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A fully automated artificial 
intelligence method 
for non‑invasive, imaging‑based 
identification of genetic alterations 
in glioblastomas
Evan Calabrese  *, Javier E. Villanueva‑Meyer & Soonmee Cha

Glioblastoma is the most common malignant brain parenchymal tumor yet remains challenging 
to treat. The current standard of care—resection and chemoradiation—is limited in part due to 
the genetic heterogeneity of glioblastoma. Previous studies have identified several tumor genetic 
biomarkers that are frequently present in glioblastoma and can alter clinical management. Currently, 
genetic biomarker status is confirmed with tissue sampling, which is costly and only available after 
tumor resection or biopsy. The purpose of this study was to evaluate a fully automated artificial 
intelligence approach for predicting the status of several common glioblastoma genetic biomarkers 
on preoperative MRI. We retrospectively analyzed multisequence preoperative brain MRI from 199 
adult patients with glioblastoma who subsequently underwent tumor resection and genetic testing. 
Radiomics features extracted from fully automated deep learning-based tumor segmentations 
were used to predict nine common glioblastoma genetic biomarkers with random forest regression. 
The proposed fully automated method was useful for predicting IDH mutations (sensitivity = 0.93, 
specificity = 0.88), ATRX mutations (sensitivity = 0.94, specificity = 0.92), chromosome 7/10 
aneuploidies (sensitivity = 0.90, specificity = 0.88), and CDKN2 family mutations (sensitivity = 0.76, 
specificity = 0.86).

Glioblastoma is the most common brain parenchymal malignancy in adults and carries a guarded prognosis 
despite recent advances in therapy1,2. With the growing success of genetically targeted precision therapy for other 
solid malignancies, there is hope that glioblastoma may similarly benefit from this approach3,4. Several prior 
studies have identified a number of potentially targetable mutations, copy number alterations, and epigenetic 
variants that are commonly present in glioblastomas5. At least two of these genetic biomarkers confer improved 
survival and can alter clinical management: mutations in isocitrate dehydrogenase (IDH), and epigenetic silenc-
ing of O6-methylguanine-DNA methyltransferase (MGMT)6–8.

IDH mutations are identified in approximately 5–13% of glioblastomas and are associated with a signifi-
cantly better prognosis, particularly when resection includes the non-enhancing tumor component, which is 
traditionally left unresected6,9–11. Similarly, epigenetic silencing of the DNA repair enzyme MGMT by promoter 
hypermethylation is present in a minority of cases of glioblastoma (~ 35%) and is associated with both improved 
survival and favorable response to the first line DNA-alkylating chemotherapy agent temozolomide10,12,13. In 
addition to IDH mutations and MGMT hypermethylation, there are a number of other genetic biomarkers that 
are commonly altered in glioblastoma that have a less clear effect on treatment and prognosis13,14. While these 
genetic biomarkers currently have limited clinical utility, several carry therapeutic significance in other tumor 
types, and it is possible that they may be important for future targeted therapies in glioblastoma.

Despite the potential benefits of tumor genetic biomarker testing, challenges remain for its widespread clinical 
use due to costs and the need for direct tissue sampling. For these reasons, non-invasive determination of genetic 
biomarker status from preoperative imaging has the potential to improve care of patients with glioblastoma. 
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Many prior studies have demonstrated that certain quantitative image features (e.g. tumor subcompartment 
ratios, diffusivity values, and image texture features) can be used to predict both IDH mutations and MGMT 
hypermethylation on preoperative imaging of gliomas15–18. Several other studies have reported similar results 
for other common glioblastoma genetic biomarkers including ATRX, TP53, and EGFR19–22. However, most prior 
studies have either focused primarily on lower grade gliomas, utilized non-standardized quantitative imaging 
feature definitions, or relied on manual segmentation of brain tumor subcompartments for feature extraction, 
which is a tedious and time-consuming process.

