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Abstract

Purpose

To investigate associations between imaging features of cholangiocarcinoma by visual

assessment and texture analysis, which quantifies heterogeneity in tumor enhancement

patterns, with molecular profiles based on hypoxia markers.

Methods

The institutional review board approved this HIPAA-compliant retrospective study of CT

images of intrahepatic cholangiocarcinoma, obtained before surgery. Immunostaining for

hypoxia markers (EGFR, VEGF, CD24, P53, MDM2, MRP-1, HIF-1α, CA-IX, and GLUT1)

was performed on pre-treatment liver biopsies. Quantitative imaging phenotypes were

determined by texture analysis with gray level co-occurrence matrixes. The correlations

between quantitative imaging phenotypes, qualitative imaging features (measured by radio-

graphic inspection alone), and expression levels of the hypoxia markers from the 25 tumors

were assessed.

Results

Twenty-five patients were included with a median age of 62 years (range: 54–84). The

median tumor size was 10.2 cm (range: 4–14), 10 (40%) were single tumors, and 90%

were moderately differentiated. Positive immunostaining was recorded for VEGF in 67% of

the cases, EGFR in 75%, and CD24 in 55%. On multiple linear regression analysis, quanti-

tative imaging phenotypes correlated significantly with EGFR and VEGF expression levels

(R2 = 0.4, p<0.05 and R2 = 0.2, p<0.05, respectively), while a trend was demonstrated with

CD24 expression (R2 = 0.33, p = 0.1). Three qualitative imaging features correlated with

VEGF and CD24 expression (P<0.05), however, none of the qualitative features correlated

with the quantitative imaging phenotypes.
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Conclusion

Quantitative imaging phenotypes, as defined by texture analysis, correlated with expression

of specific markers of hypoxia, regardless of conventional imaging features.

Introduction
Radiogenomics is an emerging field focusing on establishing relationships between imaging
phenotypes and molecular markers utilizing novel methods [1,2]. Advances in radiogenomic
imaging have the potential to contribute to clinical decision making through development of
predictive and prognostic treatment algorithms and noninvasive disease surveillance. This
promising approach has several advantages compared to the current molecular profiling meth-
ods. The latter require invasive tissue procurement procedures that lack temporal and spatial
dimensions, as they provide information in a single time point, typically from a single anatomi-
cal site. By contrast, the radiogenomic approach can be implemented in multiple time points
and at multiple tumor sites.

As imaging technology continues to evolve, the ability to correlate imaging phenotype with
tumor genotype will continue to improve, and the strength and clinical utility of these relation-
ships will be enhanced. Texture analysis is a novel technique that measures heterogeneity of
tumors by quantifying the spatial pattern of pixel intensities on cross sectional imaging [3].
Recent reports have demonstrated promising diagnostic and prognostic performance of texture
analysis in colorectal cancer [4], brain tumors [5], hepatic tumors [6], and hepatic dysfunction
[7]. ICC, an aggressive primary liver cancer with a low but clearly documented increase in
incidence and mortality [8], is characterized by frequent over-expression of epidermal growth
factor receptor (EGFR), vascular endothelial growth factor (VEGF), as well as other pro-angio-
genic and hypoxia mediators [9–14]. These molecular features of ICC result in marked distor-
tion of the microvascular phenotype, which combined with their frequent large size, make it an
ideal tumor type for experimental studies that correlate quantitative imaging parameters and
molecular profiling.

We hypothesized that heterogeneous tumor enhancement on imaging reflects regions of
abnormal vasculature and hypoperfusion due to the hypoxic microenvironment, which is char-
acterized by overexpression of hypoxia markers [15]. To address this question, we utilized a
model of intrahepatic cholangiocarcinoma (ICC) to investigate the relationship between imag-
ing phenotypes and a clinically-oriented molecular profile based on hypoxia markers. The
imaging phenotype was determined by texture analysis of contrast enhanced computed tomog-
raphy (CT) data, which quantifies the heterogeneity in tumor enhancement pattern.

