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Abstract: Brain-machine interface (BMI) is a promising technology that looks set to contribute to the
development of artificial limbs and new input devices by integrating various recent technological
advances, including neural electrodes, wireless communication, signal analysis, and robot control.
Neural electrodes are a key technological component of BMI, as they can record the rapid and
numerous signals emitted by neurons. To receive stable, consistent, and accurate signals, electrodes
are designed in accordance with various templates using diverse materials. With the development of
microelectromechanical systems (MEMS) technology, electrodes have become more integrated, and their
performance has gradually evolved through surface modification and advances in biotechnology. In this
paper, we review the development of the extracellular/intracellular type of in vitro microelectrode array
(MEA) to investigate neural interface technology and the penetrating/surface (non-penetrating) type of
in vivo electrodes. We briefly examine the history and study the recently developed shapes and various
uses of the electrode. Also, electrode materials and surface modification techniques are reviewed to
measure high-quality neural signals that can be used in BMI.

Keywords: neural electrode; brain-machine interface (BMI); microelectrode array (MEA);
chronically implanted neural electrodes; electroencephalogram (EEG) electrode; surface modification

1. Introduction

Neural electrode is an interface between neurons—the electroactive cells of the nervous
system—and brain-machine interface (BMI) system. They are used in basic neuroscience to facilitate
our comprehension of physiological processes at the cellular level, and in BMI to substitute for function
of the injured nervous system. The purpose of neural electrodes is to record neural signals with
high signal-to-noise ratios (SNRs) from several individual neurons, termed action potentials (APs) [1].
To realize BMI, several processes are enacted, such as the recording of neural signals, analysis of
recorded neural signals, implementation of algorithms for robot control, and robot control using neural
signals. The recording of neural signals by neural electrodes provides a starting point for various
applications and, as such, neural electrodes are key to the success of these endeavors.

In vitro studies contribute to our understanding of the electric connections between the neurons
and the function of the neurons in the nervous system. The cultured neurons emit the electrical
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signals, which are construed as the neural and physiological information. To record the electrical
signal, the in vitro neural electrodes array, so called microelectrode arrays (MEAs), are commonly used.
Also, to confirm the validity of neural electrode designs and recording techniques, the electric signals
from animals, such as guinea pigs, rats or monkeys, are recorded in vivo.

The in vivo electrodes are divided according to their position at the time of the signal’s recording.
Selection of the appropriate neural electrode is crucial, considering the trade-off between the quality of
the recorded signal and the degree of invasion. Generally, neural electrodes that are implanted into
the brain have higher SNRs than EEG electrodes, and are classified according to the method used to
fabricate the probe that detects the AP. Currently, polymer-based electrodes with low Young’s modulus
are favored. The EEG electrodes are aimed at capturing the EEG signal, and may be classified as wet,
dry, or non-contact, with further sub-categorization that pertains to the level of invasion with which
they are associated. While the material used for fabricating the electrodes is a key aspect of their
functionality, recent studies have focused on their flexibility and elasticity, in the interest of addressing
the problem of the electrodes’ positioning.

Electrodes for measuring neural signals necessarily make direct contact with the body, whether
they are of the penetrating or non-penetrating type. Thus, all substances used in fabricating neural
electrodes should be of types that do not trigger immune response. Additionally, the nerve electrode
must maintain contact with the body over a long period of time, and the substance must be denatured
so as not to emit toxins [2].

Several investigations have been conducted into the interface between the electrode and the
anatomical part, in addition to the material from which the electrode has been fabricated. In this
interface, intracellular/extracellular signal is transferred via electrochemical reaction, and the electrode
itself is broken down by long-term measurement. For these reasons, numerous studies have sought
to improve electrode performance by applying metal coating or nanostructure synthesis to electrode
surfaces, in what is known as the surface modification technique.

Generally speaking, selectivity and sensitivity are the two most important factors in
evaluating biosensor performance [3]. With regard to neurons, selectivity means spatial resolution,
while sensitivity refers to slight changes in the potential of the target cell/brain tissue. Therefore,
both selectivity and sensitivity must be maximized for optimum signal receptivity. For example, as the
exposed area of the nerve electrode increases, the electrical impedance is decreased, but the spatial
resolution deteriorates simultaneously. As the exposed area decreases, the spatial resolution improves,
but this is associated with an increase in electrical impedance [4]. Consequently, several studies have
sought to maximize the electrochemical surface area (ESA) of electrodes, while maintaining a smaller
geometrical surface area (GSA) [5].

Neural electrodes are widely used not only for measuring neural signals but also for stimulating
neurons. Electrical brain stimulation was first used in the first half of the 19th century to stimulate a
neuron or neural network in the brain with an electric current. Although this method has been widely
used for a long time, it has several critical drawbacks. The electrical stimulation uses an electric current
between two electrodes, the focal stimulation on the neuronal population is difficult, and it can cause
brain damage due to the current. Thus, there has been interest in overcoming these drawbacks and
developing alternative techniques to trigger neuronal activity [6,7].

This review focuses on: (1) electrodes for measuring neural signals in an in vitro environment;
(2) penetrating electrodes for measuring neural signals in an in vivo environment; (3) non-penetrating
electrodes for measuring neural signals in an in vivo environment; (4) surface modification techniques
for improved neural signal recording.

