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ABSTRACT
Aims/Introduction: To compare the application value of different machine learning
(ML) algorithms for diabetes risk prediction.
Materials and Methods: This is a 3-year retrospective cohort study with a total of
3,687 participants being included in the data analysis. Modeling variable screening and
predictive model building were carried out using logistic regression (LR) analysis and 10-
fold cross-validation, respectively. In total, six different ML algorithms, including random
forests, light gradient boosting machine, extreme gradient boosting, adaptive boosting
(AdaBoost), multi-layer perceptrons and gaussian naive bayes were used for model
construction. Model performance was mainly evaluated by the area under the receiver
operating characteristic curve. The best performing ML model was selected for
comparison with the traditional LR model and visualized using Shapley additive
explanations.
Results: A total of eight risk factors most associated with the development of diabetes
were identified by univariate and multivariate LR analysis, and they were visualized in the
form of a nomogram. Among the six different ML models, the random forests model had
the best predictive performance. After 10-fold cross-validation, its optimal model has an
area under the receiver operating characteristic value of 0.855 (95% confidence interval
[CI] 0.823–0.886) in the training set and 0.835 (95% CI 0.779–0.892) in the test set. In the
traditional LR model, its area under the receiver operating characteristic value is 0.840
(95% CI 0.814–0.866) in the training set and 0.834 (95% CI 0.785–0.884) in the test set.
Conclusions: In the real-world epidemiological research, the combination of traditional
variable screening and ML algorithm to construct a diabetes risk prediction model has
satisfactory clinical application value.

INTRODUCTION
With the continuous changes in lifestyle and eating habits, the
incidence of diabetes increases year by year. Meanwhile, dia-
betes has become one of the most important chronic non-
communicable diseases in the world, with huge impacts on the
health of humans. According to the latest statistics of the

International Diabetes Federation1, there were approximately
536.6 million people (aged 20–79 year) with diabetes worldwide
in 2021, and this number will rise to 783.2 million in 2045.
Global diabetes-related health spending was estimated at
$US966 billion in 2021, and it is projected to reach
$US1,054 billion by 20451. Unfortunately, more than four out
of five people with diabetes (80.6%, 432.7 million) live in low-
and middle-income countries. According to International Dia-
betes Federation statistics, in 2021, a total of 141 million adults
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(aged 20–79 years) in China had diabetes, and more than half
of them were undiagnosed2. It can be seen that the current sit-
uation of diabetes is very serious. Therefore, early identification
and intervention of diabetes risk factors plays a crucial role in
preventing the occurrence and development of diabetes.
Modern medicine is faced with a large amount of data col-

lection and analysis, as well as the clinical challenge of applying
the acquired knowledge to solve complex problems3,4. Machine
learning (ML) methods can use recognized patterns to predict
new data, which is conductive to finding difficult-to-recognize
patterns from a complex combination of multiple clinical mark-
ers5. In the medical field, the most commonly used ML meth-
ods are random forests (RF), light gradient boosting machine,
extreme gradient boosting, adaptive boosting, multi-layer per-
ceptrons and gaussian naive bayes. The advantages of these
technologies are that they can capture the non-linear relation-
ship in the data, and improve the accuracy and effectiveness of
the model. Many studies have proven that they have good per-
formance in disease prediction and diagnosis6–17.
It should be noted that there was controversy about ML

models and traditional regression models in predicting the risk
of disease. Studies have shown that ML models have better pre-
dictive performance than traditional regression models16–19.
There are also studies showing that, compared with traditional
methods, the predictive performance of ML is not better than
that of conventional regression models20,21. There is still dis-
agreement on whether to choose ML algorithm or conventional
regression analysis for chronic disease prediction model con-
struction in clinical work. The reason for the difference in pre-
dicting risk between the two methods is related to the size of
the dataset, the type of variables and the incidence of positive
events. Compared with classical modeling techniques, such as
logistic regression (LR), modern modeling techniques, such as
support vector machines, neural networks and RF, might
require more than 10-fold the number of events per variable to
achieve a stable area under the receiver operating characteristic
(AUROC) curve and predictive advantages22. This means that
this modern technique is only suitable for medical prediction
problems when there are very large datasets.
In fact, in real-world studies, there are many data with complex

variables and few positive events. Therefore, we urgently need to
compare the predictive performance of ML algorithms and tradi-
tional regression analysis on these data, so as to select the best
performing predictive model. The purpose of the present study
was to evaluate the performance of several commonly used ML
algorithms in diabetes risk prediction and compare them with
traditional LR models. Our hypothesis was that ML classifiers
have equally strong predictive power and clinical utility in dealing
with real-world epidemiological studies.

