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Background. Renal transplantation can significantly improve the survival rate and quality of life of patients with end-stage renal
disease, but the probability of acute rejection (AR) in adult renal transplant recipients is still approximately 12.2%. Machine
learning (ML) is superior to traditional statistical methods in various clinical scenarios. However, the current AR model is
constructed only through simple difference analysis or a single queue, which cannot guarantee the accuracy of prediction.
Therefore, this study identified and validated new gene sets that contribute to the early prediction of AR and the prognosis
prediction of patients after renal transplantation by constructing a more accurate AR gene signature through ML technology.
Methods. Based on the Gene Expression Omnibus (GEO) database and multiple bioinformatic analyses, we identified
differentially expressed genes (DEGs) and built a gene signature via LASSO regression and SVM analysis. Immune cell
infiltration and immunocyte association analyses were also conducted. Furthermore, we investigated the relationship between
AR genes and graft survival status. Results. Twenty-four DEGs were identified. A 5 gene signature (CPA6, EFNA1, HBM,
THEMS5, and ZNF683) were obtained by LASSO analysis and SVM analysis, which had a satisfied ability to differentiate AR
and NAR in the training cohort, internal validation cohort and external validation cohort. Additionally, ZNF683 was
associated with graft survival. Conclusion. A 5 gene signature, particularly ZNF683, provided insight into a precise therapeutic
schedule and clinical applications for AR patients.

1. Introduction

Renal transplantation can significantly improve the survival
rate and quality of life of patients with end-stage renal dis-
ease, and its effect is better than that of renal replacement
methods such as chronic hemodialysis [1]. Although the
graft survival rate has been significantly improved with the
improvement of transplantation technology and the intro-
duction of immunosuppressants [2], the probability of acute
rejection (AR) in adult renal transplant recipients is still
approximately 12.2%, which is not completely avoided [3].

Clayton et al. found that the early onset of AR would reduce
the survival rate of grafts, resulting in the failure of trans-
plantation and increasing the risk of death due to cancer
and cardiovascular diseases [4]. At present, immunosup-
pressive regimens are often used in clinical treatment to pre-
vent rejection after renal transplantation, which greatly
improves the survival rate of renal transplant patients and
grafts [5]. However, the long-term survival rate of trans-
planted kidneys has not improved [6]. AR is still an impor-
tant factor leading to poor long-term prognosis in patients
after renal transplantation [4]. In the early stage, AR is still
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reversible. Early prediction and early prevention of AR are
conducive to preventing graft dysfunction and improving
the prognosis of patients after transplantation [7]. Therefore,
it is necessary to screen the characteristic genes of AR after
renal transplantation.

Studies have shown that machine learning (ML) is supe-
rior to traditional statistical methods in various clinical sce-
narios [8]. Data-driven technology based on ML can use a
large data repository to identify new risk gene signatures
and more complex interactions between them to improve
the performance of risk prediction [9]. Different studies have
developed prognostic models for different types of cancers,
such as glioblastoma [10] and hepatocellular carcinoma [11],
through multiple ML techniques to predict the prognosis of
patients and help clinicians screen potential responders for
more targeted treatment [12]. The above results show that
the disease signature genes based on a machine learning
method to explore specific biomarkers have great potential.
The support vector machine recursive feature elimination
(SVM-RFE) algorithm is a method of recursively removing
genes based on the weight of the support vector machine clas-
sifier (SVM) [13]. The SVM-REE algorithm has been applied
to genomics [14], which proves its strong performance. In
multiple studies, ML has been used to investigate specific bio-
markers associated with AR [7, 15, 16]. However, because the
current AR study is only through simple difference analysis or
a single queue, which cannot guarantee the accuracy of predic-
tion, we intend to find a more accurate AR gene signature
through ML technology and multiqueue verification.

In this study, we not only tried to find and validate some
machine learning-based AR genes after renal transplanta-
tion, but also to explore their association with graft loss after
renal transplantation. In summary, this study identified and
validated new genes that contribute to the early prediction of
AR and the graft survival after renal transplantation.

2. Materials and Methods

2.1. Data Collection. For this study, raw gene expression data
were downloaded from the Gene Expression Omnibus
(GEO) database (https://www.ncbinlm.nih.gov/) database.
After screening, we finally adopted the three datasets
GSE112927, GSE131179, and GSE21374 as research data-
sets. Among them, GSE112927 was used as the main
research dataset. To improve the accuracy, 60% of the sam-
ples are used for training, and 40% of the samples are used
for internal verification. We also selected GSE131179 as
the external test dataset. GSE21374 is a dataset with clinical
data used to further verify whether the selected genes have
an effect on graft survival.