In this paper, we review the role of electrodes in recording electrical nerve signals transmitted
between nerves, and the problems that may arise in the transmission of electrical nerve signals
between nerves. In addition, we examine the various types and characteristics of electrodes developed
to solve them. By reviewing these strategies, we expect to be able to understand the flow of
electrode development.
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2. Microelectrode Array (MEA) for In Vitro Applications

Neural interface is an important tool for enhancing our understanding of the nervous system,
owing to its capacity for stimulating neural cells and recording neural signals [8]. Among the various
types of neural interface, MEA is of the utmost significance, as it is used to measure the activity
signals emitted by cultured neuronal cells in several neuroscientific applications. Full appreciation
of the mechanisms that underlie the electrical connections between neurons within their networks is
crucial in neuroscience, for exploring the functionality of neurons within the nervous system. Cellular
recording using MEA has been employed for measuring AP, and for processing neural information in
neural circuits.

Two types of measurement use MEA: extracellular and intracellular recordings. Extracellular
recording is a less invasive method capable of performing long-term recording; extracellular signals are
field potentials and poor in quality, however, compared with intracellular signals. While intracellular
recording utilizes synaptic potentials and more sensitive, it is associated with cell damage more, as it is
a more invasive method [8,9]. Accordingly, methods are carefully selected depending on the purpose
behind signal recording, and recording methods have been developed. For precise AP recording,
the MEA should adhere well to the target cells, and the contact surface for a single unit cell should not
exceed 4000 µm2 [5]. Furthermore, the impedance of MEA should be small, as the SNR has an inverse
relationship with electrode impedance [5].

It is generally planar MEA that is used in in vitro experiments, and it has been progressively
developed and commercialized. Recently, other MEA types have received increasing attention.
Extracellular electrodes utilize microstructures adopting a biomimetic approach that incorporates
the shape of the dendritic spine, so that the electrode may be surrounded by the cell membrane [10].
Intracellular electrodes utilize nanostructures adopting a biocompatibility approach, which may have
lower resistance properties, similar to nanotube microelectrodes and nanowire microelectrodes [4].
Recently, researchers have developed a flexible and stretchable electrode by changing the substrate
material instead of the shape of electrode surface, for applying to in vivo experiment on neural
interfaces [11].

2.1. History

The use of neural interfaces as recording devices commenced toward the end of the 1930s,
when the size of neural interfaces diminished, and developments led to the possibility of recording
both interior and exterior electrical potential signals, via a single neural fiber immersed in
conducting fluid [12]. To record action potential signals simultaneously from different neuronal units,
a high-throughput recording interface with the nervous system is required. In line with improvements
in manufacturing methods, structure and materials, Robinson introduced the first metal microelectrode
in 1968 [13], and in 1972, Thomas et al. introduced the first MEA [14]. This device could record
local field potential (LFP) signals from spontaneous contracting array that consisted of platinized
gold microelectrodes embedded onto a glass substrate. However, the device was unable to record
activity signals from a single cell. Following improvements to the electrode configuration, the APs of
excitable cells could be measured [15]. Some researchers have reported that biocompatible materials,
such as carbon nanotubes (CNTs), may provide a suitable surface for neuronal cell adhesion and
growth, regardless of surface uniformity [16,17]. CNTs are suitable for fabricating electrodes as they
have biocompatibility and share a similar minute nature with bio-membrane. Recently, Hai et al.
recommended gold spine-shaped electrodes that are associated with enhanced signal-recording
quality [10]. Similarly, the shape of MEA has developed such that it can firmly grasp the neuronal
membrane, adopting a biomimetic approach, to attain subthreshold synaptic potential similar to the
APs [10].



Materials 2018, 11, 1995 4 of 25

2.2. Type of MEA

2.2.1. MEA for Extracellular Recording

Planar Type MEA

Planar-type MEA is widely used as a cell culture dish for investigating network activity
(Figure 1a,b). Its electrodes are composed of nontoxic and anti-corrosive metals, such as gold, titanium
nitride, and platinum. Although glass and silicon wafers are both viable options for constructing the
substrate, glass wafers are more usually selected, as they permit easy observation of cultured cells using
conventional transmitted light microscopy. To improve cell adhesion, the substrate is commonly coated
with poly-l-lysine or laminin. The electrodes are insulated from one another, using inorganic or organic
materials, such as epoxy resin or silicon oxide, are they are embedded within the culture medium.
A single electrode has recording site of the range of a few tens of micrometers equivalent in size to a
single cell with sufficiently low impedance. When positioned in high-density arrays, it provides the
best signal-to- noise ratio and high spatial resolution. Each electrode is connected to a contact pad via
thin contactors (conductor lines) for recording extracellular signals (Figure 1c) [18]. Individual contact
pads should be smaller than the cells to record the activity of a single cell, but reduction of the contact
area increases the electrode impedance, resulting in increased signal noise [19]. Currently, the standard
size of a gold electrode is reportedly 60 µm in diameter. During the last decade, planar-type MEA has
undergone significant commercialization.
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Figure 1. (a) Myocytes of embryonic chicken ventricles are cultured on the planar type MEA as cell
culture dish [20]. (b) A whole embryonic heart is kept on a MEA [20]. (c) Each electrode is connected
with a contact pad by conductor lines [20]. Copyright 2003, Springer-Verlag.