MATERIALS AND METHODS
Participants
The data came from the chronic disease research database of
Wuyishan City, Fujian Province, China. This is a retrospective

cohort study that belongs to the Fujian subcohort of the Chi-
nese Diabetic Tumor Risk Assessment Study (REACTION
study)23. The study period was from March 2011 to January
2015. The study used a cluster sampling method to randomly
select approximately 4,314 residents in the area, which has a
typical representative. From March to December 2011, through
a baseline survey, the distribution of diabetes among residents
in this area was roughly understood. To further explore risk
factors associated with the development of diabetes, we carried
out a retrospective analysis of all residents who were followed
up for approximately 36 months in the region. All participants
met the following inclusion criteria: (i) there was no limit to
men and women, with age >40 years; and (ii) the baseline and
follow-up data were complete and not missing. Exclusion crite-
ria were: (i) patients with known diabetes at baseline (n = 268);
(ii) patients with newly diagnosed diabetes at baseline
(n = 359); (iii) taking drugs that affect glucose metabolism
before the examination24, such as long-term antipsychotics,
antidepressant treatments, statins or glucocorticoid treatments
and so on; (n = 0); and (iv) suffering from diseases that affect
glucose metabolism24, such as polycystic ovary syndrome and
so on (n = 0). A total of 3,687 participants were finally
included, and the average follow-up time was approximately
36 months. At the end of the follow-up period, anthropometric
measurements, blood tests and auxiliary tests for each patient
were carried out again. This study was approved by the Ethics
Committee of Fujian Provincial Hospital (ID: K2021-01-026)
and it conforms to the provisions of the Declaration of Hel-
sinki. The detailed research flowchart is shown in Figure 1.

Data collection
Questionnaire investigation
All participants completed a standard questionnaire to collect
the information, including age, sex, family history of diabetes,
education level, marital status, comorbidity (impaired fasting
glucose [IFG], impaired glucose tolerance [IGT], hypertension,
dyslipidemia, fatty liver, abdominal obesity, overweight, obesity,
osteopenia and osteoporosis), personal history (drinking history,
smoking history, tea drinking history and load exercise) and
eating habits (seafood, fruits, eggs, dairy products and soy prod-
ucts). The history of smoking or alcohol was classified into
three levels, namely current (smoking or drinking alcohol in
the past 6 months), past (smoking or drinking alcohol in the
past for > 6 months) and never. The first two levels were
defined as having a history of smoking or alcohol. Tea drinking
history was divided into three levels: never, occasionally and
often. Load exercise includes playing basketball, swimming,
running and so on for more than three times a week, at least
30 min each time. Past medical history should be definitively
diagnosed by a clinician in a secondary or tertiary hospital.

Anthropometric measuring
Anthropometric measurements included height, weight, waist
circumference, hip circumference and neck circumference.
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Baseline data collection
n=4,314

2011/3~2011/12

Questionnaire, physical examination,
blood test, and auxiliary examination

No diabetes at baseline
n=3,687

3 years of follow-up
2011/12~2014/12

Newly onset diabetes
n=222

Follow-up data collection
2014/12~2015/1

Univariate and multivariate LR analysis

Model construction 
and screening

Nomogram

RF model
Model performance 

evaluation and comparison

Exclude (n=627):