Materials and Methods

Patients
Patients signed an informed consent that covered review of medical records and studies for
correlated research. The study was approved by the Institutional Review Board (IRB) of Memo-
rial Sloan Kettering Cancer Center (MSKCC). From August 2003 through September 2009,
two phase II clinical trials (NCT00587067 and NCT00410956) evaluating the role of regional
chemotherapy in patients with initially unresectable primary liver cancer (either ICC or hepa-
tocellular carcinoma) were conducted at MSKCC [16,17]; all patients signed IRB-approved
consent forms for participation in these trials. These studies included 56 patients (44 with ICC
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and 12 with hepatocellular carcinoma). Additional details of these studies, including preopera-
tive assessment and inclusion/exclusion criteria, have been previously reported. As part of
these studies, hepatic artery infusion pumps were placed intraoperatively and biopsies were
taken concurrently from the peripheral aspect of the dominant tumor and non-tumor liver.
Biopsies were not performed during the course of treatment. All patients with ICC enrolled in
one of these two clinical trials were included in the current study (n = 44). Patients treated as
part of both studies were combined in the outcome analyses since there were no differences in
selection criteria, demographics, tumor characteristics, response rates, or survival [18]. Clinico-
pathologic data, prospectively collected during the clinical trials, were analyzed. No overlap
exists between the prior trials and the current study, as the prior trials focused on the therapeu-
tic role of regional chemotherapy for unresectable primary liver cancer whereas the current
study reports on the diagnostic performance of CT to detect the molecular profile of ICC.

Hypoxia markers and immunohistochemistry
Molecular profiling of tumors was based on immunohistochemistry studies targeting the fol-
lowing established hypoxia markers (S1 Table): VEGF[15], EGFR[15], MRP-1[19], HIF-1α
[15], CA-IX[20], CD24[21], GLUT1[22], P53[23], and MDM2[24]. The details of the primary
antibodies have been previously reported [25–27]. All immunostains were evaluated without
any knowledge of the clinical findings by a dedicated liver pathologist (J.S.). Stains were graded
as a continuous variable according to the percentage of positive tumor cells. For HIF-1α and
CA IX, positive staining required positive nuclear labeling in>5% of tumor cells, and for
VEGF, EGFR, P53, MDM2, CD24, MRP-1, and GLUT1, positive staining refers to cytoplasmic
and/or membranous labeling in>10% cells. These cut-off values were determined based on
previous reports [9,25,28] and the frequency distribution histograms of these data.

Computed Tomography Images
Patients underwent dual phase contrast-enhanced computed tomography (CT) imaging prior
to treatment. Post-contrast portal venous CT images were obtained following the administra-
tion of 150 mL iodinated contrast (Omnipaque 300, GE Healthcare, New Jersey) at 4.0 mL/sec,
on multidetector CT (Lightspeed 16 and VCT, GE Healthcare, Wisconsin). The following scan
parameters were used: pitch/table speed = 0.938–0.984/9.37–39.37 mm; autoMA 220–380;
noise index 12.5–14; rotation time 0.7–0.8 ms; scan delay 40 s after hepatic arterial phase,
which is determined by Smart Prep with a region of interest placement in the abdominal aorta
at the level of the celiac artery. Axial slices reconstructed at each 2.5 mm interval were used for
the analysis. The entire liver was scanned on each CT.

Image Processing & Quantitative Imaging Phenotype Extraction
Pre-processing of the CT images was undertaken to define the tumor region for further analy-
sis. The tumor region was semi-automatically segmented from neighboring structures using
Scout Liver (Pathfinder Technologies Inc, Nashville, TN) [29]. Underlying pixel variations in
the tumor volume were quantified using a fully automated, software platform for image pro-
cessing and texture analysis custom built by a computer scientist (A.L.S.) based on a previously
reported system [7]. Three-dimensional models of the tumors, bile ducts, and vessels generated
by the Scout software were subtracted from the segmented tumor to generate a CT volume of
the tumor region with pixel values expressed in Hounsfield units (HU). Attenuation values out-
side of 0 and 300 HU (corresponding to non-tumoral regions) were removed from the scans
and excluded from analysis. The segmented tumor was scaled using conventional image nor-
malization, which compensates for potential irregularities in the scale of pixel values across
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image volumes while maintaining the overall shape of the image histogram and visual appear-
ance of individual volumes [30]. The final segmented/normalized image was verified by visual
inspection prior to further analyses.

