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Selection for improved host response to infectious disease offers a desirable alternative to
chemical treatment but has proven difficult in practice, due to low heritability estimates of
disease traits. Disease data from field studies is often binary, indicating whether an indi-
vidual has become infected or not following exposure to an infectious disease. Numerous
studies have shown that from this data one can infer genetic variation in individuals’ under-
lying susceptibility. In a previous study, we showed that with an indirect genetic effect
(IGE) model it is possible to capture some genetic variation in infectivity, if present, as
well as in susceptibility. Infectivity is the propensity of transmitting infection upon contact
with a susceptible individual. It is an important factor determining the severity of an epi-
demic. However, there are severe shortcomings with the Standard IGE models as they
do not accommodate the dynamic nature of disease data. Here we adjust the Standard
IGE model to (1) make expression of infectivity dependent on the individuals’ disease sta-
tus (Case Model) and (2) to include timing of infection (Case-ordered Model). The models
are evaluated by comparing impact of selection, bias, and accuracy of each model using
simulated binary disease data. These were generated for populations with known vari-
ation in susceptibility and infectivity thus allowing comparisons between estimated and
true breeding values. Overall the Case Model provided better estimates for host genetic
susceptibility and infectivity compared to the Standard Model in terms of bias, impact,
and accuracy. Furthermore, these estimates were strongly influenced by epidemiological
characteristics. However, surprisingly, the Case-Ordered model performed considerably
worse than the Standard and the Case Models, pointing toward limitations in incorporat-
ing disease dynamics into conventional variance component estimation methodology and
software used in animal breeding.

Keywords: associative, indirect genetic, social interaction, infectious disease, breeding, infectivity, super spreaders,
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INTRODUCTION
Infectious diseases in livestock constitute a major threat to the
sustainability of livestock production. Reducing disease prevalence
through selection for host resistance offers a desirable alterna-
tive to chemical treatment. Particularly since recent advances in
high throughput genomic information has led to new opportu-
nities for dissecting genetic variation and to accelerate genetic
improvement. However, a major barrier to closing the genotype–
phenotype gap is uncovering the genetic variance underlying dis-
ease phenotypes. To do so, genetic analyses require large sample
sizes and hence disease phenotypes often need to be obtained from
field data. Bishop and Woolliams (2010) have demonstrated that
shortcomings of current estimation methods for field data which
fail to take epidemiological considerations into account cause
seemingly low heritability estimates for disease traits in domes-
tic livestock. For example, in a previous study (Lipschutz-Powell
et al., 2012a), it was demonstrated that conventional statistical
models used for variance component estimation cannot capture

genetic variation in host infectivity, when present in disease data,
as they consider exposure as an environmental factor.

Host infectivity is the propensity of an infected individual to
infect its group mates. The lack of attention to host variation
in infectivity in genetic studies stands in stark contrast to the
well-recognized important role of host infectivity in epidemiol-
ogy. There is abundant evidence that heterogeneity in infectivity is
ubiquitous, super-shedders being an extreme example, and can
profoundly impact upon disease prevalence in the population
(Woolhouse et al., 1997; Lloyd-Smith et al., 2005; Yates et al.,
2006; Doeschl-Wilson et al., 2011). However, it is not known
to what extent infectivity is genetically controlled as it is diffi-
cult to measure directly. Evolutionary arguments would however
suggest that there should be a significant amount of genetic vari-
ation in infectivity, because infectivity is not a component of
an individual’s fitness. Accumulation of genetic variation will,
therefore, not be prevented by natural selection (Denison et al.,
2003).
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Disease data from field studies is often binary, indicating
whether an individual became infected or not following expo-
sure to infectious pathogens. Numerous studies have demon-
strated that from this data one can infer genetic variation in
individuals’ underlying susceptibility to that disease (e.g., Hous-
ton et al., 2010). However, standard models do not lend them-
selves to estimating genetic variation in infectivity as the effect
of infectivity is observed in a different individual than the
one expressing it (Lipschutz-Powell et al., 2012a). The the-
ory of indirect genetic effects (IGE), also known as associa-
tive or social genetic effects, provides an appropriate frame-
work to account for genetic variation in infectivity as it inves-
tigates heritable effects of an individual on the trait value
of another individual (Griffing, 1967). In this context, host
infectivity can be regarded as an indirect effect to disease
status.

Lipschutz-Powell et al. (2012a) was the first study to demon-
strate that genetic variation in host infectivity can be captured
to some extent from binary disease data using an IGE model.
However the results of that study suggest that there are severe
shortcomings in using the standard IGE model, to estimate genetic
variance in infectivity. For example the standard IGE model
assumes that all individuals express the indirect effect (infectivity)
at all times and that all individuals are affected by the indirect
effect. However, only individuals who are infected can express
infectivity. Furthermore, the infectivity of an infected individ-
ual will affect the disease status of susceptible group members
only. Moreover, the number of both susceptible and infected
individuals will change over time. In this way, the gross underesti-
mation of genetic variance in infectivity observed in Lipschutz-
Powell et al. (2012a) may have occurred because the IGE was
attributed to all individuals in a group when in reality it was
expressed by and affecting only a subset of group members. Our
hypothesis is, therefore, that an IGE model, when used to analyze
binary disease data, may be improved by accounting for disease
dynamics.

Here we explore the implementation of dynamic properties
within the remit of a conventional quantitative genetics mixed
model framework and software (ASReml, Gilmour et al., 2006).
To do so we specify which individuals contribute to an effect using
the incidence matrix. In this study, two adjustments to the stan-
dard statistical IGE model were made. The first model, denoted
the Case Model, accounted for the fact that only infected indi-
viduals can express infectivity. The second model, denoted the
Case-Ordered Model, also accounted for the fact that infected
individuals can only affect individuals who did not become
infected before them. To evaluate these adjusted statistical mod-
els, we modeled disease progression in populations with genetic
variation in host infectivity and susceptibility and estimated
the genetic (co)variances in the simulated binary disease data
with each model. The populations were simulated with varying
epidemiological characteristics in order to assess their impact
on our estimates. Finally, we evaluated the bias, accuracy, and
impact of the estimates obtained with each model and com-
pared them to those obtained with the Standard (unadjusted) IGE
model.