1. Baseline with known diabetes
(n=268);

2. Baseline newly diagnosed
diabetes (n=359);

3. Take drugs that affect glucose
metabolism before the
examination (n=0);

4. Suffering from diseases that
affect glucose metabolism(n=0)

AdaBoostRF LightGBMXGBoost MLP GNB LR model

Model optimization and 
visualization

Figure 1 | Flowchart of the cohort study. AdaBoost, adaptive boosting; GNB, Gaussian naive bayes; LightGBM, light gradient boosting machine; LR,
logistic regression; MLP, multi-layer perceptrons; RF, random forests; XGBoost, extreme gradient boosting.
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Participants wore light clothing and no shoes. The researchers
measured the participants’ height and weight using calibrated
height-weight scales. Waist circumference was measured at the
waist level transumbilical point; neck circumference was mea-
sured at the junction of the superior border of the seventh
cervical vertebra at the back of the neck and the inferior
junction of the anterior Adam’s apple; hip circumference was
measured at the most convex point of the pubic symphysis
and gluteus maximus. Auxiliary examinations included blood
pressure, bone mineral density and brachial-ankle pulse wave
velocity. The participants received the blood pressure measure
of the right upper arm in a sitting position after resting for
at least 10 min. The blood pressure was measured three times
with an Omron sphygmomanometer (Kyoto, Japan), and the
average values were taken for statistical analysis. Brachial-
ankle pulse wave velocity was measured by Japan Omron BP-
203RPEIII arteriosclerosis doppler ultrasound automatic ana-
lyzer. According to the automatic display of the instrument,
the brachial-ankle pulse wave velocity values of the left and
right sides were obtained, and the average value of both sides
was taken for statistical analysis. The left heel bone was
selected for bone mineral density measurement, and the
Achilles Express ultrasonic bone density analyzer (GE Lunar
Corp., Madison, WI, USA) was used for bone mineral density
measurement.

Blood detection
All participants fasted overnight for at least 10 h, the blood
samples were collected early in the morning and the standard
75-g oral glucose tolerance test was carried out next. Blood bio-
chemical indicators included fasting plasma glucose (FPG), 2-h
plasma glucose (2hPG) after the 75-g oral glucose tolerance test,
fasting serum insulin, high-density lipoprotein cholesterol, low-
density lipoprotein cholesterol, total cholesterol, triacylglycerol,
alanine aminotransferase, aspartate aminotransferase, gamma
glutamyl transpeptidase, alkaline phosphatase and uric acid.
According to the (FPG 9 fasting serum insulin) / 22.5, the
insulin resistance index was calculated. The blood glucose was
determined by the glucose oxidase method. The remaining
blood samples were detected by chemiluminescence methods
with an autoanalyzer. Data collection and analysis were com-
pleted by two collaborators (Y Mao and Z Zhu), and disputes
were resolved by discussion.

Definition and classification of variables
According to the guideline for the prevention and treatment of
type 2 diabetes in China (2020 edition)24, diabetes is defined as
FPG ≥7.0 mmol/L and/or 2hPG ≥11.1 mmol/L; IFG is defined
as 6.1 mmol/L ≤ FPG < 7.0 mmol/L and 2hPG <7.8 mmol/L;
and IGT is defined as FPG <7.0 mmol/L and 7.8 mmol/
L ≤ 2hPG < 11.1 mmol/L; IFG and IGT are known as predia-
betes. See Table S1 for classification and definitions of other
variables.

Variable screening and traditional regression model construction
Logistic regression, a commonly used statistical model, uses
logistic functions to model binary dependent variables. It not
only provides the probability of occurrence of the predicted
outcome, but also additional information on the prediction
results, such as odds ratio (OR), 95% confidence interval (CI)
and so on25. In the present study, univariate and multivariate
LR analysis were used to screen independent risk factors for
diabetes, and visualized risk factors with P < 0.05 in multivari-
ate analysis in the form of a nomogram. The statistical defini-
tion of a nomogram is the geometric expression of a
mathematical formula, which graphically shows the interaction
and superposition of predictors, and provides patients with an
individualized disease risk assessment26.
Significant (P < 0.05) risk factors in multivariate analysis

were used as modeling variables to construct a traditional LR
model, and 25% of the internal data were randomly selected as
the test set for validation.

ML model
In this study, first, a 10-fold cross-validation approach was
used to build the model with the best predictive performance.
Second, the data were split into training set (validation set)
and test set (25%). The best ML model was further optimized
by 10-fold cross-validation for better performance; 10-fold
cross-validation is currently a preferred technique in computer
science27,28, and it randomly divided all samples in the data
into 10 mutually exclusive subsets of similar size and number
of events. The optimal model should be trained and tested 10
times, nine subsets were selected as the training set and valida-
tion set each time, and the remaining subsets were used as the
test set. Afterwards, Shapley additive explanation (SHAP) was
used to visually explain the effects of important variables on
the model. SHAP is a game theory-based framework29 that has
recently been shown to be effective in explaining various ML
models30–32. SHAP actually attributes the model output value
to the Shapley value of each feature. Intuitively, the contribu-
tion of a feature to an outcome can be explained by estimating
the Shapley value of each feature. The Shapley value can intu-
itively reflect the influence of the feature in each sample, and
further understand whether the feature is a protective factor or
a risk factor of the model. Finally, our algorithm ranked eight
risk factors based on RF by variable importance and was com-
pared with the SHAP method.
Model performance evaluation was mainly carried out by the

