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Being able to reproduce and survive is fundamental to all forms of life. In primitive
unicellular organisms, the emergence of quiescence as a reversible proliferation arrest
has most likely improved cell survival under unfavorable environmental conditions.
During evolution, with the repeated appearances of multicellularity, several aspects
of unicellular quiescence were conserved while new quiescent cell intrinsic abilities
arose. We propose that the formation of a microenvironment by neighboring cells
has allowed disconnecting quiescence from nutritional cues. In this new context, non-
proliferative cells can stay metabolically active, potentially authorizing the emergence
of new quiescent cell properties, and thereby favoring cell specialization. Through its
co-evolution with cell specialization, quiescence may have been a key motor of the
fascinating diversity of multicellular complexity.
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QUIESCENCE IN UNICELLULAR ORGANISMS

Life is characterized by the ability of self-reproduction. However, natural selection, which is
key to Darwinian evolution, operates on inherited variations that increase individual’s ability
not only to reproduce but also to survive. This duality started with the very first unicellular
organisms for which there was a need for trade-off between proliferation and long-term survival
in changing environments. In this early scenario, quiescence could have emerged as an adaptive
reversible proliferation arrest. Quiescence, which is not strictly required for life to multiply, might
have resulted from the need to control proliferation in response to unfavorable environmental
conditions that otherwise would compromise viability by disconnecting cell division from cell
growth. At this time, quiescence might have represented an extreme form of slow growth and been
a passive consequence of a massive anabolism slow-down due to resource limitation. Similarly, in
contemporary unicellular prokaryotes or eukaryotes, the cessation of cell cycle progression per se
may still be just a rather passive outcome of a drastic anabolic diminution. This was proposed for
Saccharomyces cerevisiae cells that were observed to cease to proliferate in various cell cycle phases
(Brauer et al., 2008; Daignan-Fornier and Sagot, 2011a,b; Klosinska et al., 2011; Laporte et al., 2011;
Broach, 2012) as well as for Cryptococcus neoformans (Takeo et al., 1995) and Schizosaccharomyces
pombe (Costello et al., 1986; Wei et al., 1993).

Yet, in modern unicellular organisms, additional quiescent cell properties improving survival
capacities have appeared. These new intrinsic abilities involve dedicated molecular processes that
protect cells from adversities (Rittershaus et al., 2013; Zhang and Cao, 2017). For example, the
cellular response for survival can engage the storage of various energetic macromolecules, the
nature of which depends on both the limiting resource and the species (Montrose et al., 2020).
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This was demonstrated in S. cerevisiae and Chlamydomonas
reinhardtii, in which the metabolic rewiring upon quiescence
establishment is highly dependent on the nature of the exhausted
nutrient (Klosinska et al., 2011; Broach, 2012; Takeuchi
and Benning, 2019). In addition, quiescence establishment
is often accompanied by the remodeling of organelles and
the reorganization of cellular machineries. This has been
particularly documented in quiescent S. cerevisiae in which
multiple reorganizations were observed, including the
hyper-condensation of the genome, the rearrangement of
the mitochondrial network, or the aggregation of enzymes
(O’Connell et al., 2012; Prouteau et al., 2017; Sagot and Laporte,
2019b; Miles et al., 2021). Some of these reorganizations are the
consequences of variations in the cytoplasm physico-chemical
properties occurring upon proliferation to quiescence transition
(Joyner et al., 2016; Munder et al., 2016; Heimlicher et al., 2019).
Others may be the outcome of a dedicated signaling pathway.
The possible, yet not mandatory, physiological “raisons d’être”
of many of these cellular reorganizations are still puzzling, but
it has been speculated that the accumulation of reserves of
macromolecules, such as osmoprotective polymers, or cellular
machineries, such as ribosomes, may be a key for adaptation
in a changing environment (Argüelles, 2000; Yu et al., 2020).
Altogether, the diverse properties of quiescent cells, which
probably have evolved in different ways in function of both
the cell types and the environmental conditions, exemplify the
plasticity of this cellular state (Sagot and Laporte, 2019a,b).