MATERIALS AND METHODS
THE STATISTICAL MODELS
Standard IGE model
The Standard IGE model has been described by Muir (2005).
Thus for disease phenotype y (e.g., infected or not) observed in
individual j living in group h of size n with group mates m

yjh ∼ mean+ (direct effect)j +

n−1∑
m=1

(indirect effect)mh

+
(
group effect

)
h + ejh . (1)

Bijma et al. (2007) demonstrated the integration of this model
into the quantitative genetics mixed models framework to obtain
estimates for genetic variances and co-variances of direct and IGEs.
In the context of infectious disease, the direct effect relates to host
susceptibility and the indirect effect to host infectivity. In the sta-
tistical analysis, the direct, indirect, and group effects were all fitted
as random effects. According to Eq. 1, for the Standard IGE model
it is assumed that the direct and indirect effects are expressed by all
individuals (i.e., expression does not depend on the disease status
of an individual or that of its group mates).

Case IGE model
For the Case IGE model, model (1) was expanded to account for
the fact that only infected individuals can express the indirect effect

yjh ∼ mean+ (direct effect)j

+

n−1∑
m=1

Xmh(indirect effect)mh +
(
group effect

)
h + ejh . (2)

Where the indicator trait Xmh is equal to one if m became
infected during the recording period and zero otherwise. In
this way the number of individuals contributing to the IGE(∑n−1

m=1 Xmh

)
will be equal to the number of group mates that

have become infected during the observation period, represent-
ing the group’s total exposure. The number of infected individuals
will vary between groups not only for genetic reasons, but also
due to environmental factors or chance. This creates a non-genetic
covariance among group mates, which is accounted for by the ran-
dom group effect. It is assumed that the population is naïve at the
start of the recording period and that all individuals express sus-
ceptibility, although to varying extent (see Simulated Populations).

Case-ordered IGE model
For the Case-ordered IGE model the Case model was expanded to
include the order of infection of individuals, thus accounting for
the fact that an infected individual m can only impact on group
members that did not become infected prior to its own infection

yjh ∼ mean+ψ

n−1∑
m=1

Xmj h + (direct effect)j

+

n−1∑
m=1

Xmj h(indirect effect)mh

+
(
group effect

)
h + ejh . (3)
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The indicator trait Xmj h is equal to one if the group mate m became
infected before individual j. The number of individuals contribut-

ing to the IGE
(∑n - 1

m=1 Xmj h

)
, i.e., the exposure faced by individual

j, will now vary between group mates and has n− 1 possible lev-
els. To account for differences in exposure between group mates,

the effect of individual exposure
(
ψ
∑n−1

m=1 Xmj h

)
was fitted as a

separate fixed effect.

Variance structure
It was assumed that group mates are unrelated and all effects are
independent of the residuals. The Standard IGE model can be
written in the form of the Case IGE (2) with a constant indicator
trait Xmh= 1which has an expectation of one and zero variance.
Assuming that all effects are independent of the residuals and given
that E(X 2)= E(X) as X is binary, the phenotypic variance for all
three models can be partitioned, for a given level of individual
exposure, as follows:

σ2
y = σ2

d + (n − 1) E(X)σ2
i + σ2

group + σ2
e . (4)

Where d stands for the direct and i for the indirect effect. Thus
the phenotypic variance for all three models differs only in the
components pertaining to the indicator trait X, i.e., E(X) which is
the proportion of group mates expected to contribute to the IGE.

For the model fitting it was assumed that the vector of observed
traits y follows a multi-variate normal distribution with means
given by the fixed effects and the following variance structure:

Var(y) = ZaGaZ′a+Ze Ge Z′e + R (5)

Where R and Ge are diagonal matrices with the residual and
group variances, respectively, on the diagonal. Ga is the genetic
(co)variance matrix and is given by the Kronecker product of
a two by two variance-covariance matrix of direct and indirect
effects and the relationship (A) matrix. Za is an incidence matrix
linking individuals to their direct and indirect effects and Ze

an incidence matrix linking individuals to their group. Thus at
each individual level, term four of Eq. 4 is given on the diago-
nal of R and term three on the diagonal of Ge. As individuals
are expected to be unrelated within groups, the direct-indirect
covariance should not contribute to the phenotypic variance. The
incidence matrix Za links one direct effects variance from Ga to
the phenotypic variance, i.e., term one of Eq. 4, and

∑n−1
m=1 Xmj h

indirect effects variances. Hence Eq. 4 is the expectation of the
phenotypic variances given by Eq. 5.

SIMULATED DATA
To evaluate the three models, simulated binary disease data were
generated. For this purpose, epidemics were simulated with genetic
variation in host susceptibility and infectivity following known
distributions.

The epidemiological model
An epidemic was simulated in a population consisting of
many groups (see Simulated Populations below). The simulation
describes disease progression in each group and provides as output

the disease status of each individual at given time points. These
provided the binary disease records used for fitting the statisti-
cal models described in Section “The Statistical Models.” To avoid
overburdening the results with unnecessary complexity we chose
a simple compartmental stochastic susceptible-infected-recovered
(SIR) model as detailed in Lipschutz-Powell et al. (2012a). In
an SIR-model, individuals can be in one of three disease states,
being susceptible (S), infected (I ), or recovered (R). Individuals
move through states in the order S→ I→R. Initially, all individ-
uals are in the S-state. Upon infection, a susceptible individual
moves from the S-state to the I -state. Upon recovery, an infected
individual moves to the R-state. The average rate of transition
between the epidemiological compartments S, and I is determined
by the transmission parameter β,whereas the average rate of tran-
sition between the compartments I and R is determined by the
recovery rate γ. It was assumed that infected individuals become
immediately infectious.