AUROC, sensitivity, specificity and negative predictive value.
The ML classifier with the largest AUROC value was selected
as the best model and compared with the traditional nomo-
gram model. As an indicator of comprehensive evaluation sen-
sitivity and specificity, AUROC provides a more intuitive
standard for judging the accuracy of prediction models33. The
larger the AUROC is, the higher the accuracy of its prediction
is.
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Statistical analysis
Statistical analysis was carried out with IBM SPSS software
(version 25.0 for windows; SPSS Inc., Chicago, IL, USA), R
software (version 3.6.3; The R Foundation for Statistical Com-
puting, Vienna, Austria) and Python software (version 3.7.0;
Beaverton, OR, USA). Categorical variables were expressed as
frequency (n/N, %). Baseline data analysis was carried out using
the v2-test, and two-sided P < 0.05 was considered statistically
significant.

RESULTS
Demographics features
A total of 3,687 participants were included in the present study,
ranging in age from 41 to 79 years. In total, 222 patients devel-
oped diabetes after 3 years of follow up. Combined with litera-
ture reading and expert knowledge, 45 risk factors associated
with the occurrence of diabetes were finally identified
(Table S1). Table 1 shows a comparison of baseline characteris-
tics between diabetes and non-diabetes patients.

Variable screening and model construction
Univariate and multivariate LR analyses were used for feature
variable screening (Table S2). According to the LR analysis
results, eight factors, including age, family history, IFG, IGT,
hypertension, triacylglycerol, alanine aminotransferase and

gamma glutamyl transpeptidase, were finally selected as model-
ing variables (see Figures 2a,b for details).
Based on the 10-fold cross-validation, a diabetes prediction

model was built using six different ML classifiers (Figure 2c,d).
According to AUROC value ranking, in the training set, the
ML classifier with the best model performance was RF
(AUROC 0.848, 95% CI 0.820–0.876). Also in the validation
set, the ML classifier with the best model performance was RF
(AUROC 0.826, 95% CI 0.741–0.912). Therefore, we hold the
view that among all ML classifiers, the RF model has the best
predictive performance. Table 2 presents the prediction perfor-
mance comparison of six different ML classifiers. In the model
construction, the definitions and parameter settings of six dif-
ferent ML classifiers are detailed in Table S3. Furthermore,
based on the univariate and multivariate LR analyses results, a
traditional diabetes prediction model was also constructed. In
the training set (full data), the model has an AUROC value of
0.840 (95% CI 0.814–0.866), and in the test set (random 25%
data), the model has an AUROC value of 0.834 (95% CI
0.785–0.884; see Figure S1 for details). The performance com-
parison of the best ML model (RF model) and the traditional
LR model is shown in Table 3.
To further improve the performance and accuracy of the

model, 10-fold cross-validation was used to train and test the
RF model. Figure 3a–c show the training process of the RF

Table 1 | Baseline characteristic analysis of 3,687 patients with or without type 2 diabetes mellitus

Baseline characteristics Non-diabetes Diabetes P Baseline characteristics Non-diabetes Diabetes P
n = 3,465 n = 222 n = 3,465 n = 222

Demographic characteristics Laboratory examination
Sex TG (mmol/L)

Female 1880 (54.26) 119 (53.60) 0.850 <1.7 2,155 (62.19) 87 (39.19) <0.001
Male 1,585 (45.74) 103 (46.40) ≥1.7 1,310 (37.81) 135 (60.81)

Age (years) TC (mmol/L)
<50 1,168 (33.71) 36 (16.22) <0.001 <5.2 1731 (49.96) 97 (43.69) 0.070
50–60 1,420 (40.98) 88 (39.64) ≥5.2 1734 (50.04) 125 (56.31)
60–70 659 (19.02) 72 (32.43) HDL-C (mmol/L)
≥70 218 (6.29) 26 (11.71) ≥1.0 3,118 (89.99) 196 (88.29) 0.416

Family history <1.0 347 (10.01) 26 (11.71)
No 3,242 (93.56) 200 (90.09) 0.044 LDL-C (mmol/L)
Yes 223 (6.44) 22 (9.91) <3.4 2,432 (70.19) 136 (61.26) 0.005

Education level ≥3.4 1,033 (29.81) 86 (38.74)
Below junior high school 1,079 (31.14) 78 (35.14) 0.421 UA (lmol/L)
Junior high school 950 (27.42) 60 (27.03) ≤420 2,708 (78.15) 163 (73.42) 0.100
Above junior high school 1,436 (41.44) 84 (37.84) >420 757 (21.85) 59 (26.58)