In parallel, it seems that unicellular organisms have evolved
a fast and efficient quiescence exit. For example, S. cerevisiae
responds immediately to an extracellular food supply (Zhang
et al., 2019) and many of the cellular machineries reorganized
upon quiescence establishment, such as the actin cytoskeleton
or the proteasome, are mobilized within seconds upon carbon
replenishment (Sagot et al., 2006; Laporte et al., 2008, 2011).
Furthermore, during the first step of resuscitation from chlorosis
of nitrogen starved cyanobacteria, an almost instantaneous
increase in the adenosine triphosphate (ATP) level is observed
upon addition of sodium nitrate (Neumann et al., 2021), just as
in quiescent S. cerevisiae upon glucose re-feeding (Laporte et al.,
2011). Besides, in S. cerevisiae, the polymerase II is poised onto
promoter of genes that are critical for proliferation resumption
(Radonjic et al., 2005). In parallel, the chromatin remodeling
complex (RSC) is bound to genes induced upon quiescence exit
and facilitates rapid gene expression firing, despite a globally
repressive chromatin state maintained compacted by histone
specific modifications (McKnight et al., 2015; Swygert et al.,
2019; Cucinotta et al., 2021). Hence, unicellular quiescent cells
seem to be prepared to respond rapidly to favorable conditions
and mechanisms accompanying quiescence establishment may
be an asset for the competition within a given environment.
Of note, this propensity to swiftly exit quiescence has been
proposed to be the Achilles’ heel of persisters pathogenic
bacteria that can be deceived by specific metabolites that
trigger quiescence exit and as such expose them to killing
drugs (Amato et al., 2014; Prax and Bertram, 2014). Thus, in
contemporary unicellular organisms, quiescence establishment
involves reorganizations to improve both sustained protection
and fitness upon quiescence exit.

Finally, in both prokaryotes and some unicellular eukaryotes,
it has been observed that the longer the time spent in quiescence,
the slower the resumption of proliferation, suggesting that
quiescence might deepen with time by unknown mechanisms
that remains to be deciphered (Su et al., 1996; Laporte et al., 2017;
Pu et al., 2019).

Overall, the rationale governing quiescence reflects an
opportunistic behavior that seems very well-adapted to inter-
individual competition in a fluctuating environment. Yet, while
in unicellular species, cell and organism are synonymous, in
multicellular entities, the two scales are distinct. How did cellular
quiescence evolve in this context?

QUIESCENCE IN RUDIMENTARY
MULTICELLULAR ORGANISMS

In C. reinhardtii, as in other unicellular algae (Chlorella,
Scenedesmus), non-favorable environmental conditions induce
not only a cell cycle arrest but also cell clumping into large
aggregates made of few tens to thousand quiescent cells held
together by an extracellular matrix. This multicellular form
favors resistance to starvation, desiccation, and freezing. When
conditions become favorable again, aggregates disassemble in
few minutes and cells re-proliferate (Sathe and Durand, 2016;
de Carpentier et al., 2019). In this case, quiescence is still a
survival form, but it is associated with the formation of a
dedicated multicellular assembly. Dictyostelium discoideum also
propagates as a single cell in a nutrient rich environment,
and upon nutrient exhaustion, just as other dictyostelids, it
may opt for several strategies. Unicellular forms can just stop
proliferating, forming a so-called solitary quiescent cells that
survive short periods of starvation. Alternatively, a cell can
encyst to form a unicellular quiescent microcyst that is able
to survive long period of scarcity. Nutritional depletion, when
combined with dark and humid environment can also lead
to the initiation of a sexual cycle that will end up by the
formation of a dormant macrocyst from a diploid giant cell.
Finally, upon starvation, D. discoideum cells can also start
to secrete both chemoattractant and extracellular matrix and
aggregate into a multicellular sorogen, that can eventually form
a stalk, named fruiting body, in which some cells differentiate
into dormant spores that will disseminate and germinate when
external conditions will become favorable again (Dubravcic
et al., 2014; Kin and Schaap, 2021). Thus, in dictyostelids,
cellular quiescence is still associated to survival in non-optimal
environmental conditions, but combined with multicellularity, it
contributes to improve propagation.