Genetic variation in host susceptibility and infectivity was
incorporated into the model by assigning for each individual j its
own level of susceptibility gj and infectivity fj. Hence, there is no
longer a fixed transmission parameter β for the entire population,
but the rate of transmission from individual k to individual j is
given by the pair-wise transmission parameter βjk, which depends
on the infectivity of k and the susceptibility of j. In order to reduce
unnecessary noise it was assumed that variation in susceptibil-
ity and infectivity was fully genetic. However, the outcome, i.e.,
whether an individual became infected or not, was assumed to be
a stochastic event and will therefore contain both a genetic and
a random non-genetic component. The pair-wise transmission
parameter βjk was derived from first principles in Lipschutz-Powell
et al. (2012a) and defined as

βjk = − ln
(
1− Xg ,j gj Xf ,k fk

)
. (6)

Thus βjk is a function of the product of the susceptibility g of
individual j and the infectivity f of individual k. To reflect whether
susceptibility is expressed by individual j, it is scaled by Xg,j which
equals one if j is susceptible and zero otherwise. Similarly, infec-
tivity is scaled by Xf,k which equals one if k is infected and zero
otherwise. In this way, transmission between individuals j and k
can only occur if j is susceptible and k infectious. For simplicity no
variation in individual speed of recovery γk was assumed. Hence,
individual speeds of recovery γk were assumed to be equal to a
constant γ if the individual was infected and zero otherwise.

The epidemic was simulated as a stochastic Poisson process as
detailed in Lipschutz-Powell et al. (2012a) which starts by infect-
ing one randomly chosen individual in each group and describes
disease progression in the population through a series of indepen-
dent infection and recovery events. No transmission was assumed
between groups.

Simulated populations
Following Lipschutz-Powell et al. (2012a) the simulated popula-
tions consisted of N = 100,000 individuals with a paternal half-sib
structure and no full sibs. All parents were assumed to be unre-
lated. The half-sib family size was 100 individuals. Each population
was divided into 10,000 groups of size n= 10 chosen at random
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without reference to pedigree. Since each population was divided
into 10,000 groups giving rise to 10,000 independent epidemics,
each simulation was replicated only 10 times. The simulation was
run for populations with variation introduced in both suscepti-
bility and infectivity. Note that none of the IGE models presented
in this paper take individuals’ recovery into account. Therefore, to
assess the impact of recovery speed, on the outcome of the sub-
sequent analyses, the simulations were run for populations with
constant speed of recovery γ= 0.1, 0.01, or 0.001. These popula-
tions will be referred to as having a high, medium, or low recovery
rate, respectively.

Similarly to Lipschutz-Powell et al. (2012a) breeding values
(BVs) for susceptibility and infectivity were assumed to be distrib-
uted according to the right-skewed gamma distribution Γ(a, θ).
This distribution was chosen because the distribution of infectivity
is often right-skewed (Lloyd-Smith et al., 2005). Moreover, skewed
distributions allow for larger variation when the distribution is
confined to positive values. The same parameters were chosen for
both susceptibility and infectivity in order to allow for direct com-
parisons. Specifically, the parameters were taken as a= 1.14 and
θ= 0.18, such that the mean aθ= 0.21 the variance aθ2

= 0.037
and the distribution is right-skewed with skewness 2/

√
a= 1.87.

For details on how the BVs of the offspring generation were con-
structed from the parental generation, refer to Lipschutz-Powell
et al. (2012a).

A recent study showed molecular evidence for a positive
correlation between susceptibility and infectivity as the known
immunosuppressant stress hormone norepinephrine was shown
to cause increase shedding of Salmonella (Pullinger et al., 2010). In
order to examine the impact of such covariation between suscep-
tibility and infectivity, the correlation between both parameters
were either set to 0 or 0.35. If no correlation was assumed, the
BVs were assigned to individuals as detailed in Lipschutz-Powell
et al. (2012a). Non-zero correlations were generated by assigning
parental BVs using the gamma trivariate reduction algorithm as
specified in Schmeiser and Lal (1982).

VALIDATION OF THE STATISTICAL MODELS
Estimating genetic parameters from simulated data
Genetic parameters and BVs associated with host susceptibility
(direct effect) and infectivity (indirect effect) were estimated with
the three statistical models presented in Section “The Statisti-
cal Models.” The phenotypes used for this purpose were binary
records describing the disease state of the simulated individuals
during a given recording time. The latter was chosen such that
the mean number of infected individuals per group was approx-
imately n/2 in all populations. The binary disease trait, denoted
here as “disease presence,” was one if an individual had become
infected during the recording time and zero otherwise.

The Case-Ordered model (3) not only required information on
the disease state of individuals but also on the order of infection
within each group. Infection occurs over a continuous time scale.
However, in practice data is often recorded at discrete sampling
times. Knowledge of the exact order would in practice be equiv-
alent to dividing the recording period into an infinite number
of sampling times. Here the Case-Ordered model was simplified
so that the recording time was split into two sampling times.

Thus the records used in the analyses were the disease presence
of individuals recorded at the two sampling times. The length of
each period was taken such that approximately half of the individ-
uals that had become infected by the end of the recording time,
would have become infected during the first period and the other
half in the second period. The reasoning behind this choice in
sampling times is outlined in the discussion. Thus the indicator
trait Xmj h for individual j with group mate m in Eq. 3 was equal
to one only if group mate m had become infected and j was still
susceptible at the start of the recording period in which m became
infected.

The phenotypes of randomly chosen individuals initiating the
epidemic in each group were removed prior to analysis. The genetic
information of these individuals was however included in the
analysis. Due to difficulties with convergence (see Discussion)
the direct-indirect covariance was fixed prior to analysis to zero
when susceptibility and infectivity were independent and to 0.014,
in correspondence with the simulated correlation, otherwise. All
genetic analyses were carried out using ASReml (Gilmour et al.,
2006).