Recently, artificial intelligence and deep learning have emerged as new methods for automating complex 
medical imaging tasks. In particular, deep convolutional neural networks (dCNNs) have demonstrated the 
ability to generate rapid and accurate 3-dimensional segmentations of glioblastoma subcompartments from 
MR images23,24. Automated tumor segmentation provides an unbiased and reproducible method for extracting 
quantitative image features, particularly when combined with standardized and freely available radiomics image 
feature extraction tools. Radiomics features derived from deep learning segmentations have proven useful for 
several neuro-oncologic inference tasks, including genetic biomarker prediction in gliomas25,26. The purpose 
of this study was to evaluate a fully automated deep-learning segmentation and radiomics-based approach for 
predicting the status of several common and clinically relevant genetic biomarkers in glioblastomas using only 
preoperative imaging.

Materials and methods
Patient population.  All studies were performed in accordance with relevant guidelines and regulations and 
were approved by the University of California San Francisco institutional review board with a waiver for consent. 
The study population consisted of 199 adult patients with histopathologically confirmed grade IV malignant 
glioma (i.e. glioblastoma) who underwent preoperative MRI, initial tumor resection, and tumor genetic testing 
at a single center between 2015 and 2019. Patients with any history of prior brain tumor diagnosis or treatment 
were excluded.

Genetic biomarker testing.  Nine different glioblastoma molecular biomarkers were analyzed for this 
study: mutations or deletions of IDH, TP53, PTEN, ATRX, TERT, and the CDKN2 family, MGMT promoter 
methylation, EGFR copy number amplification (including the EGFRVIII rearrangement), and aneuploidy of 
chromosomes 7 and 10. Gold standard assessment of molecular biomarkers was determined by genetic sequenc-
ing and/or immunohistochemical staining at the time of biopsy or tumor resection. All IDH mutations were 
confirmed by genetic sequencing. MGMT status was determined using a methylation sensitive PCR assay. Not 
all genes were evaluated in every patient. Gene test frequency and prevalence in the study cohort are presented 
in Table 1.

Image acquisition.  All preoperative MRI was performed using a 3.0 T scanner (Discovery 750, GE Health-
care, Waukesha, Wisconsin, USA) and a dedicated 8-channel head coil (Invivo, Gainesville, Florida, USA). The 
imaging protocol included 3D T2-weighted, T2/FLAIR-weighted, susceptibility-weighted (SWI), diffusion-
weighted (DWI), pre and post-contrast T1-weighted images, 3D arterial spin labeling (ASL) perfusion images, 
and 2D 55-direction high angular resolution diffusion imaging (HARDI). Acquisition parameters were as fol-
lows: T2: sagittal 3D fast spin echo (FSE) (TR/TE 2,200/100 ms, slice thickness 1.2 mm, matrix 256 × 256, FOV 
25.6 cm, NEX 1); T2/FLAIR: coronal 3D FSE (TR/TE/TI 5,700/115/1,650 ms, slice thickness 1.2 mm, matrix 
256 × 256, FOV 25.6 cm, NEX 1); SWI: axial gradient echo (TR/TE 43/24.6 ms, flip angle 15º, slice thickness 
2.4 mm, matrix 416 × 224, FOV 25.6 cm, NEX 0.7); DWI: axial spin echo (TR/TE 10,000/99 ms, slice thickness 
2 mm, matrix 256 × 256, FOV, 23 cm, NEX 1, b-value 1,000 s/mm2, 3 directions); T1 pre- and postcontrast: axial 
3D inversion-recovery spoiled gradient echo (IR-SPGR) T1 (TR/TE/TI 6/2.3/450 ms, flip angle 12º, slice thick-
ness 1.0 mm, matrix 256 × 256, FOV 25.6, NEX 1); HARDI: axial echoplanar imaging (TR/TE 8,400/73 ms, slice 
thickness 2 mm, matrix size 128 × 128, FOV, 28 cm, NEX 1, b-value 2000s/mm2, 55 directions); ASL: axial 3D 

Table 1.   Average ± standard deviation test characteristics for inferring glioblastoma genetic biomarkers. 
Prevalence (Prev.) refers to the genetic biomarker prevalence in the study cohort. Test characteristics for the 
best point on the ROC curve (i.e. closest to [0,1]) include sensitivity (Sens.), specificity (Spec.), precision 
(Prec.), recall, F1 statistic (F1), Matthew’s correlation coefficient (MCC), and the ROC AUC (AUC).

