21—H21	0.9500
С2—Н2	0.9500	C22—C23	1.501 (5)
C3—C4	1.373 (7)	С23—Н23А	0.9800
С3—Н3	0.9500	C23—H23B	0.9800
C4—C5	1.384 (7)	С23—Н23С	0.9800
C4—H4	0.9500	C25—C26	1.528 (5)
C5—C6	1.383 (5)	C25—H25A	0.9900
С5—Н5	0.9500	С25—Н25В	0.9900
С6—Н6	0.9500	C26—C27	1.523 (5)
С7—С8	1.491 (5)	C26—H26A	0.9900
C8—H8A	0.9800	C26—H26B	0.9900
C8—H8B	0.9800	C27—C28	1.522 (5)
C8—H8C	0.9800	С27—Н27А	0.9900
C10—C11	1.506 (6)	С27—Н27В	0.9900
C10—H10A	0.9900	C28—C29	1.521 (6)
C10—H10B	0.9900	C28—H28A	0.9900
C11—C12	1.559 (7)	C28—H28B	0.9900
C11—H11A	0.9900	C29—C30	1.481 (6)
C11—H11B	0.9900	С29—Н29А	0.9900
C12—C13	1.515 (6)	C29—H29B	0.9900
C12—H12A	0.9900	С30—Н30А	0.9800
C12—H12B	0.9900	С30—Н30В	0.9800
C13—C14	1.519 (6)	С30—Н30С	0.9800
S1—Cu1—S3	98.53 (4)	C13—C14—H14B	109.0
N1—Cu1—S1	85.43 (8)	C15—C14—H14B	109.0
N3—Cu1—S1	149.66 (8)	H14A—C14—H14B	107.8
N1—Cu1—S3	152.51 (8)	C14—C15—H15A	109.5
N3—Cu1—S3	85.37 (8)	C14—C15—H15B	109.5
N1—Cu1—N3	104.90 (11)	H15A—C15—H15B	109.5
C9—S1—Cu1	93.45 (13)	C14—C15—H15C	109.5
C9—S2—C10	105.16 (19)	H15A—C15—H15C	109.5
C24—S3—Cu1	93.07 (12)	H15B—C15—H15C	109.5
C24—S4—C25	102.70 (18)	C21—C16—C17	118.9 (3)
C7—N1—N2	114.6 (3)	C21—C16—C22	121.1 (3)
C7—N1—Cu1	127.8 (2)	C17—C16—C22	120.0 (3)
N2—N1—Cu1	117.1 (2)	C18—C17—C16	119.8 (3)
C9—N2—N1	112.6 (3)	C18—C17—H17	120.1
C22—N3—N4	114.4 (3)	C16—C17—H17	120.1
C22—N3—Cu1	128.5 (2)	C17—C18—C19	120.2 (3)
N4—N3—Cu1	116.84 (18)	C17—C18—H18	119.9
C24—N4—N3	112.5 (3)	C19—C18—H18	119.9
C6—C1—C2	118.6 (3)	C20—C19—C18	120.5 (3)

C6—C1—C7	121.4 (3)	C20—C19—H19	119.7
C2—C1—C7	120.0 (3)	C18—C19—H19	119.7
C3—C2—C1	119.6 (4)	C19—C20—C21	119.9 (3)
C3—C2—H2	120.2	C19—C20—H20	120.1
C1—C2—H2	120.2	C21—C20—H20	120.1
C4-C3-C2	121.4 (4)	C_{20} C_{21} C_{16}	120.7(3)
C4-C3-H3	119.3	C_{20} C_{21} H_{21}	119.7
$C^2 - C^3 - H^3$	119.3	C16-C21-H21	119.7
C_{3} C_{4} C_{5}	119.8 (4)	N_{3} C22 C16	117.7 (3)
$C_3 - C_4 - H_4$	120.1	N3_C22_C23	1223(3)
$C_5 = C_4 = H_4$	120.1	C_{16} C_{22} C_{23}	122.3(3) 120.0(3)
C_{5}	120.1 110.0 (4)	$C_{10} = C_{22} = C_{23}$	120.0 (3)