Validation criteria
Expected variance. In the simulations, genetic variation was
introduced in the underlying parameters infectivity and suscepti-
bility. The analysis of simulated data, however, was performed at
the level of observed disease status (0, 1). To judge the results of the
data analysis, i.e., to compare the estimated values to their expected
values, it is necessary to transform susceptibility and infectivity to
the observed binary scale. Following Dempster and Lerner (1950)
we assumed a linear relationship between the susceptibility and
the observed binary phenotype of an individual and between the
infectivity of an individual and the binary phenotypes of its group
mates. Specifically, the effect of susceptibility was obtained by
regressing the individuals’ phenotypes y on their susceptibility
g (y ∼ b1g ). To obtain the relationship between infectivity and the
disease status of an individual’s group mates, the phenotypes y
of individuals j were regressed on the infectivity f of a randomly
chosen infected group mate k of j (yjh ∼ b2fkh). This approxima-
tion was used as there are many groups and relatively few group
mates. The corresponding regression coefficients b1 and b2 were
estimated using the statistical package R (Ihaka and Gentleman,
1996) using the known BVs and phenotypes from the simulations.
Similarly to the genetic analysis, the phenotypes of the individ-
uals which were randomly chosen to initiate the epidemic were
discarded. In this way, the true direct BV of individual j (BVdj)
corresponds to b1gj and its indirect BV (BVij) to b2fj. The expected
(co)variances for the direct and indirect effects are then given by
the (co)variances of their corresponding true BVs. The expected
phenotypic variance was estimated as p̄

(
1− p̄

)
, p̄ denoting mean

prevalence.

Bias and accuracy. Estimates of bias for both the direct and indi-
rect effects were obtained by regressing the true BVs for direct and
indirect effects (as derived above) on the corresponding estimated
breeding values (EBVs) obtained from each model.

Accuracy was estimated as the correlations between the true
BVs for susceptibility and infectivity with the corresponding direct
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and indirect effect EBVs. Note that transformation of susceptibil-
ity/infectivity BVs to binary scale BVs was not necessary for calcu-
lating correlations under the assumption of a linear relationship
between the underlying and observed scales.

Impact of selection. In order to estimate the impact of the
three models on response to selection the population true mean
susceptibility/infectivity was compared to the true mean suscep-
tibility/infectivity after selection of 10% of the individuals with
the lowest EBVs obtained from each model. For all three models,
selection was carried out based upon the EBVs for direct effect
(EBVd) and indirect genetic effect (EBVi) separately as well as
for the index I x= EBVd+ xEBVi with x taken as the product
of the expected number of individuals contributing to the IGE
and the expected total group exposure rounded to the nearest
integer. Specifically, x = 4, 2, and 1 for the Standard, Case, and
Case-ordered model, respectively. These weights were chosen to
take into account the number of individuals contributing to the
indirect effect as well as the level of exposure. Moreover, they pro-
vided the greatest impact when tested on the population with zero
correlation between susceptibility and infectivity and recovery rate
0.01.

To quantify response to selection in terms of risk and severity of
the epidemic, the basic reproduction number R0 was estimated for
the whole population and for each selected subpopulation using
the true values of susceptibility and infectivity from the simula-
tion. R0 is the mean number of secondary infections an infected
individual will cause in its lifetime in an otherwise naïve popu-
lation, and is commonly used as a measure of disease risk and
severity in epidemiology (Anderson and May, 2006). By defini-
tion an epidemic will die out if R0 < 1. Following a SIR-model
for a closed population, R0= βS0/γ, S0= (n− 1) being the initial
number of susceptible individuals in a group (Keeling and Rohani,
2008). Incorporating Eq. 6 and taking a Taylor series expansion we
obtain as zero order approximation

R0 ≈

(
−ln

(
1− ḡ f̄

)
S0

)
γ

(7)

RESULTS
All results presented in Sections “Variance Estimates,” “Bias and
Accuracy,” and “Impact of Selection” refer to the populations with
a zero correlation between infectivity and susceptibility.

VARIANCE ESTIMATES
Table 1 shows the variance estimates obtained for each population,
from all three models, along with the expected variances. Overall
the variance estimates obtained with the Case model are in best
agreement with the expected variances. This is particularly true
for the populations with a medium to slow recovery rate. Whilst
the Standard model vastly underestimates the IGEs variance, the
Case-ordered model provides vastly inflated estimates. Moreover,
in contrast to the Standard and Case Models, the Case-ordered
model also grossly underestimates the direct effects variance. From
this it is clear that the Case-ordered model is inadequate. Therefore
further results for the Case-ordered model will not be shown as

Table 1 | Genetic variance estimates.

Effect Recovery rate γ Model

Expected Standard Case Case-ordered

Direct 0.1 20.61 20.28 23.84 9.65

0.01 33.79 35.07 37.28 11.45

0.001 34.30 35.26 36.73 9.03

Indirect 0.1 16.70 0.33 6.72 38.80

0.01 8.25 0.72 6.32 86.47

0.001 5.52 0.70 7.08 108.45

Expected and estimated genetic variance in the direct and indirect effect in

populations with a high, medium, and low recovery rate. Variance components

were estimated with the Standard, Case, and Case-ordered models. All variance

components have been scaled by 103.

they merely confirmed the overall poor performance of this model.
Potential explanations and alternative suggestions are outlined in
the discussion section of this paper.

The indirect effects variance estimate obtained with the Case
model deviates most from the expected variance in the population
with a high recovery rate (γ= 0.1), i.e., when infected individ-
uals are most likely to recover during the epidemic. This is not
surprising, as the Case Model does not take the time period of
infection into account. Thus, individuals that recover early would
be assumed to contribute infectivity during the entire record-
ing period. It is also noteworthy that the direct effects variance
(both expected and estimated) increases and the indirect variance
decreases with decreasing recovery rate. This demonstrates that
the relative contributions of both effects to the overall variance
strongly depend on epidemiological characteristics.