Biomimetic MEA

Spira et al. reported an extracellular neural interface adopting a biomimetic approach in the
late 2000s [10]. Previously existing extracellular recording electrodes could achieve non-invasive and
long-term recording; however, the signal obtained was generally weak and of inferior quality [20] The
developed microelectrodes are equipped to overcome the disadvantages of extracellular recording
as long as 2 days, while retaining its advantages. They are non-invasive and capable of long-term
recording, consistently receiving strong, high-quality signals. In 2007, Spira et al. designed electrodes
with micrometer-sized nail structures that protrude from the sensing pad, imitating dendritic
spines [21]. Improvements in recording signals are mainly attributable to the electrodes’ unique
shape, which facilitates their being engulfed by neurons, ensuring that they play a prominent role in
signal transmission at excitatory synapses [22]. This enhances the junctional membrane conductance,
and the seal resistance between the electrode and cell membrane [8]. Furthermore, the electrical
coupling coefficient between neurons and the gold dendritic spine-shaped electrodes is increased to
50%, compared with that of the gold planar MEA, which is 0.1%. Consequently, the dendritic spine
shaped electrode can record subthreshold synaptic potentials, in addition to the APs, similar to the
recording properties of intracellular glass electrodes.
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2.2.2. MEA for Intracellular Recording

Sharp Glass Electrodes/Patch-Clamp Electrodes

Reduction of the junctional membrane resistance is crucial. This is, in fact, the approach
conventionally adopted in classical methods using sharp electrodes [23]. Sharp glass electrodes
and patch-clamp electrodes (Figure 2a) offer excellent intracellular recording by penetrating the plasma
membrane and directly accessing the cytosol, while generating effective seal impedance with the
plasma membrane (hundreds of MΩ to a few GΩ, respectively) [24]. However, among this method’s
disadvantages are its reliance on bulky micromanipulators to steer the electrode tips, and its limitation
on multi recording signals from a single cell at a time. Furthermore, intracellular recording has a very
short duration, owing to biophysical instability.

Recently, Martina has demonstrated this approach’s potential for adaptation to neuronal
networks [25]. Neurons were co-cultured on the electrode, and subsequently cell bodies formed
chemical synapses and adhered to the substrate, achieving very high seal resistance (GΩ). This patch
configuration affords neurons greater stability than do classical configurations.

Vertical Electrodes Using Nanostructure (Nanowire/Nanotube)

Vertical electrodes are capable of achieving intracellular recording with high SNR, due to their
high aspect ratio [26]. During recording of the brain’s neural circuit activities, accurate monitoring and
minute controlling are important [27]. Accordingly, the efficiency of signal recording is affected by
electrical coupling and the contact between the cell and the electrode surface. Therefore, the electrodes
should be high in density and small in size [28]. Vertical electrodes satisfy both of these conditions and
are, thus, attracting attention.

One example of the vertical nanowire electrode arrays(VNEAs) were constructed from a doped
silicon core encapsulated by silicon dioxide and tipped by Ti/Au (Figure 2b) [29]. Neurons were
cultured on the VNEA for several days, and subsequently around 50% of the VNEAs penetrated
through the plasma membrane of the neurons. Consequently, the recording properties of VNEAs have
the advantage that the maximum record amplitude achieved from an individual neuron is 100% higher
than that of the planar-type electrode. Figure 2c illustrates a nanotube electrode array. Neurons were
cultured on the nanotube electrode array and, subsequently, the cell membrane was wrapped around
and extended into the pore center of the array. The nanotube electrode arrays with diameter of 100 µm
featured electrochemical impedance of 14 kΩ, which is about 10,000 times smaller than the VNEAs,
and charge storage 4.91 mC/cm2 higher than that of the VNEAs [30]. Moreover, it could record large
signals with high stability [31].
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2.3. Challenges

Over the past several decades, studies have indicated that MEA performance would be significantly
enhanced through structure control, extending to shape, size and materials. Nanostructured electrodes



Materials 2018, 11, 1995 6 of 25

have exhibited the potential for stable signal recording, due to their large surface area and small size.
As existing neural interfaces still have limitations, including high impedance, large size and elevated
cell-damage threat, attempts to develop enhanced neural interfaces are ongoing.

Cultured neuronal networks have been used as in vitro model systems in many fields
of neuroscience, including axon guidance [32], neural plasticity [33], nerve regeneration [34],
and synaptogenesis [35]. To keep pace with future developments in neuroscience related to signal
recording, improvements in the field of MEA may be facilitated through addressing the following
aspects: (1) integrated porous coatings to increase biocompatibility and facilitate drug delivery;
(2) combined recording of intracellular and extracellular electrical activity to promote research in
computational neuroscience; (3) an electrode interface capable of maintaining constant impedance;
(4) a multiplexed array of numerous electrodes that can record high SNR electrical activity from
neural tissues, with high spatial and temporal resolution over long periods of time; (5) upscaling of
multiplexed electrode arrays to higher channel counts, with a relatively small increase in the total
number of readout wires.

3. Penetrating Electrode for In Vivo Applications

Chronically implanted neural electrodes are surgically implanted into the cortex or white matter,
to record the APs of their neurons. Although these electrodes comprise a recording component and
another component for integration and signal delivery, the recording component’s design is critical and
usually includes small needles designed to penetrate the brain. For recording, a conductive microwire
with only its tip exposed, and a sharp electrode made of MEMS technology, are used individually, or
several are integrated.