Second order texture statistics were implemented to examine the spatial relationship of
neighboring pixels. Unlike first-order statistics that calculate cumulative statistics on individual
pixel values, second-order statistics evaluate the likelihood of observing spatially correlated pix-
els [31]. A 36 x 36 pixel neighborhood was chosen to assess this spatial relationship because
this size demonstrated excellent discriminatory power in preliminary analyses. Gray-level co-
occurrence matrices (GLCM) were constructed to represent spatial relationships in the pixel
neighborhoods using the standard implementation in the Image Processing Toolbox in
MATLAB (MathWorks, Natick, MA). Four GLCM-based texture feature statistics were used:
contrast (local variation in the image), correlation (gray-level interdependence of brightness),
energy (local homogeneity), and homogeneity (high values indicate constant image). Each
were computed in four directions from 0°, 45°, 90°, and 135°. Values were averaged over the
four directions since the statistics were found to be directionally invariant. Values were com-
puted for each CT slice and averaged over the whole tumor volume. A fifth texture statistic,
image entropy (measure of randomness in brightness variation), was computed for the entire
tumor. Tumors with high and low values for each texture feature are illustrated in Fig 1A.
Quantitative imaging phenotype was defined as either a single or combination of texture fea-
tures, which measure tumor heterogeneity.

Qualitative Imaging Features
Qualitative imaging features (S2 Table), which have been previously reported [2], were evalu-
ated by an attending diagnostic radiologist from the section of Abdominal Imaging (R.K.G.D.),
in order to assess whether radiographic inspection alone could predict the relationship between
imaging features and protein expression levels.

Statistical analysis
Descriptive and comparative statistics were performed using Statistical Software for the Social
Sciences (SPSS) version 22 (IBM Corporation, Armonk, NY, USA). Continuous variables were
compared using the Student t-test or Mann-Whitney test, as appropriate by the type of distri-
bution. Categorical variables were compared using χ2 or the Fisher exact test depending on the
number of observations. Survival distributions were estimated using the Kaplan-Meier method
and compared using the Cox-regression model. Time to event was calculated from initiation of
hepatic artery infusion pump [16,17]. Patients without the event of interest at last follow-up
were censored.

Linear regression analysis was undertaken to assess the relationship between protein expres-
sion and texture features (both as continuous variables). A regression line with protein expres-
sion levels as the dependent variable (y-axis) and texture feature as independent variable was
derived and Pearson’s correlation coefficient was calculated for all combinations of texture fea-
tures and protein expression variables. Confident intervals with α = 0.05 were computed for
each regression. A multiple linear regression modeled the relationship between combinations
of texture features in an attempt to show the predictive power of texture feature sets (i.e., quan-
titative imaging phenotypes). A schematic of the study is presented in Fig 1B.
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Results

Clinicopathologic and molecular characteristics
Forty-four patients with initially unresectable ICC were previously included in the two phase II
trials mentioned above. In the current study, we excluded twenty patients due to inadequate
tissue for immunohistochemical staining and 3 patients with preoperative CT scan inadequate
for texture analysis. Of note, 4 patients who were taken off the previous two trials after the pre-
treatment biopsy and hepatic artery infusion pump placement were included in the current
study except for the outcome analyses (i.e. response and survival). A total of 25 patients with

Fig 1. Representative tumors with high and low values for each texture feature (A). Schematic of
prediction model of protein expression constructed from quantitative imaging phenotypes. Quantitative image
phenotypes are derived via texture analysis: the tumor region is extracted from CT, texture feature statistics
are automatically computed based on the region of interest (B).

doi:10.1371/journal.pone.0132953.g001
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histologically proven ICC were included in the current study. The median age was 62 years
(range: 54–84) and 20 patients (80%) were female. The median tumor size was 10.2 cm (range:
4–14), 10 (40%) were single tumors, and 90% were moderately differentiated. Positive immu-
nohistochemistry staining was recorded for VEGF in 67% of the cases, EGFR in 75%, CD24 in
55%, CA-IX in 92%, HIF-1α in 78%, P53 in 28%, MDM2 in 20%, MRP-1 in 22%, and GLUT1
in 52% (S1 Table).

At a median follow-up time of 39 months (range: 11–90 months) the median overall sur-
vival (OS) was 37 months (95%CI: 15–59). The median progression-free survival (PFS) was 9
months (95%CI: 6–12) and the response rates were 62%, 33%, and 5% for partial response, sta-
ble disease, and progressive disease, respectively. Ultimately, two patients responded suffi-
ciently to undergo resection.