BIAS AND ACCURACY
Figure 1 shows the standardized bias estimates obtained for each
population from the Standard and Case models. These results
confirm the conclusions from the comparison between estimated
and expected variance components (see Table 1). Specifically, the
BV estimates obtained for the direct effect show little bias with
either model. However, the Standard model grossly underestimates
the indirect effect BV. It is noteworthy that, whilst the estimates
obtained with the Case model show less bias overall, both the
degree and direction of the standardized bias estimates depended
on the recovery rate. Specifically, the standardized bias estimates
for the indirect effect obtained with either model show an upward
trend as the recovery decreases. This is in line with the results of
Section “Variance Estimates” showing that the expected variance
in the indirect effect decreases with the recovery rate whereas the
estimated variance in the indirect effect obtained with either the
Standard or Case model remain more or less constant. This sug-
gests that epidemiological characteristics affect the bias of indirect
effect estimates and further improvements may be possible if these
are properly accounted for.

Figure 2 shows the accuracy estimates obtained for each pop-
ulation, for the Standard and Case models. The accuracy of the
direct effect BV obtained for the Case model is similar to that
obtained for the Standard model in all populations. However, the
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FIGURE 1 | Bias of direct and indirect effect BV estimates for
populations with different recovery rates (High, Medium, and
Low). The bias estimates (regression coefficient of the true BVs on
the EBVs), obtained for the Case and Standard model, were

standardized to 1-bias if bias <1 and 1/bias-1 if bias >1, in order to
show over and under estimation of the effects at the same scale.
Thus values >0 show over-estimation and values <0 underestimation
of the breeding values. (A) Direct effect, (B) indirect effect.

indirect effect BV estimates obtained with the Case model have a
greater accuracy compared with those obtained with the Standard
model. Also, there is a slight increase in the accuracy of the direct
effect BV estimates obtained with the Standard and the Case model
as the recovery rate decreases. This coincides with the increase in
expected variance of the direct effect. It may also be due to the fact
that for both the Standard and the Case model it is assumed that
individuals express infectivity throughout the observation period.
This assumption becomes more valid as individuals become less
likely to recover, i.e., as the recovery rate decreases.

Note that the accuracy estimates obtained for the direct effect
BVs with the Standard and Case model are reasonable given
the half-sib structure of the population. The accuracy estimates
obtained for the indirect effect BVs, on the other hand, are
much lower, thus indicating that there is still further scope for
improvement.

IMPACT OF SELECTION
Table 2 shows the true mean susceptibility and infectivity values
and the basic reproductive ratio R0 (scaled by γ) after selection
using the EBVs obtained with the Standard and Case model from
each population. Overall, selection using an index of direct and
indirect EBVs obtained with the Case model shows slightly more

reduction in risk and severity of an epidemic as measured by R0.
However, the difference between the use of an index and the direct
effect EBVs alone is small. This makes sense given the low accuracy
estimates obtained for the indirect effect EBVs. The benefits of the
Case Model over the Standard Model are mainly caused by the
improved estimates for the indirect effects EBVs. Whilst selection
on the direct EBVs from the Case model made little to no differ-
ence on true mean susceptibility compared with selecting on the
direct EBVs from the Standard model, selection on the indirect
EBVs from the Case modeled to greater reduction of true mean
infectivity.

It is noteworthy that the mean susceptibility increases, when
selecting on the indirect effect EBVs from all analyses except for
the Case model with a high recovery rate. This general increase in
mean susceptibility can be explained by the fact that only infected
individuals can express infectivity. Thus individuals with a low
susceptibility are less likely to express infectivity. It is therefore
less likely that the EBV for infectivity of these individual would be
on the extreme (selected) ends of the distribution. However, there
is a slight decrease, rather than increase, in mean susceptibility,
when selecting on the indirect effect EBVs obtained with the Case
model from the population with a high recovery rate. This may be
explained by the following. As seen in Section“Variance Estimates,”
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FIGURE 2 | Accuracy of direct and indirect effect BV estimates for populations with different recovery rates (High, Medium, and Low). (A) Direct effect,
(B) indirect effect.

the effect of infectivity increases as the recovery rate increases
probably due to an increase in the importance of being infected
early (high susceptibility). Hence, individuals with a high suscep-
tibility are more likely to be assigned a high infectivity EBV as the
recovery rate increases. This is in line with the fact that the mean
susceptibility, when selecting on indirect effect EBVs obtained with
the Case model, increases as the recovery rate decreases.

EFFECT OF DEPENDENCE BETWEEN SUSCEPTIBILITY AND INFECTIVITY
Having a positive correlation between susceptibility and infectiv-
ity had little to no impact on the bias of all estimates (results not
shown) and the accuracy of the direct effect variance estimates.
The accuracy of all indirect effect estimates, however, increased
when there was a positive correlation between susceptibility and
infectivity (Figure 3). This increase in the accuracy of the indi-
rect effect EBVs may be due to the fact that the accuracy of EBVs
obtained by Best Linear Unbiased Prediction inherently improves
when they are positively correlated (Falconer and MacKay, 1996).
Moreover, it may also be due to the fact that whether infectivity is
expressed or not depends on susceptibility, even if infectivity and
susceptibility themselves are independent. In that way, the indi-
rect effect EBVs will partly depend on susceptibility and hence
they will be more accurate if there truly is a positive correlation
between infectivity and susceptibility.

Finally, the impact of selection on true mean susceptibility,
infectivity, and R0 is compared between populations with and
without dependency between susceptibility and infectivity, and a
medium recovery rate, in Table 3. As may be expected, the greatest
impact of selection on R0 was obtained in the population with a
positive correlation between susceptibility and infectivity. A simi-
lar improvement was observed in populations with other recovery
rates (results not shown).

Overall, the performance of the Standard model was closer
to that of the Case model when there was a positive correlation
between susceptibility and infectivity. Note that in order to achieve
convergence the covariance estimate was fixed in all analyses. Vary-
ing the value at which the covariance is fixed slightly affected
the bias estimates but not the accuracy nor any of the previous
observations.