2.2. Differentially Expressed Genes Screening. The “limma” R
package was utilized to the differentially expressed screen
genes (DEGs) between AR and NAR in the expression data.
Limma is an R package for analysing gene expression microar-
ray data, specifically designed experiments using linear models
and assessing differential expression. Taking [log fold change
(FC)] > 1 and P <0.05 as the filter value, the eligible DEGs
were used for the next analysis. The DEGs we screened were
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visualized by heat map and volcano plot, which was generated
by the “pheatmap” and “ggplot2” packages.

2.3. GO, KEGG, and GSEA Enrichment Analyses. To investi-
gate the significantly enriched functions of DEGs between
AR and NAR in GSE112927 and to better understand the
important pathways involved in DEGs, the Gene Ontology
terms (GO) [17], Kyoto Encyclopedia of Genes and
Genomes (KEGG) [18], and Gene set enrichment analysis
(GSEA) [19] were performed and analysed by using the
“ggplot2”, “clusterProfiler”, “org.Hs.e.g.db”, “enrichplot”,
and “GOplot” packages in the R package to further visualize
the enrichment results. Among them, GO and KEGG analy-
ses were performed using a cluster diagram, and GSEA
marks the corresponding results of NAR and AR.

2.4. LASSO Analysis and SVM Analysis of the Obtained
DEGs. The DEGs were screened by the LASSO and SVM
[14] algorithms. To filter the characteristic genes, the
“glmnet” package was used to perform regression analysis
on the target genes. At the same time, support vector
machine (SVM) was utilized to construct classification anal-
ysis by the“e1071”, “kernlab”, and “Caret”packages. Finally,
the Venn package was used to determine the intersection
of the characteristic AR genes in the two algorithms. Finally,
five AR characteristic genes were obtained: ZNF683, EFNA1,
HBM, THEMS5, and CPA6. The “pROC” package was used
to verify the disease-discriminating ability of characteristic
AR genes in different cohorts. The role of these genes in graft
survival was also investigated.

2.5. Immune Cell Infiltration and Immunocyte Association
Analysis. CIBERSORT is a very commonly used method
for calculating immune cell infiltration. It uses the principle
of linear support vector regression to deconvolve the expres-
sion matrix of immune cell subtypes to estimate the abun-
dance of immune cells. It is widely used to assess the types
of immune cells in the microenvironment. It contains 547
biomarkers and 22 human immune cell phenotypes, cover-
ing plasma, B, T, and myeloid cell subsets. In this study,
immune infiltration analysis was performed to determine
which immune cells were mainly enriched in different graft
survival groups.

2.6. Statistical Analysis. The “limma” R package was utilized
for the DEGs. Heatmaps were generated based on the
“pheatmap” package. By using the R package ggplot2 and
other visualization data, the cluster graph was selected to
generate the enrichment analysis graph of GO and KEGG,
and GSEA enrichment analysis was also performed. AR
characteristic genes were identified by LASSO analysis and
SVM analysis. All statistical analyses were performed using
R software. P < 0.05 was considered statistically significant.

3. Results

3.1. Screening DEGs in AR after Renal Transplantation. The
cases of GSE112927 were divided into the training (1 =93)
and the internal validation cohorts (n=62). The training
cohort in GSE112927 including 35 acute rejection (AR) cases
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FiGURE 1: Screening for the DEGs (cut-off criteria of |log 2FC| > 1 and P < 0.05). DEGs were visualized by heat map and volcano plots. (a)
DEGs in the heat map. AR: acute rejection and NAR: nonacute rejection. (b) DEGs in volcano plots. Upregulated genes are indicated in red,

and downregulated genes are indicated in green.

and 58 nonacute rejection (NAR) cases was used to identify
the DEGs. A total of 24 DEGs were identified: EFNA1 and
ADAMTS2 were prominently upregulated, and 22 genes
including ZNF683, HBM, GZMH, FAM210B, THEMS5,
ACHE, FECH, PAGE2B, BPGM, RNF182, HBD, XK,
SAXO1, CAl, SNCA, HBZ, ALAS2, TUBB2A, DOC2B,
GYPB, CPA6, and SLC6A19 were prominently downregu-
lated (Figures 1(a) and 1(b)).