Marital status FINS
Married 3,296 (95.12) 209 (94.14) 0.514 ≤5 1,562 (45.08) 59 (26.58) <0.001
Others 169 (4.88) 13 (5.86) 5–10 1,519 (43.84) 103 (46.40)

Personal history >10 384 (11.08) 60 (27.03)
Smoking history IR

No 2,350 (67.82) 161 (72.52) 0.145 <2.69 3,148 (90.85) 162(72.97) <0.001
Yes 1,115 (32.18) 61 (27.48) ≥2.69 317 (9.15) 60(27.03)
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model. When the training results of the training set and valida-
tion set tend to be consistent, the prediction performance of
the RF model is the best (Figure 3d). Its optimal AUROC value
is 0.855 (95% CI 0.823–0.886) in the training set, 0.821 (95%
CI 0.721–0.921) in the validation set and 0.835 (95% CI 0.779–

0.892) in the test set. At the same time, its optimal parameters
are set as: criterion gini, max depth 4, min impurity decrease 0
and n estimators 200. Figure 3e is the variable importance
ranking based on the RF algorithm. Figure 3f is a visualization
of the RF model. As shown in Figure 3f, the larger the Shapley

Table 1. (Continued)

Baseline characteristics Non-diabetes Diabetes P Baseline characteristics Non-diabetes Diabetes P
n = 3,465 n = 222 n = 3,465 n = 222

Drinking history VAI
No 1,500 (43.29) 102 (45.95) 0.439 <1 783 (22.60) 30 (13.51) <0.001
Yes 1965 (56.71) 120 (54.05) 1–2 1,264 (36.48) 59 (26.58)

Tea drinking history 2–3 665 (19.19) 48 (21.62)
Never 1,323 (38.18) 85 (38.29) 0.920 3–4 347 (10.01) 34 (15.32)
Occasionally 1,103 (31.83) 73 (32.88) ≥4 406 (11.72) 51 (22.97)
Often 1,039 (29.99) 64 (28.83) Anthropometric characteristics

Load exercise BMI (kg/m2)
No 2,905 (83.84) 188 (84.69) 0.740 <24 1765 (50.94) 70 (31.53) <0.001
Yes 560 (16.16) 34 (15.32) 24–28 1,327 (38.30) 97 (43.69)

Comorbidity (yes) ≥28 373 (10.77) 55 (24.78)
IFG 285 (8.23) 38 (17.12) <0.001 HC (cm)
IGT 536 (15.47) 131 (59.01) <0.001 <95 2059 (59.42) 98 (44.14) <0.001

Hypertension 423 (12.21) 66 (29.73) <0.001 95–105 1,302 (37.58) 102 (45.95)
Dyslipidemia 671 (19.37) 67 (30.18) <0.001 ≥105 104 (3.00) 22 (9.91)
Fatty liver 82 (2.37) 14 (6.31) <0.001 NC (cm)
Abdominal obesity 653 (18.85) 94 (42.34) <0.001 <35 2,221 (64.10) 111 (50.00) <0.001
Overweight 1,262 (36.42) 102 (45.95) 0.004 ≥35 1,244 (35.90) 111 (50.00)
Obesity 343 (9.90) 49 (22.07) <0.001 WHtR
Osteopenia 592 (17.09) 51(22.97) 0.025 <0.5 1,164 (33.59) 36 (16.22) <0.001
Osteoporosis 100 (2.89) 12 (5.41) 0.034 ≥0.5 2,301 (66.41) 186 (83.78)

Laboratory examination WHR†

ALT (U/L) <0.85/0.9 1,508 (43.52) 56 (25.23) <0.001
≤25 2,761 (79.68) 138 (62.16) <0.001 ≥0.85/0.9 1957(56.48) 166(74.78)
25–50 608 (17.55) 59 (26.58) Auxiliary examination
>50 96 (2.77) 25 (11.26) SBP (mmhg)

AST (U/L) <140 2,343 (67.62) 101 (45.50) <0.001
≤20 1823 (52.61) 93 (41.89) <0.001 ≥140 1,122 (32.38) 121 (54.51)
20–40 1,516 (43.75) 99 (44.60) DBP (mmhg)
>40 126 (3.64) 30 (13.51) <90 2,916 (84.16) 178 (80.18) 0.118