DISCUSSION
We have previously shown (Lipschutz-Powell et al., 2012a) that
IGE models developed for production traits provide a promis-
ing tool for estimating genetic variation underlying binary disease
data. However, standard IGE models did not fully capture genetic
variation in infectivity. The hypothesis of this study was that
extending an IGE model to allow for disease dynamics ought to
improve its ability to estimate genetic variation in susceptibility
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Table 2 | Selection impact on true susceptibility, infectivity, and risk

and severity of an epidemic.

Recovery

rate γ

Model Selected

on

Mean

susceptibility

Mean

infectivity

R0 · γ

No

selection

0.21 0.21 0.41

0.1 Standard EBVd 0.07 0.22 0.15

EBVi 0.24 0.15 0.34

EBVx 0.08 0.21 0.15

Case EBVd 0.08 0.22 0.15

EBVi 0.18 0.13 0.22

EBVx 0.08 0.19 0.14

0.01 Standard EBVd 0.08 0.21 0.15

EBVi 0.24 0.15 0.33

EBVx 0.08 0.20 0.15

Case EBVd 0.08 0.21 0.15

EBVi 0.22 0.13 0.26

EBVx 0.08 0.19 0.14

0.001 Standard EBVd 0.08 0.21 0.15

EBVi 0.23 0.15 0.32±0.01

EBVx 0.09 0.19 0.15

Case EBVd 0.08 0.21 0.15

EBVi 0.24 0.14 0.30

EBVx 0.08 0.19 0.14

For all three models, selection was carried out based upon the EBVs for direct

effect (EBVd) and indirect genetic effect (EBVi) separately as well as for the index

Ix =EBVd + xEBVi, with x taken as the product of the expected number of indi-

viduals contributing to the IGE and the expected total group exposure rounded

to the nearest integer. Specifically, x=4, 2, and 1 for the Standard, Case, and

Case-ordered model, respectively. Standard errors all <5 ·10−3 unless indicated.

and infectivity from binary disease data. Here we explored the
extent to which it is possible to do so, within the remit of the
conventional mixed model framework and software. In these con-
ditions it is possible to specify the individuals contributing to the
indirect effect using the incidence matrix. The effect of including
disease dynamics, in this way, was assessed by comparing the accu-
racy, bias, and selection impact of two adjusted IGE models, with
the Standard IGE model, using simulated data. In the first adjusted
IGE model, the Case model, it was assumed that only infected indi-
viduals have an indirect effect on their group mates. In the second
adjusted IGE model, the Case-ordered model, it was assumed that
infected individuals only have an indirect effect on susceptible
group mates. Our results show that taking the disease status of
individuals into account, by using the Case model, considerably
improved the bias, and showed some improvement in accuracy
and impact of genetic infectivity estimates from binary disease data
compared to the Standard model. However, although heuristically
one would assume that the Case-ordered model would provide
the best estimates, as it takes most of the disease dynamics into
account, in fact it provides the worst.

The poor performance of the Case-ordered model reveals
that the straight-forward approach of incorporating informa-
tion about disease dynamics in the form of incidence matrices

into a linear mixed model has severe limitations. The problem
with using incidence matrices containing information about
individuals contributing to the indirect effect as explanatory
variables (i.e., on the right-hand-side of the statistical model) is
that they use information obtained from the very observations
they try to predict. Thus, the indicator traits, like the observations,
are partly determined by the BVs we are trying to estimate. Note
that this was also true for the Case model, but to a much lesser
extent as the indicator trait corresponds to the disease state of
another individual in that model. However, the indicator trait in
the Case-ordered model is a property of the susceptibility of two
individuals, potentially rendering the numerical relationships too
complex for the estimation software used. In fact, a much simpli-
fied approximation had to be used for the Case-ordered model in
order to achieve convergence. Indeed, the number of observation
periods had to be reduced to two. Finally, there may be a reduction
in statistical power as the number of individuals contributing to
the indirect effect decreases. Thus a different approach is needed
for implementing information about the order of infection into
the statistical models. For example, hierarchical Bayesian models
may provide a better framework for incorporating infection order
in terms of prior information.

Our results reveal that the contribution of susceptibility and
infectivity to an individual’s disease status, as well as the bias and
accuracies of the corresponding EBVs obtained with either model,
depend on epidemiological characteristics. In particular, the
expected direct effect variance will be more important in diseases
with a low recovery rate and the expected indirect effect variance
will be more important in diseases with a high recovery rate. This
may be due to the fact that, when recovery is slow, the exposure will
be relatively high as individuals remain infected for longer. Thus
not getting infected is more likely the result of a low susceptibility,
increasing the relative contribution of variance in susceptibility to
the total phenotypic variance. When recovery is fast, on the other
hand, having a sufficiently high infectivity in order to spread the
infection prior to recovering becomes more important. In accor-
dance with the greater relative contribution of variance in suscepti-
bility, the accuracies of the direct effects EBV are also slightly higher
when recovery rate is low. However, the accuracies of the indirect
EBVs obtained with the Standard and Case models are decreased
in the population with a fast recovery compared with those with
a medium or slow recovery. This may be due to the fact that both
these models assume a constant expression of infectivity. Hence the
assumptions underlying these models are more accurate in popu-
lations with a slow recovery. It must also be noted that, including
the individuals initiating the epidemic, only about 50% of individ-
uals became infected in all populations. This should be good for
estimating the variance in the direct effect but it does mean that
approximately 50% of individuals never express infectivity. Fur-
ther work is therefore required to evaluate the optimal recording
time given epidemiological parameters such as recovery rate.

Our results indicate that a positive correlation between suscep-
tibility and infectivity improves the EBVs obtained with all three
models in terms of accuracy and impact of selection. The gain in
selection impact, when selecting on an index of direct and indi-
rect EBVs, is somewhat expected as selection on either EBV will
also be expected to affect response in the other due to dependency.
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FIGURE 3 | Accuracy of direct and indirect effect estimates in populations
with(out) dependence between susceptibility and infectivity. Results
shown for populations with a medium recovery rate, similar results were

obtained for populations with different recovery rates. The correlation
between susceptibility and infectivity is 0 in the independent population and
0.35 in the dependent population. (A) Direct effect, (B) indirect effect.