In the above examples, planktonic organisms can switch
to a temporary multicellular lifestyle to improve survival.
Symmetrically, volvocine green algae species, which live as
spherical assembly of thousands of cells in rich freshwater
habitats, can produce dormant unicellular zygotes capable
of surviving adverse conditions. The return to a favorable
environment triggers meiosis and haploid offspring reproduces
asexually to ultimately rebuild a multicellular form (Hallmann,
2011). Similarly, many multicellular organisms use quiescent
unicellular spore as a mean to both face unfavorable conditions
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and disseminate. These quiescent spores can be generated
asexually, such as conidiospores produced by several kind of
filamentous fungi like Neurospora crassa (Turian and Matikian,
1966; Ruger-Herreros and Corrochano, 2020), or via sexual
reproduction like ascospores formed by ascomycetes (Bennett
and Turgeon, 2016) or micro- and macro-spores generated
by algae (Maggs and Callow, 2003). In these rudimentary
multicellular species, quiescence is a combination between
a survival mode and a mean to disseminate robust single-
celled propagules.

QUIESCENCE IN MORE COMPLEX
MULTICELLULAR ORGANISMS

Suspended Animation at the Whole
Organism Scale
Where multicellularity has become obligatory, some selected
survival strategies were no longer based on cellular quiescence
but rather take place at the whole organism scale. In that
situation, extended period of inactivity, either adaptive or
programmed, where developed. Cryptobiosis is an extreme form
of inactivity that can lead to an almost complete cessation of the
body metabolism. It includes freezing, desiccation, hypoxia and
osmobiosis. This state of “suspended animation” is observed in
lichen or mosses, but also in invertebrate such as nematodes or
tardigrades. It is also widely used by a variety of phytoplankton
species that can persist for multiple decades in a quiescent resting
state (Ellegaard and Ribeiro, 2018). This adaptive reaction allows
surviving unpredictable unfavorable conditions. By contrast,
organism dormancy is programmed and widely found in plants
and animals. Dormancy can either be an obligated part of the
life cycle, such as a given developmental stage like diapause, or
a seasonal arrest that anticipates predictable environmental non-
favorable conditions, such as hibernation (for an excellent review
see Withers and Cooper, 2010). Yet, many multicellular species
do not have recourse to suspended animation to survive.

Key Aspects of Unicellular Quiescence
Have Been Conserved in Multicellular
Species
In multicellular organisms, cell death is no longer synonymous
to organism death and within a multicellular body, dead cells
are generally replaced to preserve tissue homeostasis. In adults,
this replacement relies on stem cells that are capable of surviving
and self-renewing all along the organism’s lifetime (Rumman
et al., 2015). Quiescence favors stem cells preservation by
preventing the accumulation of replication-induced mutations
(Fuchs, 2009; Cheung and Rando, 2013; Tümpel and Rudolph,
2019). Quiescence also permits stem cells to have an inherent
low metabolic activity. In particular, the low rate of oxygen
consumption reduces the impact of deleterious oxidation
accrual thereby limiting the damaging effect of age on cellular
macromolecules. Furthermore, as in S. pombe, in stem cells,
quiescence specific protective and repair mechanisms limit DNA
damages, hence avoiding their propagation to daughter cells.

Thus mechanisms implemented in quiescence are critical for both
stem cell survival and fitness of the progeny (Mandal et al., 2011;
Burkhalter et al., 2015; Gangloff and Arcangioli, 2017; Vitale et al.,
2017). In this perspective, stem cell quiescence in multicellular
organisms has a survival role quite similar to quiescence in
unicellular species.

As observed in unicellular eukaryotes, quiescence
establishment in cells of multicellular species is accompanied
by the reorganization of cellular machineries. For example,
quiescent primary human fibroblasts exhibit a tighter chromatin
compaction (Evertts et al., 2013). The proteasome is reorganized
into cytoplasmic granules in the root cells of Arabidopsis
thaliana seedlings (Marshall and Vierstra, 2018) and the actin
cytoskeleton form aggregates in non-dividing Papaver rhoeas
pollen tubes, and rat endothelial cell (Jensen and Larsson, 2004;
Poulter et al., 2010). However, to date, the cell biology of plant
and animal quiescent cells remains largely underexplored.