3.2. Analyses of Biological Processes and Pathways Enriched
for DEGs. Regarding the strength of our results, hydrogen
peroxide catabolic process, mitochondrial matrix, haptoglo-
bin binding, etc. were enriched GO items (Figure 2(a)). Gly-
cine, serine, and threonine metabolism, porphyrin
metabolism, biosynthesis of cofactors, etc. were enriched
KEGG pathways (Figure 2(b)). Simultaneously, gene set
enrichment analysis was applied to manifest the results
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F1GURrk 2: The DEGs were enriched using GO and KEGG functional enrichment analyses. (a) GO enrichment results. (b) KEGG enrichment

results. (c) NAR enriched KEGG pathways using GSVA. (d) AR enriched KEGG pathways using GSVA.

corresponding to NAR and AR. According to the results, we
found that five pathways, including antigen processing and
presentation, graft versus host disease, natural killer cell-
mediated cytotoxicity, porphyrin and chlorophyll metabo-
lism, and ribosome, were substantially enriched in NAR
(Figure 2(c)), while five other pathways, including calcium
signaling pathway, complement and coagulation cascades,
Ecm receptor interaction, neuroactive ligand receptor inter-
action, and starch and sucrose metabolism were enormously
enriched in AR (Figure 2(d)). It is of profound significance
for us to further understand acute rejection after renal
transplantation.

3.3. Discerning the Characteristic AR Genes. To further select
and validate the characteristic AR genes, we implemented
LASSO regression analysis and SVM algorithm on the 24

DEGs mentioned above; CPA6, EFNA1, HBM, THEMS5,
and ZNF683 were screened by the two algorithms: LASSO
(Figures 3(a) and 3 (b)) and SVM (Figure 3(c)). Further-
more, based on the training and internal validation cohorts
in GSE112927 and the external test cohort in GSE131179,
the five characteristic AR genes were assessed for their
disease-distinguishing ability by plotting ROC curves. The
results indicated that the AUCs of CPA6, EFNA1, HBM,
THEMS, and ZNF683 in the training cohort were 0.623,
0.698, 0.723, 0.697, and 0.712 (Figure 4(a)), while the AUCs
of these genes in the internal validation cohort were 0.571,
0.707, 0.513, 0.552, and 0.641 (Figure 4(b)). Finally, the AUCs
of these genes in the external validation cohort were 0.524,
0.517, 0.531, 0.639, and 0.906 (Figure 4(c)). Only the AUC
of ZNF683 was greater than 0.6 in the three cohorts. There-
fore, it was the most critical gene in our following study.
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FIGURE 5: Association between characteristic AR genes and immune cell infiltration. (a—e) Correlations between AR characteristic genes and

the immune cell infiltration level.

3.4. Immunocyte Association Analysis. The Immunocyte
association analysis results showed that T cells CD4 memory
resting is a negative correlation with CPA6 (Figure 5(a)) while
Macrophages M1 is the positive correlation. T cells CD8, NK
cells resting, monocytes, and EFNA1 (Figure 5(b)) are neg-
ative correlated while B cells naive, T cells CD4 memory
activated, T cells gamma delta, T cells CD4 naive, Macro-
phages M1, and EFNAL are positively related. T cells CD4
memory resting and B cell naive are correlated negatively
with HBM (Figure 5(c)) and macrophages M2 is correlated
positively with it. B cells naive is negatively associated with
THEMS5 (Figure 5(d)) while macrophages M2, mast cells
resting, B cells memory, and NK cells resting are positively
associated with it. Finally, neutrophils, T cells CD4 memory
activated etc. are negative correlation with ZNF683

(Figure 5(e)) while T cell CD8, NK cells resting etc. are a
positive correlation. In the above mentioned results, we
found that these five genes are associated with immune
cells, and further research is needed to determine the spe-
cific mechanism.

3.5. Validation of the Effect of Characteristic AR Genes on
Graft Survival. GSE21374 which contains the clinical data
was used to further verify to whether the characteristic
genes have any effect on graft survival. According to the
results, we found that the graft survival analysis of ZNF683
(Figure 6(f)) was most meaningful in ROC curves, because
its ability to distinguish failure of kidney transplantation was
the best of the five genes. Therefore, we have a reason to iden-
tify it as the most critical key gene, and to study it further.
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FiGure 6: Validation of the effect of characteristic AR genes on graft survival. (a) Heatmap of characteristic AR genes. Nonfailed: Graft
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3.6. Graft Survival and Immunocyte Analysis of ZNF683. The
graft survival analysis indicated that the survival status in the
ZNF683 high expression group was superior to that in the
low expression (Figure 7(a)). Next, we utilized the corrplot
package to carry out the correlation analysis of immune
cells. For most immune cells, there is a negative regulatory
relationship with each other (Figure 7(b)). We analyzed the
association between ZNF683 and immune cell infiltration
in GSE21374 (Figure 7(c)). Finally, we analyzed the differ-
ence in immune cells between Graft nonfailed and Graft
failed groups. According to the result, we found that signif-
icant differences in the analysis of immune cells in nonfailed
and failed groups are T cells CD4 memory activated, mono-
cytes, and mast cells activated (Figures 7(d) and 7(e)).