Table 3 | Selection impact in a population with a positive correlation

between susceptibility and infectivity.

Correlation Mean

susceptibility

Mean

infectivity

R0 · γ

0 0.35 0 0.35 0 0.35

No selection 0.21 0.21 0.21 0.21 0.41 0.41

Standard EBVd 0.08 0.08 0.21 0.14 0.15 0.10

EBVi 0.24 0.10 0.15 0.13 0.33 0.12

EBVx 0.08 0.08 0.20 0.13 0.15 0.10

Case EBVd 0.08 0.08 0.21 0.14 0.15 0.10

EBVi 0.22 0.15 0.13 0.13 0.26 0.17

EBVx 0.08 0.08 0.19 0.12 0.14 0.09

For populations with a medium recovery rate γ=0.01. Standard errors all <5 ·10−3.

Moreover, it has repeatedly been demonstrated that the covariance
between direct and indirect effect is a component of the expected
response to selection when using an IGE model (Griffing, 1967).
The gain in accuracy of the indirect effect EBVs probably occurs
because an individual must be infected, which depends on that
individual’s susceptibility, in order to express infectivity. However,
these results stem from a specific correlation value and it may

be worth investigating whether different correlation values would
affect this trend. Similarly the effect of different experimental set-
tings such as grouping related vs. non-related individuals would
be worth investigating as they have been demonstrated to strongly
affect the scale of parameter estimates (Bijma, 2010).

It must be noted that the model validation partly depended on
expected variances and BVs on a binary scale. In this study a simple
linear relationship was assumed, following Dempster and Lerner
(1950) and Bijma et al. (2007), between the observed binary trait
and the underlying genetic parameters. Alternatively, we could
have linked the linear mixed model describing the underlying
parameters to the binary trait with a non-linear link function
using a generalized linear mixed model GLMM. However, the
relationship between the underlying genetic parameters and the
observed disease status is complex and stochastic. It is therefore
unlikely that canonical link functions, such as the probit or logit
function, are appropriate in our case. In fact, in Lipschutz-Powell
et al. (2012a) we demonstrated that using a GLMM linking the
Standard IGE model with our binary disease trait with the logit
function provided qualitatively similar results to those obtained
without the transformation. Moreover, there was no advantage in
using such a transformation as the relationship was not only inap-
propriate, but it also provided intractable estimates and seemed
to increase the interaction bias. We have recently established the
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appropriate relationship in a further study between the underly-
ing genetic parameters and the observed binary host infectious
disease data. By doing so we demonstrated that the probit and
logit link functions are inappropriate for the analysis of binary
host infectious disease data (Lipschutz-Powell et al., 2012b). More-
over, we demonstrated that the use of a complementary log-log
link function or survival analysis is useful when there is varia-
tion in susceptibility only but inadequate if there is variation in
infectivity (Lipschutz-Powell et al., 2012b). The relationship estab-
lished by Lipschutz-Powell et al. (2012b) cannot be readily imple-
mented into existing software and is therefore beyond the scope
of this study investigating the incorporation of disease dynam-
ics within the framework of a conventional quantitative genetics
mixed model and associated software. We therefore decided to use
a linear mixed model, which have been shown to provide estimates
of genetic parameters of sufficient accuracy to generate selection
response (e.g., Vazquez et al., 2009). Other types of models which
may be interesting to adapt and develop further in order to esti-
mate genetic parameters associated with host susceptibility and
infectivity include cure models (Odegard et al., 2011) and product
threshold model (David et al., 2009). Cure models, have the poten-
tial to consider expression of infectivity conditional on infection

status, whereas product threshold models might better represent
the interaction between a susceptible and infectious individual.

In summary, we have shown that epidemiological characteris-
tics and disease dynamics strongly influence estimates of genetic
variances and BVs associated with host susceptibility and infec-
tivity and thus cannot be ignored. The straight-forward approach
of incorporating dynamic information in the form of incidence
matrices into the mixed model framework using conventional
animal breeding software is appealing due to ease of use and gen-
eral availability and showed improvement over the standard IGE
model. However this approach also has substantial limitations
in incorporating disease dynamics. An alternative approach for
incorporating epidemiological information and dynamic aspects
would entail establishing an appropriate mathematical function
that links the binary disease trait to underlying epidemiologi-
cal parameters under genetic influence and encapsulates dynamic
aspects.

ACKNOWLEDGMENTS
This research was funded by the BBSRC and Cobb-Vantress Incor-
porated within the remit of a Bioscience KTN Industrial CASE
studentship.

REFERENCES
Anderson, R. M., and May, R. M.

(2006). Infectious Diseases of
Humans. Oxford: Oxford University
Press.

Bijma, P. (2010). Estimating indirect
genetic effects: precision of estimates
and optimum designs. Genetics 186,
1013–1028.

Bijma, P., Muir, W. A., and van Aren-
donk, J. A. M. (2007). Multilevel
selection 1: quantitative genetics of
inheritance and response to selec-
tion. Genetics 175, 277–288.

Bishop, S. C., and Woolliams, J.
A. (2010). On the genetic
interpretation of disease
data. PLoS ONE 5, e8940.
doi:10.1371/journal.pone.0008940

David, I., Bodin, L., Gianola, D., Legarra,
A., Manfredi, E., and Robert-Granie,
C. (2009). Product versus additive
threshold models for analysis of
reproduction outcomes in animal
genetics. J. Anim. Sci. 87, 2510–2518.

Dempster, E. R., and Lerner, I. M.
(1950). Heritability of threshold
characters. Genetics 35, 212–236.