Generally speaking, neural signals recorded using a chronically-implanted neural electrode yield
more information than non-invasive type electrodes [36]. To obtain an AP recording of superior quality,
the electrode should be placed adjacent to neurological cells, with the area of the single exposed
conductive part kept below 4000 µm2 with an SNR of 5 or more [37]. As the electrodes are intended for
long-term implantation, it is imperative that toxicity, and mechanical and electrical properties are borne
in mind when the electrode and insulating materials are selected. Herein, the chronically-implanted
neural electrodes are classified according to each electrode’s shape and its material of fabrication
(Figure 3).
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3.1. History

BCI is aimed at elucidating the mechanisms by which information is transmitted between neurons,
and investigating associated medical procedures and devices, such as deep brain stimulation and
cochlear implants. BCI research began in 1929 when the EEG signals in the human brain were recorded
for the first time [41]. Subsequent to this, attempts to record electrical signals in the human thalamus
were made in 1949 [42], and a neural probe fabricated from tungsten was applied to a cat in 1959 [43].
In 1961, as research began to flourish in earnest, a multi-wire electrode was introduced to a human for
the first time [44]. In 1963, a tungsten wire was used to measure the AP of a single cell [45]. By 1970,
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silicon-based electrodes had been developed [46] and, as a result of improvements in integration
methods, in 1981, they were expanded to thirty channels [47]. Experimental progress also advanced to
investigate various aspects of memory [48], arm control [49], and language [50]. In 1991, the so-called
“Utah” electrode was developed and incorporated into experiments [51], and since 2001, polymer-based
flexible electrodes have emerged. Since that time, studies in substrate material and post-fabrication
functionalization have been ongoing.

3.2. Shape of Each Electrode

3.2.1. Microwire Type

Microwire-type electrodes constitute small metal wires with insulated tips of less than a few
hundred micrometers in diameter. Microwire-types can be sub-classified into single-wire [52],
tetrode [53], and multi-wire [54] electrodes, depending on the number of electrodes used and the
recording target; single-wire is used for intracellular recording, while tetrode and multi-wire are used
for extracellular recording. Non-toxic metals, with good corrosion resistance, are used to fabricate
the electrodes, including platinum [55], iridium [56], stainless steel [57], and alloys of these [58,59].
Recently, carbon-based materials have been used. Shin et al. fabricated the carbon nanotube electrode
with an impedance per-unit area of 99.92% less than that made from tungsten [52]. The strengths of
this design are that it is easily fabricated [60], and that it permits a high degree of freedom in assembly,
and so it is cost-efficient and convenient.

As long as the microwire has been in use, various animals, including rats [61] and guinea pigs [62]
have been implanted and recorded using it. Kruger et al. went so far as to record the AP of a
monkey [63] over 7 years at one-third of electrodes. However, serious problems remain in the shape
disparities between the fabricated electrodes and isolation regions [61], the compromising of positional
accuracy due to buckling during implantation [64], and compression of the underlying tissue [65].
Additionally, failure of the insulation material, peeling and corrosion of metal [61] and signal changes
due to inflammation [66] also need to be addressed.

3.2.2. Microelectrodes

Advances in MEMS and micromachining technology have resulted in the development of
silicon-based neural electrodes [67]. These technologies achieved miniaturization and uniformity
of electrode size, which cannot be realized in microwire electrodes. Consequently, the electrodes could
be integrated with associated improvements in signal reliability. Furthermore, owing to the production
of rigid materials at wafer-scale, the problem of buckling was reduced and mass production was
facilitated, so that APs could be recorded in several spaces, and the brain could be accurately mapped.
Various neural electrode designs have been developed through the application of various materials and
adjustments to the process, and these electrodes have successfully measured AP for up to 300 weeks.
The Michigan and Utah electrodes are currently the most widely used microelectrodes (Figure 4).

The first silicon-based neural electrode—the so-called “Michigan” electrode—was developed
in 1970 [46], and fabricated using MEMS processes, such as metal deposition and etching on silicon.
The probe length ranged from a few millimeters to centimeters, and could easily be connected to
the IC circuit, owing to its similarity of fabrication. Wang et al. succeeded in achieving the longest
AP recording of 671 days [68]. During the 1990s, the Utah electrode was developed, on which
the needles are vertically positioned on the substrate [51]. It was fabricated through sequential
passivation, deposition, and dicing. The electrodes were several hundred microns in height and spaced
at intervals of less than 400 µm. Additionally, Utah electrodes were implanted using the pneumatic
system, and could withstand long periods of implantation as a result of their biocompatibility and
structure [69].
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3.2.3. Polymer Electrode

Electrodes fabricated on a stiff substrate, such as silicon, trigger inflammatory reactions which
contains the glial response, and the diffusion of cytokines during chronic recording between the neural
electrode and the brain [72]. This inflammatory reaction acts as an insulator at the boundary, resulting in
the electrode failure [4]. To avoid this mechanical mismatch, a polymer-based electrode with a low Young’s
modulus, and a stiff electrode coated with a soft material, such as hydrogel, emerged as alternatives [73].
Polymers used as substrates, including flexible polyimide [74], Parylene C [75], and SU-8 [76], are generally
biocompatible, with a Young’s modulus of only a few GPa (Figure 5). Vitale et al., design a PDMS based
CNT electrode having lower impedance per area than carbon fiber [77]. In particular, polymer electrodes
have been combined with micro channels. John et al. combined the high-density 3D electrode with the
microchannel for local drug delivery [78]. To compensate for the positioning errors that occur because
of the flexibility, Wu et al. proposed a fish-bone-shaped electrode [79]. Lu et al., fabricated the flexible
electrode based on graphene and confirm no delamination during 30 days [80].
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3.2.4. Multifunctional Electrode