Quantitative imaging phenotypes, qualitative imaging features, and
protein expression levels
Selected linear regression plots of tumor texture features with respect to protein expression lev-
els are shown in Fig 2. Correlation texture feature (R2 = 0.23, p<0.05) was significantly associ-
ated with VEGF expression. Correlation (R2 = 0.21, p<0.05) and entropy (R2 = 0.17, p<0.05)
texture features were significantly related to EGFR expression. A trend was demonstrated
between entropy and CD24 expression (R2 = 0.33, p = 0.108). By contrast, there were no signifi-
cant associations between any of the texture features and either CA-IX, HIF-1α, P53, MDM2,
MRP-1, or GLUT1 (S3 Table and S1 Fig).

Multiple linear regressions of the significant texture features from the univariate analysis
test the predictive power of quantitative imaging phenotypes (i.e., texture features sets). Table 1
summarizes these results. Correlation and contrast explain 26% of VEGF expression (R2 =
0.26, p<0.05) in this model. In the case of EGFR expression, discriminatory power of the
model was substantially improved when all five texture features were combined (R2 = 0.47,
p<0.05) with the combination of correlation, entropy, and homogeneity representing a sub-
stantial portion (R2 = 0.41, p<0.05). A trend was observed between CD24 expression levels and
the combination of entropy, correlation, and homogeneity (R2 = 0.68, p = 0.1). Fig 2B compares
representative texture feature values for tumors with low and high VEGF and EGFR expres-
sion. No association was noted between outcome variables (OS, PFS, or time to progression)
and either VEGF, EGFR, or CD24 expression levels (data not shown).

Table 2 details thirteen qualitative imaging features and demonstrates that VEGF expression
was associated with two qualitative imaging features (‘tumor-liver difference’ and ‘attenuation
heterogeneity’, p<0.05 for both). CD24 expression was correlated with ‘biliary dilatation’
(p<0.05), whereas EGFR was not associated with any of the quantitative imaging features.
Notably, none of these three qualitative imaging features correlated with any of the texture fea-
tures (data not shown).

Discussion
The current study demonstrates a link between imaging phenotypes and molecular profiling of
tumors using a cholangiocarcinoma model. ICC exhibits a high degree of abnormal tissue vas-
culature [14] and expression of hypoxia markers [9]. These features, combined with their large
size, make ICC a good model to test the hypothesis that overexpression of hypoxia markers,
reflecting a hypoxic microenvironment and relative hypoperfusion, can be detected by high-
resolution texture analysis of pixel intensity variation on CT.

Molecular profiling of cancer has become an integral part of treatment selection and pro-
vides predictive and prognostic information, as shown in breast cancer by the
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Fig 2. Selected linear regression plots of texture features with respect to protein expression levels. The 95% confidence interval is rendered. For
descriptive purpose, each protein is plotted against the texture feature that contributed the most to the prediction model (A). Two intrahepatic
cholangiocarcinomas with low (top row) and high (bottom row) VEGF/EGFR protein expression by immunohistochemistry. After semi-automated
segmentation of tumor borders from CT images, the tumor pixel attenuation values are evaluated for texture features. Axial slices of the segmented tumors
are shown with texture features calculated for each slice and averaged. (B).

doi:10.1371/journal.pone.0132953.g002

Table 1. Multiple linear regression analysis of hypoxia markers and quantitative imaging phenotypes.

Hypoxia markers (%) Imaging phenotype R2 p-value

VEGF Entropy, energy, correlation, contrast, homogeneity 0.3 0.2

Entropy, energy, correlation, contrast 0.3 0.12

Entropy, correlation, contrast, 0.28 0.08

Correlation, contrast 0.26 0.04

Correlation 0.23 0.016

EGFR Entropy, energy, correlation, contrast, homogeneity 0.47 0.029

Entropy, energy, correlation, homogeneity 0.43 0.025

Entropy, correlation, homogeneity 0.41 0.013

CD24 Entropy, correlation, energy, contrast, homogeneity 0.73 0.36

Entropy, correlation, energy, homogeneity 0.73 0.18

Entropy, correlation, homogeneity 0.68 0.104

doi:10.1371/journal.pone.0132953.t001
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immunohistochemical assessment of molecular markers such as estrogen receptor, progester-
one receptor, and HER2 (human epidermal growth factor receptor 2) [32]. Similar progress
has been seen in leukemia, lymphoma, and other malignancies [33]. Molecular profiling meth-
ods require invasive tissue procurement procedures with inherent risks (i.e., pain, infection,
bleeding, or cancer seeding). In addition, these methods are limited in their utility, since the tis-
sue obtained is necessarily sacrificed to extract nucleic acids or proteins for analysis, and can
only provide information at a single time point. These aspects represent impediments to their
clinical implementation; the ability of imaging data to provide reliable data on clinically rele-
vant molecular markers would, therefore, represent a major advance.