Denison, R. F., Kiers, E. T., and West,
S. A. (2003). Darwinian agricul-
ture: when can humans find solu-
tions beyond the reach of natural
selection? Q. Rev. Biol. 78, 145–168.

Doeschl-Wilson, A. B., Davidson, R.,
Conington, J., Roughsedge, T.,
Hutchings, M. R., and Villanueva, B.
(2011). Implications of host genetic
variation on the risk and prevalence
of infectious diseases transmitted
through the environment. Genetics
188, 683–693.

Falconer, D. S., and MacKay, T. F. C.
(eds). (1996). Introduction to Quan-
titative Genetics. Harlow: Pearson
Education Limited.

Gilmour, A. R., Gogel, B. J., Cullis,
B. R., and Thompson, R. (2006).
ASReml User Guide Release 2.0.
Hemel Hempstead: VSN Interna-
tional Ltd.

Griffing, B. (1967). Selection in refer-
ence to biological groups. I. Indi-
vidual and group selection applied
to populations of unordered groups.
Aust. J. Biol. Sci. 20, 127–139.

Houston, R. D., Haley, C. S., Hamil-
ton, A., Guy, D. R., Mota-Velasco,
J. C., Gheyas, A. A., et al. (2010).
The susceptibility of Atlantic salmon
fry to freshwater infectious pancre-
atic necrosis is largely explained by a
major QTL. Heredity 105, 318–327.

Ihaka, R., and Gentleman, R. (1996).
R: a language for data analysis and
graphics. J. Comput. Graph. Stat. 5,
299–314.

Keeling, M. J., and Rohani, P. (2008).
Modelling Infectious Diseases in
Humans and Animals. Princeton:
Princeton University Press.

Lipschutz-Powell, D., Woolliams, J. A.,
Bijma, P., and Doeschl-Wilson, A.
B. (2012a). Indirect genetic effects
and the spread of infectious dis-
ease: are we capturing the full her-
itable variation underlying disease
prevalence? PLoS ONE 7, e39551.
doi:10.1371/journal.pone.0039551

Lipschutz-Powell, D., Woolliams, J. A.,
Bijma, P., and Doeschl-Wilson, A. B.
(2012b). “The relationship between
binary disease status and underlying

heterogeneity in susceptibility and
infectivity,” in Proceedings of ICQG
(Edinburgh).

Lloyd-Smith, J. O., Schreiber, S. J., Kopp,
P. E., and Getz, W. M. (2005). Super-
spreading and the effect of individ-
ual variation on disease emergence.
Nature 438, 355–359.

Muir, W. M. (2005). Incorporation of
competitive effects in forest tree or
animal breeding programs. Genetics
170, 1247–1259.

Odegard, J., Madsen, P., Labouriau, R.,
Gjerde, B., and Meuwissen, T. H.
E. (2011). A sequential threshold
cure model for genetic analysis of
time-to-event data. J. Anim. Sci. 89,
943–950.

Pullinger, G. D., Carnell, S. C., Sharaff,
F. F., van Diemen, P. M., Dziva,
F., Morgan, E., et al. (2010). Nor-
epinephrine augments Salmonella
enterica-induced enteritis in a man-
ner associated with increased net
replication but independent of the
putative adrenergic sensor kinases
QseC and QseE. Infect. Immun. 78,
372–380.

Schmeiser, B. W., and Lal, R. (1982).
Bivariate gamma-random vectors.
Oper. Res. 30, 355–374.

Vazquez, A. I., Gianola, D., Bates, D.,
Weigel, K. A., and Heringstad, B.
(2009). Assessment of Poisson, logit,
and linear models for genetic analy-
sis of clinical mastitis in Norwe-
gian Red cows. J. Dairy Sci. 92,
739–748.

Woolhouse, M. E. J., Dye, C., Etard,
J. F., Smith, T., Charlwood, J.
D., Garnett, G. P., et al. (1997).

Heterogeneities in the transmission
of infectious agents: Implications
for the design of control programs.
Proc. Natl. Acad. Sci. U.S.A. 94,
338–342.

Yates, A., Antia, R., and Regoes, R. R.
(2006). How do pathogen evolu-
tion and host heterogeneity interact
in disease emergence? Proc. R. Soc.
Lond. B Biol. Sci. 273, 3075–3083.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 04 July 2012; accepted: 27 Sep-
tember 2012; published online: 22 Octo-
ber 2012.
Citation: Lipschutz-Powell D, Woolliams
JA, Bijma P, Pong-Wong R, Bermingham
ML and Doeschl-Wilson AB (2012) Bias,
accuracy, and impact of indirect genetic
effects in infectious diseases. Front. Gene.
3:215. doi: 10.3389/fgene.2012.00215
This article was submitted to Frontiers
in Livestock Genomics, a specialty of
Frontiers in Genetics.
Copyright © 2012 Lipschutz-Powell,
Woolliams, Bijma, Pong-Wong ,
Bermingham and Doeschl-Wilson.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in other
forums, provided the original authors
and source are credited and subject to
any copyright notices concerning any
third-party graphics etc.

Frontiers in Genetics | Livestock Genomics October 2012 | Volume 3 | Article 215 | 10

http://dx.doi.org/10.1371/journal.pone.0008940
http://dx.doi.org/10.1371/journal.pone.0039551
http://dx.doi.org/10.3389/fgene.2012.00215
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Livestock_Genomics
http://www.frontiersin.org/Livestock_Genomics/archive

	Bias, accuracy, and impact of indirect genetic effects in infectious diseases
	Introduction
	Materials and methods
	The statistical models
	Standard IGE model
	Case IGE model
	Case-ordered IGE model
	Variance structure

	Simulated data
	The epidemiological model
	Simulated populations

	Validation of the statistical models
	Estimating genetic parameters from simulated data
	Validation criteria
	Expected variance
	Bias and accuracy
	Impact of selection



	Results
	Variance estimates
	Bias and accuracy
	Impact of selection
	Effect of dependence between susceptibility and infectivity

	Discussion
	Acknowledgments
	References