Biomarker Prev Sens Spec Prec Recall F1 MCC AUC​

ATRX 19/190 0.94 ± 0.07 0.92 ± 0.04 0.60 ± 0.12 0.94 ± 0.07 0.73 ± 0.08 0.71 ± 0.08 0.97 ± 0.02

IDH 18/195 0.93 ± 0.08 0.88 ± 0.07 0.50 ± 0.24 0.93 ± 0.08 0.62 ± 0.16 0.62 ± 0.16 0.95 ± 0.03

7/10 aneuploidy 47/67 0.90 ± 0.09 0.88 ± 0.08 0.95 ± 0.04 0.90 ± 0.09 0.92 ± 0.06 0.75 ± 0.18 0.93 ± 0.06

CDKN2 41/69 0.76 ± 0.06 0.86 ± 0.09 0.90 ± 0.06 0.76 ± 0.06 0.82 ± 0.04 0.62 ± 0.08 0.85 ± 0.04

EGFR 80/189 0.66 ± 0.06 0.68 ± 0.10 0.61 ± 0.07 0.66 ± 0.06 0.63 ± 0.05 0.34 ± 0.10 0.70 ± 0.06

TERT 64/83 0.77 ± 0.15 0.59 ± 0.14 0.86 ± 0.03 0.77 ± 0.15 0.81 ± 0.09 0.36 ± 0.15 0.65 ± 0.08

PTEN 106/191 0.63 ± 0.09 0.66 ± 0.09 0.70 ± 0.04 0.63 ± 0.09 0.65 ± 0.04 0.28 ± 0.05 0.64 ± 0.03

TP53 112/186 0.57 ± 0.14 0.59 ± 0.13 0.44 ± 0.05 0.57 ± 0.14 0.49 ± 0.06 0.16 ± 0.08 0.57 ± 0.05

MGMT 140/190 0.56 ± 0.07 0.56 ± 0.11 0.52 ± 0.06 0.56 ± 0.07 0.53 ± 0.04 0.12 ± 0.10 0.55 ± 0.07
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FSE (TR/TE 4,900/10.5 ms, post label delay 2025 ms, slice thickness 4 mm, matrix 512 × 8, FOV 24 cm, NEX 3). 
Over the study period, two gadolinium-based contrast agents were used: gadobutrol (Gadovist, Bayer, LOC) at a 
dose of 0.1 mL/kg and gadoterate (Dotarem, Guerbet, Aulnay-sous-Bois, France) at a dose of 0.2 mL/kg.

Image pre‑processing.  HARDI data were eddy current corrected and processed using the Eddy and DTI-
FIT modules from FSL yielding isotropic diffusion weighted images (DWI) and several quantitative diffusivity 
maps: mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and fractional anisotropy (FA). 
Each image contrast was registered and resampled to the 3D space defined by the T1 postcontrast image (1 mm 
isotropic resolution) using automated non-linear registration (Advanced Normalization Tools). Resampled co-
registered data were then skull stripped using the automated Brain Extraction Tool (BET) from FSL27,28. All 
subsequent image processing steps were performed on resampled co-registered data.