Radiogenomics is an emerging field, which utilizes non-invasive methods to characterize
imaging phenotypes and correlate them with the molecular features of tumors [1]. Segal et al.
[2] demonstrated the potential of non-invasive imaging to decode the molecular makeup of
human liver cancer. Qualitative imaging features, visually assessed by a radiologist, were corre-
lated with gene expression modules (groups of genes with coherent variation in expression
across multiple samples). For instance, a combination of 3 imaging features correlated with the
expression level of a module, which was highly enriched for genes involved in cell proliferation,
including VEGF. However, it is uncertain how the association with gene expression modules
will have direct implementation in daily practice.

The current study aimed to identify a relationship between clinically-oriented molecular
markers and objective imaging phenotypes. A substantial portion of tumors in this analysis
demonstrated positive staining for VEGF (67%), EGFR (75%), and CD24 (55%), as noted in
prior reports [9,28]. These proteins and other hypoxia markers are associated with tumor
angiogenesis, which results in abnormal vascular beds, characterized by high permeability,
high interstitial pressure, and hypoperfusion [15]. Thus, the current study sought to find imag-
ing phenotypes by texture analysis, which quantify visible variations in enhancement. The
results show that quantitative texture features were associated with overexpression of certain
hypoxia markers. VEGF and EGFR expression levels were associated with specific quantitative
imaging phenotypes, whereas CD24 revealed a promising trend, considering the small sample

Table 2. Relationship between qualitative imaging features and protein expression levels by linear regression.

Imaging featuresa EGFR (%) VEGF (%) CD24 (%)

β P-value R2 β P-value R2 β P-value R2

Tumor volume, cc -0.17 0.4 0.3 -0.2 0.3 0.2 0.6 0.07 0.4

Tumor—Liver Difference, Maximum -0.09 0.7 0.007 -0.4 0.04 0.2 0.4 0.3 0.2

Attenuation Heterogeneity, Maximum -0.09 0.7 0.008 -0.5 0.02 0.2 0.3 0.4 0.1

Internal arteries -0.06 0.8 0.004 0.3 0.2 0.07 -0.01 0.9 <0.001

Capsule -0.3 0.1 0.1 -0.05 0.8 0.003 0.3 0.3 0.1

Hypodense halo 0.2 0.4 0.03 0.01 0.9 <0.001 NA NA NA

Wash out 0.3 0.1 0.1 -0.05 0.8 0.003 -0.5 0.1 0.3

Internal septa -0.3 0.1 0.1 0.01 0.9 <0.001 0.3 0.4 0.1

Tumor margin score max 0.3 0.2 0.07 -0.1 0.6 0.01 -0.1 0.7 0.02

Liver capsule abutment 0.3 0.2 0.09 0.1 0.6 0.01 NA NA NA

Liver capsule buldge 0.1 0.5 0.02 0.1 0.6 0.01 NA NA NA

Capsule retraction 0.1 0.7 0.009 -0.1 0.5 0.02 -0.5 0.2 0.2

Biliary dilatation -0.1 0.5 0.02 -0.3 0.1 0.1 0.7 0.048 0.5

NA–not analyzed.
aImaging features are defined in S2 Table.

doi:10.1371/journal.pone.0132953.t002
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size. It is likely that these quantitative imaging phenotypes reflect perfusion variations in
tumors that overexpress these hypoxia markers (VEGF and EGFR), which mirror the hypoxic
microenvironment and abnormal tumor vasculature, as proposed by Gatenby et al. [34]. It is
noteworthy that three conventional (qualitative) imaging features correlated with protein
expression, including ‘tumor-liver difference’ and ‘attenuation heterogeneity,’ which are sub-
jective assessments of overall tumor enhancement and heterogeneity on a five point scale by a
radiologist. These results are in line with a report by Segal et al. [2] who demonstrated a similar
relationship between VEGF expression and the qualitative imaging features ‘tumor-liver differ-
ence’ and ‘attenuation heterogeneity’. However, neither of these conventional (qualitative)
imaging features correlated with the quantitative texture features, thereby emphasizing the lack
of redundancy between quantitative and qualitative imaging features. Furthermore, the use of
qualitative imaging features is also hampered by potential large interobserver variability, as
demonstrated in a recent study on the application of imaging criteria in the diagnosis of hepa-
tocellular carcinoma by a group of radiologists [35].