GGT (U/L) ≥90 549 (15.84) 44 (19.82)
≤30 2,265 (65.37) 96 (43.24) <0.001 BaPWV (cm/s)
30–60 771 (22.25) 71 (31.98) ≤1,400 1710 (49.35) 54 (24.32) <0.001
>60 429 (12.38) 55 (24.78) 1,400–1,800 1,268 (36.60) 93 (41.89)

ALP (U/L) >1,800 487 (14.06) 75 (33.78)
≤100 2,849 (82.22) 156 (70.27) <0.001 Eating habits (yes)
100–125 454 (13.10) 46 (20.72) Seafood 3,214 (92.76) 200 (90.09) 0.141
>125 162 (4.68) 20 (9.01) Fruit 3,241 (93.54) 199 (89.64) 0.024

Non-HDL-C (mmol/L) Egg 2,937 (84.76) 176 (79.28) 0.029
<4.1 2,131 (61.50) 108 (48.65) <0.001 Soy products 2,735 (78.93) 173 (77.93) 0.722
≥4.1 1,334 (38.50) 114 (51.35) Dairy products 1706 (49.24) 94 (42.34) 0.046

†Waist-to-hip ratio (WHR) was calculated as waist circumference divided by hip circumference. We considered abdominal obesity as WHR ≥0.9 in
male or WHR ≥0.85 in female. ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; baPWV, brachial-ankle pulse
wave velocity; BMI, body mass index; DBP, diastolic blood pressure; FINS, fasting serum insulin; GGT, gamma glutamyl transpeptidase; HC, hip cir-
cumference; HDL-C, high-density lipoprotein cholesterol; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; IR, insulin resistance; LDL-C,
low-density lipoprotein cholesterol; NC, neck circumference; Non-HDL-C, non-high-density lipoprotein cholesterol; SBP, systolic blood pressure; TC,
total cholesterol; TG, total triglyceride; UA, uric acid; VAI, visceral adiposity index; WHtR, waist-to-height ratio.
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Figure 2 | Logistic regression analysis and model construction. (a,b) Feature variable screening by logistic regression (LR) analysis. (a) Nomogram of
diabetes risk factors. (b) Forest plot of diabetes risk factors. According to the LR analysis results, eight factors, including age, family history, impaired
fasting glucose (IFG), impaired glucose tolerance (IGT), hypertension, triacylglycerol, alanine aminotransferase (ALT) and gamma glutamyl
transpeptidase (GGT) were finally selected as modeling variables. (c,d) Area under the receiver operating characteristic values of six different
machine learning models in training set and validation set. AdaBoost, adaptive boosting; AUC, area under the curve; CI, confidence interval; GNB,
Gaussian naive bayes; LightGBM, light gradient boosting machine; MLP, multi-layer perceptrons; OR, odds ratio; RF, random forests; ROC, receiver
operating characteristic; TG, total triglyceride; XGBoost, extreme gradient boosting.
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value of a variable is, the larger the SHAP value is and the
greater the probability of diabetes is. The red point in the figure
represents that the variable of the corresponding sample plays a
positive role in probability prediction, and the blue point plays
a negative role.

DISCUSSION
Artificial intelligence-based ML technology has been widely
used in the area of tumors and chronic diseases11,19,34–36. Obvi-
ously, this innovative method is an important tool in the field
of precision medicine, which can facilitate the selection of the
best diagnosis and treatment strategies. However, currently
there is little known about the value of ML algorithms in pre-
dicting the risk of developing chronic diseases. How to inter-
vene risk factors in the early stage of diabetes is the
fundamental way to achieve individualized optimal medical
care. In the present study, traditional variable screening meth-
ods and novel ML algorithms were combined to assess the risk
of developing diabetes after 3 years in the general population.
We found that the diabetes prediction model built based on
the ML algorithm has the same good prediction performance
as the traditional LR model.