Deep learning‑based automated tumor subcompartment segmentation.  A previously 
described and validated deep learning algorithm was used to generate automated 3D segmentation of three key 
components of glioblastoma that are seen on MRI: enhancing and non-enhancing tumor (together compris-
ing the tumor core) and surrounding tumor related edema. A complete methodologic description and formal 
evaluation of the segmentation algorithm is available elsewhere24. This algorithm was adapted for the study data; 
however, the underlying network architecture was not changed. Briefly, the segmentation network consisted of 
3 cascaded instances of a 2-dimensional deep convolutional neural network implemented with Python 2.7 and 
Tensorflow 1.7 (Fig. 1). The first network instance was used to segment the entire tumor volume from whole 
brain images, while the second and third networks were used to segment tumor core and enhancing tumor, 
respectively, from the tumor volume. Segmentation was performed in all 3 cardinal planes and then combined 
to create smooth 3-dimensional labels. Input data consisted of preprocessed T2-, T2/FLAIR-, and pre- and post-
contrast T1-weighted images. The network was trained using the publicly available BraTS 2017 dataset con-
sisting of manually segmented multi-modal MRI of 243 gliomas23. Both high- and low-grade glioma training 
cases were used given the observation that some IDH-mutant glioblastomas more closely resemble lower grade 
tumors. Training details included the Adam optimizer, binary softmax cross-entropy loss, a starting learning rate 
of 1 × 10–3 with an exponential decay constant of 1 × 10–7, a training patch size of 96 × 96 × 4 voxels, a batch size 
of 5, and 20 total training epochs using the entire training dataset. Training took approximately 50 h on a Nvidia 
Titan Xp graphics processing unit. Study data was automatically segmented using the trained model.

Qualitative assessment of automated tumor segmentation volumes.  Automated tumor seg-
mentation volumes were manually inspected to ensure that segmented tumor volumes grossly corresponded 
to the actual tumor location. Anatomic accuracy of tumor subcompartments was not formally assessed and no 
manual corrections were performed in order to preserve the automated nature of the processing pipeline.

Radiomics feature extraction.  Radiomics features were extracted using PyRadiomics 2.2.0 (https​://githu​
b.com/Radio​mics/pyrad​iomic​s) batch processing command line tools29. This method produces a set of quan-
titative features for each user specified combination of image and corresponding segmentation. Input images 
included all 11 individual image contrasts: T1 pre, T1 post, T2, T2/FLAIR, SWI, DWI, ASL, MD, AD, RD, and 
FA. Input segmentations included 5 different tumor parcellations: whole tumor, tumor core, and each of the 

Figure 1.   Graphical representation of the deep convolutional neural network used for brain tumor 
subcompartment segmentation. Two-dimensional image inputs (200 × 200 pixels each) included T1 pre-
contrast, T1 postcontrast, T2, and T2-weighted FLAIR contrasts. This model was adapted from24.

https://github.com/Radiomics/pyradiomics
https://github.com/Radiomics/pyradiomics
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3 individual tumor compartments. The default set of radiomics features were extracted including 2D and 3D 
shape features (n = 26), first order grayscale features (n = 19), and higher order grayscale features (n = 75). Default 
features were chosen for ease of use and reproducibility by future studies. Implementation details of the default 
set of radiomics features are provided in the PyRadiomics 2.2.0 documentation (https​://pyrad​iomic​s.readt​hedoc​
s.io/en/lates​t/featu​res.html). Shape features are independent of image contrast and were therefore only extracted 
once per segmentation per patient (5 segmentations × 26 features = 130 shape features per patient). Grayscale 
features were extracted from each combination of image and segmentation (11 image contrasts × 5 segmen-
tations × 94 grayscale features = 5,170 features per patient). All non-quantitative image data (i.e. T1 pre- and 
postcontrast, T2, T2/FLAIR, SWI, and DWI) were intensity normalized prior to feature extraction using the 
built-in zero mean unit standard deviation normalization method across the entire image including the tumor. 
All remaining extraction settings (other than image normalization) were left as defaults. The complete radiom-
ics feature extraction process yielded 5,300 individual image features per patient (26 shape features × 5 tumor 
compartments + 94 grayscale features × 5 tumor compartments × 11 image contrasts).