A wide spectrum of clinical applications exists for radiogenomic methods that can predict
overexpression of VEGF, EGFR, or other hypoxia markers. Tumor-related angiogenesis is
known to affect local tumor growth and metastasis in a variety of human cancers [36]. On the
basis of these findings, antiangiogenic agents were recently developed and incorporated into
treatment algorithms of multiple cancers [15]. Bevacizumab (anti-VEGF antibody) and cetuxi-
mab (anti-EGFR antibody) are integral portion of the treatment guidelines for colorectal can-
cer [37] and prediction of treatment response to these agents is currently based on the tumor’s
molecular profile [37–39]. Recently, a new VEGF inhibitor, ramucirumab, was FDA approved
for treatment of advanced gastric adenocarcinoma. As the armamentarium of signal transduc-
tion inhibitors enlarges, it is likely that the clinical implications of radiogenomic profiling will
grow. Moreover, increased need for non-invasive radiogenomic profiling is expected as neoad-
juvant algorithms increase in frequency, and pre-treatment prediction of response will be rou-
tinely incorporated. CD24 is a cell adhesion molecule that was shown to be associated with
chemo-resistance capabilities and poor survival in cholangiocarcinoma [40,41]. Furthermore,
it was proposed that CD24 may have a role as a new target for directed molecular therapy in
cholangiocarcinoma, as decreased tumor cell invasiveness was observed with inhibition of
CD24 [40]. In view of the small cohort, it is notable that we observed a trend between specific
quantitative imaging phenotypes and CD24 expression levels. These findings merit further
research given the proposed role for CD24 in the malignant progression of
cholangiocarcinoma.

The current study has some inherent limitations. Despite the prospective patient enrollment
and data acquisition, selection factors cannot be absolutely excluded. For instance, excluding
patients with inadequate tissue for immunohistochemical staining might have resulted in over-
emphasizing the relationship between imaging phenotypes and molecular profiling. Similarly,
potential intra-tumor heterogeneity has not been evaluated, as a single biopsy was obtained.
However, ICC are known as relatively homogenous histologically and this approach represents
the limitations of daily clinical practice. In addition, the results obtained in a cholangiocarci-
noma model, which is known to exhibit a high degree of abnormal tissue vasculature [14] and
expression of hypoxia markers [9], might not be generalizable to other tumors. Nevertheless,
the current study is unique in that it utilizes texture-based imaging phenotypes in order to seg-
regate tumors expressing VEGF or EGFR. As mentioned above, the current imaging pheno-
types are based on objective and automated quantitative image analysis as opposed to
qualitative imaging features assessed visually by a radiologist [35]. Moreover, a certain degree
of specificity of our results can be appreciated by the fact that only two hypoxia markers corre-
lated with specific imaging phenotypes. The current pre-validation study is not powered to
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include multiple testing corrections nor to establish a robust prediction model, which will seg-
regate tumors based on their molecular profile. However, ICC is a rare disease and larger stud-
ies will be difficult to undertake. Nevertheless, this study presents proof of principle of the
utility of imaging phenotypes for profiling tumors based on their molecular makeup. These
data will be useful for informing future validation trials.

In conclusion, the current study suggests that radiogenomic methods may predict protein
expression of cholangiocarcinomas. Quantitative imaging phenotypes may be a surrogate
marker for the tumor’s molecular makeup and allow for the identification of tumors that
express VEGF, EGFR, or CD24, regardless of qualitative imaging features. It seems likely that
imaging heterogeneity in tumor enhancement pattern reflect regions of abnormal perfusion
related to the hypoxic microenvironment, characterized by overexpression of hypoxia markers.
Further investigation into the role of quantitative imaging phenotypes in tumors that express
hypoxia markers is warranted as it has a potential to impact on therapy.
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