C6 C5 H5	119.9 (4)	$C_{22} = C_{23} = H_{23}R$	109.5
C_{0}	120.1	C_{22} C_{23} H_{23D}	109.5
C4 - C3 - H3	120.1	$\Pi 23A - C23 - \Pi 23B$	109.5
C_{5}	120.7 (3)	C22—C23—H23C	109.5
С5—С6—Н6	119.6	H23A—C23—H23C	109.5
СІ—С6—Н6	119.6	H23B—C23—H23C	109.5
N1—C7—C1	116.9 (3)	N4—C24—S3	127.5 (3)
N1—C7—C8	122.9 (3)	N4—C24—S4	118.7 (3)
C1—C7—C8	120.2 (3)	S3—C24—S4	113.7 (2)
С7—С8—Н8А	109.5	C26—C25—S4	109.3 (3)
C7—C8—H8B	109.5	C26—C25—H25A	109.8
H8A—C8—H8B	109.5	S4—C25—H25A	109.8
С7—С8—Н8С	109.5	C26—C25—H25B	109.8
H8A—C8—H8C	109.5	S4—C25—H25B	109.8
H8B—C8—H8C	109.5	H25A—C25—H25B	108.3
N2	127.2 (3)	C27—C26—C25	115.0 (3)
N2	120.1 (3)	C27—C26—H26A	108.5
S1—C9—S2	112.7 (2)	C25—C26—H26A	108.5
C11—C10—S2	116.2 (3)	C27—C26—H26B	108.5
C11—C10—H10A	108.2	C25—C26—H26B	108.5
S2—C10—H10A	108.2	H26A—C26—H26B	107.5
C11—C10—H10B	108.2	C28—C27—C26	112.6 (3)
S2—C10—H10B	108.2	C28—C27—H27A	109.1
H10A—C10—H10B	107.4	С26—С27—Н27А	109.1
C10-C11-C12	111.9 (4)	C28—C27—H27B	109.1
C10—C11—H11A	109.2	C26—C27—H27B	109.1
C12—C11—H11A	109.2	H27A-C27-H27B	107.8
C10-C11-H11B	109.2	C29 - C28 - C27	107.0 114 5 (3)
C_{12} C_{11} H_{11B}	109.2	C_{29} C_{28} H_{28A}	108.6
H11A_C11_H11B	107.9	C27 - C28 - H28A	108.6
C_{13} C_{12} C_{11}	113 3 (4)	C_{29} C_{28} H_{28R}	108.6
C13_C12_H12A	108.0	$C_{27} - C_{28} - H_{28}$	108.6
$C_{13} = C_{12} = 1112 \text{A}$ $C_{11} = C_{12} = H_{12} \text{A}$	100.7	H28A C28 H28D	100.0
$C_{11} = C_{12} = III_{2} A$ $C_{12} = C_{12} = U_{12} D$	100.7	C_{20} C_{20} C_{20}	107.0 112.6(A)
C13 - C12	100.9	C_{20} C_{20} C_{20} C_{20}	113.0 (4)
$U_{11} = U_{12} = \Pi_{12} D$	100.9	$C_{29} = C_{29} = H_{29} A$	100.0
$\Pi I Z A - U I Z - H I Z B$	107.7	$C_{20} = C_{20} = H_{20} R_{20}$	108.8
012-013-014	115.9 (4)	C30—C29—H29B	108.8

C12—C13—H13A	108.8	C28—C29—H29B	108.8
C14—C13—H13A	108.8	H29A—C29—H29B	107.7
С12—С13—Н13В	108.8	С29—С30—Н30А	109.5
C14—C13—H13B	108.8	C29—C30—H30B	109.5
H13A—C13—H13B	107.7	H30A—C30—H30B	109.5
C13—C14—C15	112.9 (4)	С29—С30—Н30С	109.5
C13—C14—H14A	109.0	H30A—C30—H30C	109.5
C15—C14—H14A	109.0	H30B—C30—H30C	109.5