Predictive modeling of molecular biomarkers.  Radiomics features were fed into random forest regres-
sion models to predict the likelihood of each genetic biomarker being present. Random forest regression was 
implemented in Python 3.7 using the scikit-learn 0.23.1 (https​://sciki​t-learn​.org/) RandomForestRegres-
sor class30. Each genetic biomarker was treated as a separate binary regression task. A tenfold stratified shuffle 
split cross validation strategy was implemented using the StratifiedShuffleSplit class with a train/test 
split of 60%/40% to account for the class imbalance of certain genetic biomarkers. Automated feature reduction 
was performed using cross validated recursive feature elimination (RFECV class) with 1% of features eliminated 
at each step31. Automated random forest model hyperparameter tuning was accomplished using a cross vali-
dated randomized search approach (RandomizedSearchCV class) with 100 steps. Hyperparameter ranges 
included in the random search were: number of trees (100 to 10,000), maximum number of levels per decision 
tree (10 to 100), minimum data samples required to split a node (2 to 10), minimum data samples required at 
each leaf node (1 to 5), maximum number of features considered at each split (total number of features or its 
square root), and whether or not to use bootstrap samples for building trees. Final model hyperparameters 
including the total number of features used for each genetic biomarker are provided as supplementary data. 
Feature importance was determined using the permutation feature importance method32. Model performance 
was evaluated using receiver operating characteristic analysis in addition to precision, recall, the F1 statistic, and 
Matthew’s correlation coefficient.

External validation of predictive models.  A complete external validation was not possible as there is 
currently no publicly available preoperative glioblastoma MRI dataset with comparable preoperative MRI and 
genetic results. However, a limited external validation was performed using the TCGA-GBM dataset (https​://
wiki.cance​rimag​ingar​chive​.net/displ​ay/Publi​c/TCGA-GBM), which includes T1 pre- and postcontrast, T2, and 
T2/FLAIR MR images33. 57 cases were identified with preoperative MR images and genetic test results, of which 
only 4 had IDH mutations and ATRX mutations, respectively. Predictive models were retrained on study data 
using only the 4 image contrasts included in the TCGA-GBM dataset but otherwise identical methods. Trained 
models were then evaluated on the 57 TCGA-GBM cases.

Results
Image pre‑processing.  Automated non-linear co-registration, resampling to 1 × 1 × 1 mm, and skull strip-
ping was successfully performed on all study data. Example axial slices from a pre-processed dataset are pre-
sented in Fig. 2. Note that all study data, with the exception of the T1 pre- and postcontrast images, underwent a 
linear interpolation step during resampling due to differences in acquisition resolution between different image 
contrasts.

Automated tumor segmentation.  The automated dCNN segmentation method was able to successfully 
segment all 199 glioblastomas with an average time of less than 25 s per study. Manual review of automated 
tumor segmentation volumes revealed gross correspondence between tumor segmentation and the actual tumor 
location in all cases regardless of genetic biomarker status. Representative examples of automated tumor seg-
mentations for glioblastomas with a chromosome 7/10 aneuploidy and an IDH mutation are shown in Fig. 3. 
Axial images of automated segmentations from 40 representative study cases are presented as supplementary 
Fig. 1.

Inference of glioblastoma molecular biomarkers using random forest regression.  Receiver 
operating characteristic (ROC) curves for the four best predicted genetic biomarkers are presented in Fig. 4. ROC 
curves for the remaining 5 genetic biomarkers are included as supplementary data. Genetic biomarker prediction 
was most accurate for ATRX mutations. Test characteristics for ATRX mutation prediction included a sensitivity 
of 0.94 ± 0.07, a specificity of 0.92 ± 0.04, an MCC of 0.71 ± 0.08, and an AUC of 0.97 ± 0.02. Performance was 
slightly worse for predicting IDH mutations with a sensitivity of 0.93 ± 0.08, a specificity of 0.88 ± 0.07, an MCC 
of 0.62 ± 0.16, and an AUC of 0.95 ± 0.03. The proposed method was also reasonable for predicting chromosome 
7/10 aneuploidies (sensitivity = 0.90 ± 0.09, specificity = 0.88 ± 0.08, MCC = 0.75 ± 0.18, AUC = 0.93 ± 0.05) and 
CDKN2 family mutations (sensitivity = 0.76 ± 0.06, specificity = 0.86 ± 0.09, MCC = 0.62 ± 0.08, AUC = 0.85 ± 0.04). 
Prediction of other molecular biomarkers was similar to random chance with AUCs closer to 0.5. Test character-
istics for all 9 genetic biomarkers evaluated in this study are presented in Table 1.