In recent years, relevant literature has reported the positive
application of ML algorithms in diabetes risk prediction37–39. In
2019, Xiong et al.37 compared the ability of five different ML
methods in predicting diabetes risk factors, and the results
showed that combining ML methods could provide an accurate
diabetes risk prediction assessment model. Wang et al.39 devel-
oped and validated a predictive model without biochemical
parameters to identify individuals at high risk for diabetes. The
findings suggested that the artificial neural network classifier
based on demographic, lifestyle and anthropometric data was
an effective predictive model39. Birk et al.40 applied several ML
and statistical methods, combined with survey data from the
Food Frequency Questionnaire to calculate a global diet quality
score, and developed a predictive tool for screening for predia-
betes. Findings showed that the model had a positive predictive
effect. Furthermore, Zhang et al.41 developed a data mining
approach to characterize the risk of diabetes using a series of
ML models. The results show that ML has superior capabilities
in identifying risk factors and predicting outcomes over a large
range of data, and an increasing number of variables41. How-
ever, the aforementioned studies all have certain limitations.
First, these studies are cross-sectional surveys, so the model

Table 2 | Prediction performance comparison of six different machine learning classifiers on training and validation sets

ML classifiers Performance (95% CI)

AUROC Accuracy Sensitivity Specificity

Training set XGBoost 0.824 (0.795–0.853) 0.761 (0.748–0.774) 0.801 (0.780–0.822) 0.743 (0.726–0.759)
LightGBM 0.845 (0.816–0.873) 0.754 (0.735–0.773) 0.824 (0.806–0.843) 0.741 (0.721–0.761)
RF† 0.848 (0.820–0.876) 0.768 (0.759–0.777) 0.807 (0.793–0.821) 0.764 (0.753–0.775)
AdaBoost 0.830 (0.802–0.859) 0.762 (0.752–0.772) 0.795 (0.784–0.805) 0.754 (0.742–0.766)
GNB 0.820 (0.791–0.848) 0.730 (0.722–0.738) 0.805 (0.797–0.813) 0.719 (0.710–0.728)
MLP 0.838 (0.808–0.867) 0.764 (0.749–0.780) 0.807 (0.791–0.824) 0.761 (0.743–0.779)

Validation set XGBoost 0.813 (0.725–0.901) 0.756 (0.738–0.773) 0.820 (0.788–0.852) 0.738 (0.688–0.787)
LightGBM 0.813 (0.719–0.907) 0.746 (0.722–0.770) 0.797 (0.744–0.851) 0.754 (0.712–0.796)
RF‡ 0.826 (0.741–0.912) 0.761 (0.742–0.780) 0.820 (0.774–0.866) 0.759 (0.715–0.804)
AdaBoost 0.824 (0.739–0.909) 0.756 (0.740–0.772) 0.829 (0.794–0.864) 0.749 (0.701–0.797)
GNB 0.815 (0.731–0.899) 0.728 (0.715–0.741) 0.834 (0.776–0.893) 0.724 (0.673–0.774)
MLP 0.820 (0.728–0.913) 0.762 (0.744–0.780) 0.842 (0.804–0.881) 0.739 (0.681–0.797)

†Machine learning (ML) model with the best prediction performance in the training set is random forests (RF; sorted according to the size of the
area under the receiver operating characteristic [AUC] value). ‡ML model with the best prediction performance in the validation set is RF (sorted
according to the size of the AUC value). AdaBoost, adaptive boosting; CI, confidence interval; GNB, Gaussian naive bayes; LightGBM, light gradient
boosting machine; MLP, multi-layer perceptrons; RF, random forests; XGBoost, extreme gradient boosting.

Table 3 | Model performance comparison

Model RF model LR model

Variable Age, family history, IFG, IGT, hypertension, TG, ALT, GGT Age, family history, IFG, IGT, hypertension, TG, ALT, GGT
Training set AUROC: 0.855 (95% CI: 0.823–0.886) AUROC: 0.840 (95% CI, 0.814–0.866)
Test set AUROC: 0.835 (95% CI: 0.779–0.892) AUROC: 0.834 (95% CI, 0.785–0.884)

ALT, alanine aminotransferase; AUROC, area under the receiver operating characteristic; CI, confidence interval; GGT, gamma glutamyl transpeptidase;
IFG, impaired fasting glucose; IGT, impaired glucose tolerance; LR, logistic regression; RF, random forests; TG, total triglyceride.
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based on this data might not be able to accurately predict the
risk of diabetes or prediabetes in the future. Second, in terms
of algorithms, the algorithms used in some studies are relatively
old, so the latest method needs to be further refined. The pre-
sent study was a retrospective cohort study of approximately
36 months, with a total of 45 risk factors, which has strong
clinical reference significance for exploring disease risk factors
and building predictive models. We know that in exploring the
occurrence and development of chronic diseases, there are
strong correlations among many variables. Especially, as the
number of variables increases, the multicollinearity between
explanatory variables might cause various problems. In the pre-
sent study, a diabetes risk prediction model was constructed
using a novel ML algorithm. It was found that the prediction
models constructed by these six novel ML algorithms have
strong predictive value, among which the RF model has the
best prediction performance.
Random forests is a common ensemble learning model,