4. Discussion

Despite important advancements in treatment regimens for
kidney transplant patients, allograft rejection, especially
acute rejection, remains a substantial threat and a leading
predictor of allograft survival [20]. Therefore, the timely
detection of acute rejection in advance of applying immuno-
suppressants can improve the survival rate of grafts after
kidney transplantation [21]. The purpose of this study was
to investigate genes associated with AR after kidney trans-
plantation through a comprehensive analysis that will assist
future continued searches.

In multiple studies, machine learning SVM has been
shown to be an effective method for predicting kidney
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transplant prognosis. Mertens et al. identified and validated
a set of 10 urinary protein biomarkers that can be used to
exclude antibody-mediated rejection [22]. It has been
reported that 5 genes can be used for the diagnosis and pre-
diction of acute kidney injury after kidney transplant by
weighted gene coexpression network analysis (WGCNA)
[23]. The above study predicts kidney transplant prognosis
in different ways from different molecules. However,
machine learning SVM for finding disease-characterizing
genes to predict acute rejection after kidney transplantation
has not yet been discovered. In this study, a total of 24 differ-
entially expressed genes were analysed, and five genes corre-
lated with AR after kidney transplantation, including CPAS,
EFNAIL, HBM, THEMS, and ZNF683 were identified based
on SVM and LASSO. According to the results of the ROC
curve analysis, ZNF683 was screened out, which has not
been reported in articles related to kidney transplantation.
In addition, the gene ZNF683 was further explored in
immune analysis, which may suggest that the gene ZNF683
serves as a biomarker of renal acute rejection.

In this study, multiple GEO datasets were used to iden-
tify characteristic AR genes after kidney transplantation. A
total of 24 DEGs were obtained from the training cohort,
including 2 upregulated genes and 22 downregulated genes.
Based on two machine learning algorithms, 5 characteristic

AR genes were identified. In particular, the AUC of
ZNF683 ranged from 0.641~0.906, showing a high predic-
tive performance for AR samples. The association between
characteristic AR genes and immune cells was analysed.
Based on the results, we found that Neutrophils, T cells
CD4 memory activated, T cells gamma delta, T cells CD4
naive, and Macrophages M1 were negative correlation with
ZNF683 while T cells regulatory (Tregs), NK cells resting,
and T cells CD8 were the positive correlation. The zinc fin-
ger protein ZNF683 was originally termed the “homolog of
Blimpl in T cells” (Hobit). The gene was shown to regulate
the development and maintenance of resident lymphocytes
in innate tissue along with Blimp1, including tissue resident
NK cells, tissue resident memory T cells, nature killer cells,
and type 1 innate lymphoid cells [24-26]. Increasing evi-
dence has showed that ZNF683/HOBIT is highly expressed
in human effector-type CD8" T cells, NK cells, and cytotoxic
CD4" T cells [27-29]. The gene was observed in cancer and
organs affected by inflammation and viral infections
[30-33]. A recent report showed that natural killer cells, nat-
ural killer T cells, CD4" T cells, and CD8" T cells were
enriched in AR after kidney transplantation [34, 35]. In fact,
CD8" T cells are an important part of the cellular response
in allogeneic rejection, and these cells recognize and bind
MHC class I antigens, leading to allogeneic cell lysis and
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transplant rejection [36]. The infiltration of NK cells was
associated with antibody-mediated rejection after kidney
transplantation [35]. This is similar to our findings. In addi-
tion, a previously published report suggested that ZNF683/
HOBIT also plays a key role in establishing tissue residency.
The gene could maintain the numbers of T cells, inhibit the
development of circulating memory cells and promote the
formation and retention of tissue resident memory (TRM)
cells [24]. The original donor TRM cells within the graft
may have a positive effect on the preservation of organ trans-
plantation. TRM cells can mount an immune response that
counteracts rejection [37]. The persistence of donors TRM
cells was shown to significantly improve patient graft sur-
vival in both bowel and lung transplants [38, 39]. Therefore,
these findings suggest that ZNF683/HOBIT may maintain
the number of the T cells and promote the number of the
original donor TRM cells in kidney transplantation to pro-
tect the kidney from AR.

To further verify the role of the above AR characteristic
genes in the kidney transplantation, survival analysis was
performed using clinical data from GSE21374. Subsequently,
the gene ZNF683 was further analysed. The graft survival of
high ZNF683 expression was explicitly superior to that of
low ZNF683 expression by the survival curve. The ZNF683
gene was significant and had a good effect on several ROC
curves and was identified as a key gene.

However, the limitations of this study should be recog-
nized. The information used in this research was down-
loaded from a public database. To further validate the
ZNF683 gene in a prospective cohort, studies with larger
sample sizes are required to validate our conclusions.

Taken together, the gene ZNF683 is an important gene
to be discovered in kidney transplantation through machine
learning, and its discovery may have a major impact on
acute rejection after kidney transplant, which provides
insight into a precise therapeutic schedule and clinical appli-
cations for AR patients.
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