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
https://scikit-learn.org/
https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM
https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM
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Figure 2.   Example axial slices from a pre-processed dataset after non-linear co-registration, resampling, and 
skull stripping. Eight different image contrasts are shown including T1-weighted pre-contrast (T1), T2-weighted 
(T2), T2/FLAIR-weighted (T2/FLAIR), diffusion-weighted (DWI), susceptibility-weighted (SWI), HARDI 
fractional anisotropy (HARDI FA), arterial spin labeling perfusion (ASL), and T1-weighted postcontrast (T1 
Gad).

Figure 3.   Representative example of tumor subcompartment segmentations for two glioblastomas, IDH mutant 
(A) and chromosome 7/10 aneuploid (B). Tumor subcompartment color overlays (see legend) are shown on top 
of postcontrast T1-weighted images (left of each panel) and compared with the same postcontrast T1-weighted 
image slice without a color overlay (right of each panel).
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Importance of radiomics features for predicting glioblastoma genetic biomarkers.  The top 4 
most important radiomics features for predicting each of the 4 best predicted genetic biomarkers are presented 
in Table 2. First order features (i.e. voxel intensity distributions) and gray level size zone features (i.e. connected 
regions of similar intensity pixels) comprised a majority of the most important features for all 4 of the best pre-
dicted genetic biomarkers. For ATRX mutation prediction, the single most predictive feature was the average 
T1 postcontrast intensity within the tumor core followed by the MD kurtosis within the non-enhancing tumor. 
IDH mutation prediction similarly relied heavily on diffusion characteristics of the non-enhancing tumor (DWI 
high gray level emphasis) and T1 postcontrast intensity (variance throughout the whole tumor). Unlike other 
well predicted genetic biomarkers, chromosome 7/10 aneuploidy prediction showed significant dependence on 
a shape feature (elongation of the enhancing tumor). Prediction of CDKN2 was optimal with only 5 features and 
was the only model to show a heavy dependence on ASL (contrast within the tumor core).

Qualitative imaging correlates of preditive radiomics features.  Representative MR images of 
glioblastomas with IDH mutations and chromosome 7/10 aneuploidies are presented in Fig.  5. IDH mutant 
glioblastomas exhibited overall larger tumor cores with a dominant infiltrative non-enhancing component and 
a relatively small enhancing component. These qualitative differences are reflected in the importance of T1 post-
contrast intensity variance for predicting IDH status. In contrast, glioblastomas with chromosome 7/10 ane-
uploidies tended to exhibit a more pronounced rounded morphology of the tumor core, which is reflected in the 
importance of enhancing tumor elongation for predicting chromosome 7/10 aneuploidy status.

External validation.  In order to accommodate external data from the TCGA-GBM dataset, predictive 
models for IDH and ATRX mutations were re-trained and evaluated using only T1 pre- and postcontrast, T2, 
and T2/FLAIR weighted images. Corresponding ROC curves are provided as supplementary data. As expected, 

Figure 4.   Receiver operating characteristic (ROC) curves for the 4 best predicted glioblastoma genetic 
biomarkers. Blue lines represent the average ROC and shaded gray areas represent the ± 1 standard deviation 
interval. Red dotted lines indicate random chance (true positive rate = false positive rate). The average ROC area 
under the curve (AUC) ± 1 standard deviation is displayed on each plot.
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Table 2.   Relative feature importance for the 4 best predicted glioblastoma genetic biomarkers.