In addition to changing the material and its manufacturing method to overcome the limitations of
in vivo electrodes such as biocompatibility, there have also been reported cases in which additional
functions to solve them. A drug delivery system is installed in the electrode to inject drugs locally.
Biotinylated dextran amine (BDA), which is a neuronal tracer used both for anterograde and retrograde,
is delivered locally using iontophoresis to find out the recording position [83]. Also, after dexamethasone,
an anti-inflammatory drug, was loaded in the conducting polymer to inject only the electrode site, the signal
was measured for more than 12 weeks [84]. To measure neurotransmitters like dopamine, which change
fast, the fast-scan cyclic voltammetry (FSCV) is suitable. Because the small electrode that has good
electrochemical properties is favorable to FSCV, carbon-fiber electrodes are applied in vivo [85]. Electronic
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devices are also integrated to the electrode. the pre-amplifiers are introduced to boost the neural signals [86],
and switching electronics are inserted to adjust recording position without moving the electrode [87].

3.3. Requirements and Future Directions

The ultimate goal of the invasive neural electrode is to record the brain’s AP safely, over a long
period of time. However, unlike non-invasive electrodes, invasive electrodes must be surgically implanted,
and require direct contact with the brain; as such, they necessitate consideration of a greater number of
factors than must be considered in relation to non-invasive electrodes. First, the material that comes into
contact with the brain should be biocompatible, and this depends critically on the material’s toxicity. Silver,
copper are known to be toxic, while platinum, gold are reported to be safe [88]. Also, ceramic material like
highly doped poly silicon is used [89]. Recently, conductive polymers have been used as non-toxic materials,
with poly 3,4-ethylenedioxythiophene (PEDOT) [90,91], polypyrrole (PPy) [92], and polyaniline (PANI) [93]
as typical examples. The mechanical properties of the material are also important. Generally speaking,
the Young’s modulus of the brain is less than 10 kPa, but that of the silicon used in microelectrodes is very
high, at around 130–185 GPa. The Young’s modulus of polymers is usually only a few GPa—much lower
than that of silicon, but still higher than that of the brain. To lower the Young’s modulus significantly,
an electrode may be coated with hydrogel, which has a similar Young’s modulus to that of the brain [90].
Also, the shape memory polymers are introduced to solve the mechanical mismatch problem. Simon et al.
succeed single unit recording for 77days with the shape memory polymer based electrode whose Young’s
modulus is from ~2 GPa to ~50 MPa [94]. In addition, due to the fluidity of the brain, the position of the
electrodes can be changed in the macroscale chronically, which means that the spatial resolution of the
signal is deteriorated. To improve it, a movable electrode is being developed to solve this problem [95,96].

It is likely that perfectly biocompatible polymer-based neural electrodes will be widely used in
the future. During the surgical procedure, preventing the buckling is advantageous to determine the
recording position. However, after surgery, the young’s modulus should be reduced by swelling to
prevent mechanical mismatch. Hydrogels that retain these characteristics for a long time are preferred.
Also, extremely small and flexible electrodes can also be a solution.

4. Non-Penetrating Electrodes

Neural electrodes may be classified into penetrating and non-penetrating electrodes. Electrodes
currently have the capacity to record neural activity in vivo, from intracellular potential through
extracellular APs to LFPs [97]. When these neural signals are applied to BMIs, parity of performance can
be achieved between AP and LFP signals with high frequencies (>200 Hz). These signals transmit more
information concerning movement parameters, in comparison with EEG signals [98]. The information
transmitted by neuronal signals that are extracted from EEG, following the elimination of noise generated
from external equipment and movement artifacts, differs in several respects to that obtained from invasive
signals [99]. First, there is a disparity in the number and type of neurons: smaller neuronal clusters are
recorded, with a lower SNR. Second, the signal composition also varies: since the signals travel a greater
distance from the neuron cell to the electrode, the temporal consistency across signal components may be
disrupted, and the frequency phase shift may be stronger [100]. Third, there is a difference in the spatial
distortion that occurs: neural signals are transferred to the cerebrospinal fluid, skull, and scalp before
reaching the EEG electrodes, resulting in a large spatial distortion. These limitations are inherent in the
EEG, and cannot be overcome in practice. However, EEG boasts the significant advantage of being able to
monitor large-scale connection activities across the entire brain, risk-free and at a lower cost. Invasive
electrodes can measure signals that are transmitted deeper in the brain, but they cannot cover the entire
cortex and are more difficult to obtain initially, owing to the requisite surgical procedure. On the other
hand, electrocorticogram (ECoG), occasionally called intracranial EEG, involves a surgical procedure but
does not cause direct brain damage. The neural signals recorded from ECoG electrodes provide much
better spatial resolution [101,102] and SNR [103,104] than do EEG electrodes because ECoG electrodes
record neural signals directly from the cortical surface.
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4.1. EEG Electrode