which can further improve the performance of the model by
synthesizing the classification results of multiple weak

classifiers42,43. Compared with other ML classifiers, RF has the
following advantages. First, the RF model has high accuracy,
strong generalization ability, fast operation speed and easy
implementation. Second, the RF algorithm is good at identify-
ing important relevant variables from high-dimensional feature
variables, eliminating redundant and irrelevant features, and
improving the predictive ability of the model. The two random-
ization processes (training sample randomization and feature
randomization) in the RF model make RF more advantageous
when dealing with high-dimensional data problems, and also
provide stronger generalization capabilities44. From predicting
postoperative complications in elderly head and neck squamous
cell carcinoma patients to identifying malignant pulmonary
nodules45,46, the ability of RF models to solve clinical problems
has received increasing attention.
In the present study, the feature importance ranking based

on the RF algorithm was used to screen the variables. By calcu-
lating the weight (the number of times the feature is used to
split nodes) of each feature in the model, the cover (the average
number of times a feature is covered by each split), gain (the
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average gain of each split) and other indicators, we can roughly
observe the variable dimension that features play an important
role in the model. The eight most influential variables were
screened from the 3,687 samples as variables to construct the
model. However, feature importance only provides the impor-
tant variable, rather than a judgment on the positive or nega-
tive effects of the results. Therefore, to better show the
interpretability of the model, we introduced SHAP.
By showing the performance of the model on the full dataset,

the SHAP method makes up for this shortcoming, giving both
the importance of the variables and the positive and negative
effects of the results. SHAP is a model post-exposure approach
that interprets complex ML models and quantifies the contribu-
tion of each feature to the predictions made by the model. In
the present study, the bar chart of the absolute value of the
Shapley value of each feature was shown on the whole dataset
after averaging, and the dispersion of the Shapley value on dif-
ferent features can also be plotted for each sample on the full
dataset. Dot plots imply the importance of each feature to bet-
ter help clinical researchers understand the role of each feature
in the model.
The significance of the present study is that it is a real-world

risk assessment cohort study based on 3,687 samples. By com-
paring the performance of six classic ML algorithms, the ML
model with the best predictive performance is screened and
compared with the traditional LR model. In a traditional ML
model, algorithms only rank the importance of variables. How-
ever, the extent to which these variables affected outcome
events could not be measured, which means that we were
unable to assess whether the risk factor had positive or negative
effects on the outcome event. To better interpret the results of
the ML model, in the present study, the SHAP method was
used to carry out a visual analysis of the RF model. The SHAP
method is a reliable method to make the output of RF models
clinically interpretable. In addition, this study combines tradi-
tional variable selection methods and ML algorithms. On the
one hand, it can well explain the relationship between variables
and outcome events. On the other hand, ML algorithms can
easily absorb new clinical data and continuously update and
optimization.
In fact, performance comparisons between ML algorithms

and traditional statistical analysis are highly dependent on the
nature of a given dataset. In the absence of a given dataset, we
cannot conclude whether one method is better than the other.
In real-event research, one method cannot be the best choice in
all situations, and the choice of which method can be used will
largely depend on the nature of the given dataset and the goals
of the researcher. When the primary goal is to analyze the rela-
tionship between risk factors and outcome events, traditional
statistical methods might be particularly useful. ML methods
can be particularly useful when there are significant correlations
between variables in a dataset or when the amount of data is
particularly large.

The present study also has the following limitations. First,
due to the epidemiological nature of this study, the possibility
of confounding cannot be completely eliminated. Second, the
risk factors included in this study are limited, and need to be
further improved and supplemented in future studies. Third, all
study participants were from the same center, so some cautions
should be exercised in summarizing our findings. In future
work, opportunities for multicenter collaboration and improved
data mining capabilities will provide more opportunities for
multicenter prospective studies.
The present study proved that ML models have predictive

performance as good as traditional statistical analysis. Most
importantly, this study can provide effective key information in
predicting the risk of developing diabetes, which guides the
research on other chronic diseases.
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Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1 | Traditional regression model construction.

Table S1 | Variables used for feature screening.

Table S2 | Univariate and multivariate logistic regression analysis in predicting risk factors of diabetes in the whole cohort.

Table S3 | Parameter settings and definitions for six different machine learning algorithms.
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