Rank Feature Relative importance

ATRX  mutation

1 T1gad mean tumor core 1.00

2 MD kurtosis non-enhancing tumor 0.77

3 T1 range tumor core 0.52

4 T1gad mean whole tumor 0.51

IDH  mutation

1 DWI high gray level emphasis non-enhancing tumor 1.00

2 MD kurtosis tumor edema 0.89

3 T1gad variance whole tumor 0.78

4 T1 kurtosis non-enhancing tumor 0.78

Chromosome 7/10 aneuploidy

1 FLAIR size zone non-uniformity enhancing tumor 1.00

2 T1 zone variance tumor edema 0.56

3 Elongation of enhancing tumor 0.55

4 T1gad 90th percentile whole tumor 0.44

CDKN2  loss

1 T1 small area low gray level emphasis tumor edema 1.00

2 ASL contrast tumor core 0.96

3 T2 zone entropy tumor edema 0.77

4 T2 small area high gray level emphasis enhancing tumor 0.48

Figure 5.   Axial MR images of glioblastomas from 8 different patients, IDH mutant (A–D) and chromosome 
7/10 aneuploid (E–H). T2-weighted FLAIR images (left) are shown beside corresponding T1-weighted 
postcontrast images (right). Relative probabilities of IDH mutation (Prob. IDH) and chromosome 7/10 
aneuploidy (Prob. 7/10) generated from random forest regression models are shown for image set of images.
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internal cross-validated model performance using this reduced number of image contrasts with slightly worse 
for both ATRX (sensitivity = 0.89 ± 0.07, specificity = 0.90 ± 0.05, MCC = 0.64 ± 0.11, AUC = 0.94 ± 0.03) and IDH 
(sensitivity = 0.87 ± 0.08, specificity = 0.87 ± 0.10, MCC = 0.59 ± 0.20, AUC = 0.92 ± 0.04). Model performance 
on the external TCGA-GBM dataset was relatively poor for both ATRX (sensitivity = 0.75, specificity = 0.75, 
MCC = 0.29, AUC = 0.72) and IDH (sensitivity = 0.75, specificity = 0.66, MCC = 0.22, AUC = 0.63). However, 
these results are difficult to interpret given substantial differences in image acquisition and the relatively low 
number of positive biomarkers in the TCGA-GBM dataset (n = 4 for IDH and ATRX mutations respectively).

Discussion
This study details an automated pipeline for inferring glioblastoma genetic biomarkers using automated segmen-
tation and radiomics feature extraction. Specifically, we examined nine molecular biomarkers, including some 
that are known to affect prognosis and clinical management. We found that radiomics features extracted using 
automated deep learning segmentation were useful for accurately identifying IDH-mutations on preoperative 
imaging of patients with glioblastoma. Our results show that a sensitivity of > 95% for detecting IDH mutations 
could be achieved with a specificity of over 80%, which is a reasonable characteristic for a screening test. In our 
study, IDH-mutant glioblastomas demonstrated larger tumor cores with relatively small enhancing components. 
This qualitative observation is supported by the importance of postcontrast image intensity features within the 
tumor core for our predictive model. Prior studies have similarly demonstrated quantitative volumetric differ-
ences between IDH mutant and wildtype gliomas, albeit with variable tumor grades and different image feature 
extraction methods such as 2-dimensional and/or manual tumor segmentation17,18. Our results for IDH predic-
tion are improved compared to prior studies focused solely on glioblastoma34 and more comparable to prior 
work focused on lower grade gliomas35,36.

Radiomics features were also highly accurate for inferring ATRX mutations. ATRX mutations are extremely 
common in IDH-mutant glioblastomas but are typically not present in IDH-wildtype glioblastomas. In our 
cohort of 199 patients with glioblastoma, only 5 tumors demonstrated ATRX mutations without concomitant 
IDH mutations, and all IDH mutant tumors had associated ATRX mutations. This high degree of correlation 
between IDH and ATRX mutations suggests that imaging features of these molecular biomarkers will also be 
highly correlated. While important radiomics features for predicting ATRX and IDH mutations did not overlap 
completely, both predictive models relied heavily on diffusivity and T1 postcontrast image intensity within the 
tumor. Our results for predicting ATRX mutations are comparable to prior studies, though it should be noted 
that prior work has focused almost entirely on lower grade gliomas21,37.