4.1.1. History

In 1875, Richard Caton, a physician practicing in Liverpool, discovered the presence of electrical
currents in the brain. His findings concerned the electrical phenomena occurring in the exposed cerebral
hemispheres of rabbits and monkeys, and were published in the British Medical Journal. In 1890, Adolf
Beck reported spontaneous electrical activity and rhythmic oscillations in the brains of rabbits and
dogs, altered by light. Beck concluded that fluctuating brain activity is attributable to brain waves [105].
In 1924, Hans Berger, a German physiologist and psychiatrist, first recorded the human brain’s electrical
activity on the scalp, using ordinary radio equipment to amplify the electrical signals [106]. His findings
are regarded as among the most surprising, remarkable, and momentous developments in the history
of clinical neurology. He coined the term ‘electroencephalogram (EEG)’ to describe the electrical
potentials in the human brain, and reported that brain activity changed consistently in association
with changes in the subject’s general status, e.g., from relaxation to alertness [107]. His findings were
later verified by Adrian and Matthews, in 1934, when they identified regular oscillations of 10 to 12 Hz,
which they called “alpha rhythms” [108]. In 1947, the American EEG Society was founded, and the
first international EEG congress was held. During the 1950s, William Grey Walter developed EEG
topography, which facilitated the mapping of electrical activity on the brain’s surface. In 1988, the first
robot to be controlled by recorded EEG signals was created and various studies in BMI using EEG
signals were reported, including the brain-controlled wheelchair [109] and the robotic arm [110].

4.1.2. EEG Electrodes

EEG electrodes are used to capture changes in the brain’s electrical activity without the need for a
surgical procedure. In this review, EEG electrodes were classified into wet, dry and non-contact.

Wet EEG Electrodes

Traditional wet EEG electrodes are fabricated from various materials including gold (Au), platinum
(Pt), silver/silver-chloride (Ag/AgCl), tin (Sn), and stainless steel (SUS). In 2005, Tallgren et al. concluded
that Ag/AgCl electrodes yielded the best performance, with excellent direct current (DC) stability, low
noise level, and low resistance among the various materials [111]. Equipment for EEG recording consists of
an amplifier unit, an electrode cap, conductive gels, a syringe, and disinfectant. The conductive gels ensure
contact between the electrode and the scalp, facilitating the recording of good EEG signals. The wet EEG
electrodes may be classified into disposable surface electrodes, reusable disc-electrodes, and saline-based
electrodes. Disposable surface electrodes are the simplest and most cost-efficient method of recording
EEG signals, and are widely used in other electrophysiological fields, such as electrocardiography (ECG)
and electromyography (EMG). However, a major limitation of this method is that the electrode cannot
easily be placed on the scalp past the hair, owing to its large size. The reusable disc-electrode overcomes
this limitation by reducing the electrode size. The saline-based electrode consists of a sponge and the
electrode housing, and the sponge placed on the skin should be soaked with saline during recording.

Dry EEG Electrodes

Dry EEG electrodes were introduced to overcome the drawbacks associated with adhesive matter,
such as interference between electrodes, dirt on hair and scalp, and the amount of time required to reduce
the impedance to acceptable values [112]. These dry EEG electrodes may be sub-categorized into invasive
EEG electrodes and non-invasive EEG electrodes. The invasive EEG electrodes have spike array pillars
that make direct contact with the scalp, or penetrate slightly into the epidermis of the brain. The microscale
pillars may be made of a variety of materials such as silicon [113,114], carbon nanotube (CNT) [115],
titanium, or conductive polymer (CP) [116] (Figure 6). These invasive EEG electrodes have been used for
chronic experiments in brain-computer interface (BCI) and BMI. However, they can cause skin or tissue
reactions triggered by immune response, and the impedance may be mismatched when the pillars are
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broken. To circumvent these issues, non-invasive EEG electrodes fabricated using micro- or macro-scale
conductive pins have been developed. They are convenient to use and can increase the contact area to
reduce impedance without penetration. Chen et al. introduced flexible polymer electrodes fabricated
with ethylene propylene diene monomer rubber [116], and Salvo et al. fabricated titanium/gold-coated
electrodes using a 3D printer [117]. Liao et al. developed dry electrodes with 17 spring contact probes [118]
and Peng et al. developed a parylene-based thin and flexible electrode [119] (Figure 7).
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4.2. ECoG Electrode

ECoG electrodes offer an attractive signal-acquisition method because they do not directly damage
the brain. ECoG electrodes are less invasive than penetrating electrodes and have better signal quality,
such as spatial resolution and SNR, than EEG electrodes. Thus, ECoG electrodes are widely used in
brain–machine interface to improve quality of life [121–123]. ECoG electrodes are usually 1–2.3 mm in
diameter, with a 10-mm inter-electrode distance, and are embedded in a 0.4–0.6-mm-thick Silastic®

base [124,125]. Smaller electrodes of 70–1500 µm diameter have been developed for dedicated research
in humans, with a higher electrode density of a 1–4-mm inter-electrode distance [126,127]. Several
groups have developed flexible and stretchable ECoG electrodes based on polymeric materials, such as
PDMS [128], polyimide [129], and Parylene-C [130]. These developments have evolved with advances
in material science and flexible electronics and have overcome the drawbacks of traditional penetrating
electrodes made from rigid material. The advances in flexible electronics are discussed in more detail
in the next paragraph.

4.3. Recent Neural Electrodes with Flexible and Stretchable Characteristics

Research into flexible electronics commenced almost 20 years ago [131,132] in response to the
demand for macroelectronics [133], such as paper-like flexible displays [134,135]. Flexible and stretchable
electronics realized their ultimate application potential in the late 2000s, when the concept of biologically



Materials 2018, 11, 1995 12 of 25

integrated electronics was proposed [136]. They can contribute to the establishment of long-term, intimate
bioelectronic interfaces, including epidermal electronics, for vital sign monitoring [137–139], BMIs with
ECoG [140,141] and EMG [142] electrocardiogram mapping devices [143,144], and smart or minimally
invasive surgical tools [145,146] (Figure 8). In applying such bioelectronic interfaces, it is of the utmost
importance that they match with the soft and curvilinear tissues of the biological system. In particular,
when flexible electronics are applied to BMIs, they must overcome challenges pertaining to the following
issues: first, the electrodes should have sufficient performance capacity to detect an electrical potential
of several tens µV; second, electrode arrays should have high spatial properties regarding brain activity
in vivo; third, the substrate should be ultra-thin to ensure that the electronics impose minimal stresses
on the brain; and finally, a high conformal coverage is required between the electrodes and the tissue.
Recently, these bioelectronic interfaces have been further combined with wireless transmission, such as
Bluetooth and near field communication (NFC) [147,148], and they can also function in an aqueous
environment [149]. They have proven useful in diagnosis and homecare systems owing to their good
portability and wearability [150]. Bioelectronic interfaces with tripolar concentric rings and capacitive
electrodes have recently been introduced, and are placed on the auricle and mastoid, locations that
are non-invasive and provide unique electrical isolation, compared with previously used scalp regions,
thus improving the SNRs of weak EEG signals [151].Materials 2018, 11, x FOR PEER REVIEW  13 of 26 
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Figure 8. Applications of flexible and stretchable electronics (a) Epidermal electronics on PDMS. Image of
a demonstration platform for multifunctional electronics and a commercial temporary transfer tattoo onto
skin [137], Copyright 2011, Science Publication; (b) brain-machine interface on polyamide. Electrode arrays
placed on the visual cortex [141], Copyright 2011, Nature Publication; (c) electrocardiogram mapping
devices on Ecoflex. Sensor web with no slip page up to ∼22% strain [143], Copyright 2012, National
Academy of Sciences; (d) smart or minimally invasive surgical tools on PDMS. Multifunctional inflatable
balloon catheters [145], Copyright 2011, Nature Publication.
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5. The Selection of Materials and Surface Modification

Research into neural electrodes has hitherto been conducted across a multitude of aspects,
particularly from the material perspective. To measure high-quality vital signals, the electrode must be
placed in direct contact with, or implanted into, the cell or anatomical part, and the electrode must
be composed of a biocompatible material that does not cause an immune response. Additionally,
much research has been conducted with a view to forming various nanostructures on the electrode,
and selecting the electrode material for optimum functionality and electrochemical characteristics.
The ensuing discussion will examine the types and characteristics of the materials that constitute the
electrodes themselves, and surface modification using nanostructures synthesized on the electrode.

5.1. The Materials of Substrate and Electrode Parts

Conventional penetrating electrodes were primarily fabricated using rigid materials. Owing
to advances in materials engineering, high-density, flat-shaped electrodes, such as EEG and ECoG,
have been developed in the form of non-penetrating electrodes. The electrodes used for measuring
biological signals should pose no harm to the cells or the human body. As such, it is recommended
that the substrate and the metal parts constituting the electrode are composed of materials that do not
trigger chronic reactions.

In recent years, several electrodes fabricated on flexible substrates have been developed,
and long-term biostability in real recording environments has been studied. The electrode’s composition
may be roughly divided into the substrate and the electrode, and this review will adhere to
these conventions.

The substrate of the electrode to be implanted in the brain must have sufficient rigidity to facilitate
penetration; if it is too rigid, however, it can damage the brain tissue, which has a Young’s modulus
of around 3 kPa. It is imperative, therefore, to use a material that has a moderate Young’s modulus.
Several soft substrate materials have been found to satisfy these constraints (Table 1), including
SU-8 [152,153], polydimethylsiloxane (PDMS) [154], polyimide (PI) [155], and poly(chloro-p-xylylene)
(parylene C) [75,156]. The moderate Young’s modulus of these soft materials renders them suitable for
use as substrates for fabricating electrodes that can be implanted in the brain without causing damage
to the tissue. In this regard, studies are performed to use shape memory polymers (parylene-C +
poly(vinyl alchohol) (PVA)) [94], liquid crystal polymers [157], and nanocomposites (cellulose nanofiber
network + polyvinyl acetate matrix) [158] that can modulate Young’s modulus as substrate materials.
Those studies have aimed at longterm signal recording regardless of the rigidity of the substrate
in neural signal recording. In general, neural electrodes that measure brain signals in an in vivo
environment were capable of stable signal measurement for several days to several weeks [1,159–162].
Recently, electrodes made with SU-8 as a substrate material have been used for recording single-unit
spikes for up to 8 months [163].

Table 1. Properties of substrate materials.

Electrode Material Young’s Modulus (GPa) Toxicity Reference

SU-8 2.0 Non-toxic [152,153]
PDMS 0.00132–0.00297 Non-toxic [154]

PI 2.5 Non-toxic [155]
Parylene C 2.76 Non-toxic [75,156]

Moreover, the metal used in the electrode should have good electrical conductivity properties
for electrical signal transmission, with no toxicity, considering its long-term implantation in the brain.
Studies (Table 2) have also been conducted on copper (Cu) [164], gold (Au) [165–167], platinum
(Pt) [168–173], silver (Ag) [58], titanium (Ti) [174], tungsten (W) [175], indium-tin-oxide (ITO) [176] and
graphene [177] which are the most commonly used materials used in fabricating electrodes. All these
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materials have good electrical conductivity properties at room temperature, but copper and silver are
toxic when implanted in the brain, rendering them unsuitable for use as in nerve electrodes.