We also found that automatically extracted radiomics features were highly sensitive for detecting aneuploi-
dies of chromosomes 7 and 10. These aneuploidies, particularly trisomy 7, monosomy 10, are among the most 
frequent genetic alterations in glioblastoma (70% in this study) and have been associated with malignant cell 
proliferation, tumor progression, and lower overall survival38,39. Importantly, there was no overlap between 
chromosome 7/10 aneuploidies and either IDH or ATRX mutations in our study cohort. There has been relatively 
little prior work on predicting chromosome 7/10 aneuploidies in glioblastoma, however, our results are similar 
or better compared to prior studies aimed at predicting the 1p/19q co-deletion—another common chromosomal 
abnormality found in gliomas40,41.

CDKN2 family alterations were also relatively well predicted using the proposed methods. Mutations or dele-
tions of the CDKN2 family tumor suppressor genes are present in 30–80% of gliomas and result in unchecked 
activity of downstream cell cycle kinases including CDK45. These mutations can potentially be targeted by existing 
small molecule CDK4 inhibitors and are the subject of ongoing clinical trials in patients with gliomas42–45. Prior 
studies have reported statistically significant but relatively weak correlations between CDKN2 gene deletions 
and radiomics features46.

Several other glioblastoma genetic biomarkers examined in this study, including MGMT promoter meth-
ylation, were not found to be highly correlated with any radiomics features. This result contrasts with prior 
studies that have demonstrated more accurate prediction of MGMT promoter methylation status based on MRI 
features47–50. There are many potential explanations for this difference, including differences in tumor segmenta-
tion and radiomics feature extraction methods, the inclusion of lower grade tumors in other study cohorts, and 
different testing methods for laboratory determination of MGMT methylation status.

There are several potential approaches to improve the results presented here. For example, manual correction 
of automated tumor segmentations might improve the discriminative value of certain radiomics features, albeit 
at the cost of compromising the fully automated nature of the proposed method. An alternative approach would 
be to use a more advanced automated tumor segmentation schemes such as the 4-compartment model (i.e. 
separating non-enhancing tumor and cystic tumor necrosis) proposed in the more recent BraTS challenges51. 
Similarly, the inclusion of additional quantitative MR image contrasts may be beneficial as a majority of prior 
studies have shown that many different imaging features are necessary for accurate glioma genetic biomarker 
classification19,47,52–55.

This study has several shortcomings that may limit its generalizability to other data. First, the use of 3 T MR 
scanners, 3D imaging, and 55-direction HARDI are not widely used in routine brain tumor imaging. This is 
one likely explanation for the relatively poor external validation performance of our model on the TCGA-GBM 
dataset. Second, in our cohort of 199 patients, certain molecular biomarkers were only positive in a small subset 
of tumors due to their relative rarity and/or testing frequency. For example, our cohort included 18 cases with 
IDH mutations (~ 9%), which is in line with the 5–13% prevalence reported in the literature56–58. This low num-
ber of positive examples can be problematic for machine learning models, which require separate training and 
testing sets. We used a stratified cross-validation approach to address imbalance in our dataset, however a more 
balanced dataset with a larger number of cases would be a more reliable approach. Finally, although our medical 
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center is a national referral center for brain tumors, it is unclear if the results presented here are generalizable 
to other patient demographic groups.

This work represents an important step towards a fully automated method for non-invasive, imaging-based 
identification glioblastomas with IDH mutations and certain other molecular biomarkers relevant for guiding 
therapy and determining prognosis. Although this was a relatively small retrospective study, the rapid and auto-
mated nature of the proposed method would allow straightforward application to larger datasets and prospective 
studies. With further work, our overarching goal is to obviate the need for tissue-based detection of glioblastoma 
molecular biomarkers using non-invasive MRI-based methods, to help guide maximal safe resection, and to 
assess response to genetic biomarker specific treatments that have been shown to improve survival in patients 
with glioblastoma.

Data availability
Code and radiomics feature data are available by request to the corresponding author. Image data is the property 
of UC Regents.
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