Table 2. Properties of electrode materials.

Electrode Material Electrical Conductivity (at 20 ◦C, S/m) Toxicity Reference

Copper (Cu) 5.96 × 107 Toxic [164]
Gold (Au) 4.10 × 107 Non-toxic [165–167]

Platinum (Pt) 9.43 × 106 Non-toxic [168–173]
Silver (Ag) 6.30 × 107 Toxic [58]

Titanium (Ti) 2.38 × 106 Non-toxic [174]
Tungsten (W) 1.79 × 107 Non-toxic [175]

Indium-tin-oxide 1.3 × 104 Non-toxic [176]
Graphene 1.0 × 102 Non-toxic [177]

5.2. Surface Modification for Enhancing Electrode Impedance

As mentioned above, neural electrodes have been studied extensively, particularly in terms of
material. Surface modification using nanostructures is applied to the surfaces of electrodes to enhance
their functionality. This section reviews the studies that have been conducted into nanostructure
fabrication for improving electrical properties. An important characteristic for consideration in
measuring neural signals is low electrical impedance. Generally, neural electrodes have a smaller
electrode size, which can increase the spatial resolution of the neural signal (signal selectivity).
However, a smaller electrode size is associated with larger electrode impedance, which in turn
increases the noise of the signal (signal sensitivity). As such, maximization of the electrochemical
surface area (ESA) of electrochemical reactions, while simultaneously maintaining the geometrical
surface area (GSA), offers a means of reducing electrical impedance.

The modification of electrode surfaces uses inorganic, organic, and hybrid composite materials
(Table 3 and Figure 9). First, inorganic materials may be classified into metal-based coatings, such as
platinum black [170] and iridium oxide [178], and metal nanostructure coatings that cover various types
of metal nanostructure. Metal nanostructures may be classified into nanopillar [169], nanorod [179],
nanoflake [166], and nanograin [165] shapes. They are formed on the surface of the electrode,
to maximize the ESA and reduce impedance when the GSA is equivalent.

Table 3. Coating materials and surface modification techniques for enhancing electrode impedance.

Material Surface Modification Technique References

Inorganic Metal coating [170,178]
Metal nanostructure coating [165,167,169,179]

Organic Carbon based material coating [156,180–183]
Hybrid Composite material coating [184]

Second, with regard to organic materials, carbon-based materials, such as CNTs and graphene,
have also been investigated as viable options for coating neural electrodes. CNTs may be divided into
single-walled nanotubes (SWNTs) [156] and multi-walled nanotubes (MWNTs) [180–183], and these
materials boast multiple advantages, including mechanical stability, ESA versus GSA, electrical
properties, chemical stability, and biocompatibility. Graphene also has high electrical conductivity,
high elastic modulus and high electron mobility. It can be used as a single layer over a large area,
and may be transferred to a soft substrate.

Third, in recent years, studies have sought to moderate electrode impedance by coating the
electrodes with hybrid composite materials, in a bid to overcome the limitations associated with
single-material coating. Kim et al. [184] also synthesized gold nanoparticles to fabricate the hierarchical



Materials 2018, 11, 1995 15 of 25

structure after coating with CNT. This method may facilitate the fabrication of a neural electrode that
maximizes increased ESA without simultaneously increasing GSA.Materials 2018, 11, x FOR PEER REVIEW  16 of 26 
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(a) Electrode modified with CNTs by electrodeposition [180], Copyright 2008, Nature Publishing;
(b) electrode modified with gold nanograins [165], Copyright 2013, WILEY-VCH Verlag; (c) electrode
modified with platinum nanopillars [169], Copyright 2012, Nature Publishing; (d) electrode modified
with CNT-Au nanocomposite hierarchical structures [184], Copyright 2017, Elsevier.

6. Conclusions and Perspectives

Since the advent of neuronal electrodes, many studies have attempted to interpret the signals
accepted by a neural electrode. The development of MEMS and micromachining technologies has
reduced the size of electrodes, and a variety of designs and materials have been created to record
many selective, low-noise signals. Here, we divided the neuronal signal into three types: the MEA
electrode, which records neuronal signals in vitro; the penetrating-type electrode, which measures
signals in vivo, particularly in the brain; and the non-penetrating type, which records from on or
beneath the scalp. We examined the main issues related to the neural electrode: sensitivity (SNR),
selectivity, and biocompatibility. The density of all electrode types has been increased, and various
functions have been added. Base materials are becoming soft and stretchable to match the mechanical
properties of human tissue, and electrode interfaces require higher conductivity and biocompatibility.
Additionally, various electronic devices have been added, and functional strategies, such those for drug
delivery, have been introduced. The electrode interfaces have been applied to new materials, such as
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conductive polymers and nanomaterials. Through these advances, neural electrodes have improved
sensitivity and selectivity and have increased the recording period by improving biocompatibility.

The greatest demand for neural interface technology is the BMI, which connects the brain and a
machine. This technology provides new hope to those who have lost part of their body by enabling
the user to manipulate the artificial body through a neural interface. This technology is emerging
as a new paradigm for input devices, such as keyboards and touchpads. However, some challenges
remain, such as an inadequate understanding of the brain and its mechanisms, the chronic separation
of adhesive electrodes, a low SNR, and inflammation associated with invasive electrodes. The previous
decades of research and effort will allow us to realize the perfect neural interface.
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