Interestingly, quiescent cells from multicellular species can
be paused in various cell cycle stages, just as some quiescent
unicellular eukaryotes. This is the case of precursor cells of
the Drosophila melanogaster wing discs that are arrested in G2
waiting for proliferation signals to form bristles (Nègre et al.,
2003). Furthermore, an arrest in G2 has been associated with
efficient adult stem cell regeneration in a variety of organisms,
including hydra, axolotl, and zebrafish (Sutcu and Ricchetti,
2018). In addition, just as in yeast, it was observed that several
quiescent stem cells are poised to possibly resume proliferation as
fast as possible, an essential step for repair in various tissues (Cao
et al., 2017; Relaix et al., 2021). Indeed, in muscle, systemic signals
released upon muscle injury, prime some quiescent muscle stem
cells into a pre-activated state by transitioning from a G0 state
to a G alert state (Rodgers et al., 2014). Similarly, some neural
stem cells become pre-activated for reentering the cell cycle more
readily upon the next round of injury (Llorens-Bobadilla et al.,
2015) and dormant hematopoietic stem cells differ in self-renewal
potential and division frequency depending on their individual
endogenous CDK6 level (Laurenti et al., 2015). Therefore, just
as in unicellular organisms, quiescence exit swiftness is key, but
in multicellular species, the trigger has shifted from nutrient
cues to repair or renewing signals. Yet the logic stays the same,
ensuring the flexibility for quiescent cell to respond to an ever-
changing environment.

The co-existence of “deep” next to “alerted” quiescent stem
cells indicated that for a given cell type, different kind of
quiescent cells coexist within the same tissue, and pointed
to an heterogeneity along the quiescence-to-reproliferation
trajectory (Ancel et al., 2021). In fact, as in S. cerevisiae,
differences in quiescence deepness were observed in mammals,
in which quiescence exit become slower with age. For example,
long-term quiescent hepatocytes (Roth and Adelman, 1974)
or fibroblasts (Soprano, 1994; Kwon et al., 2017; Fujimaki
et al., 2019) take a longer time to reenter the cell cycle
than their younger counterparts and become less and less
sensitive to proliferation stimulation. Finally, aged quiescent
cells may ultimately transition to senescence, a non-proliferative
cellular state that is irreversible (Sousa-Victor et al., 2014;
Fujimaki and Yao, 2020). Thus, quiescence deepening reveals the
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limitation of cell replacement relying on stemness and is among
the strongest candidates for multicellular organism aging.

QUIESCENCE, A MOTOR FOR
EVOLUTION?

One of the first route to multicellularity may have been
to aggregate in order to improve resistance to unfavorable
environment (see for example Smukalla et al., 2008; Lyons and
Kolter, 2015). This kind of cell consortium may have dampened
niche fluctuation and created a rudimentary microenvironment
that might have launched quiescence independency toward the
macroenvironment. This primitive microenvironment may have
provided a nutrient buffering effect in which cells, although
having not enough resources to divide, could do more than
just survive. In this context, we propose that quiescent cells
could have launched new functions. At the beginning, these new
features were probably not too much demanding in terms of
metabolic resources, but some of them might have provided a
selective advantage, like the ability to move and thus to explore
new environments or escape predation. In fact, in many cases,
proliferation and specialization became exclusive. As an example,
volvox somatic cells can swim thanks to a flagellum but they
have lost the capacity to proliferate. Reciprocally, volvox gonidia
cells do not have flagella, but they can divide. This swim or

divide specialization echoes the segregation of somatic functions
and reproduction into distinct cell types and it thought to be
one of the first key steps in the evolution of multicellularity
(King, 2004). Furthermore, there are growing evidences that the
reverse is true and that rapid cell division favors dedifferentiation
(Guo et al., 2014; Matson et al., 2017) and cell transformation
(Chen et al., 2019). Thus, we propose that with the emergence
of multicellularity, quiescence became no longer confined to a
survival form but may have favored cell specialization thereby
launching division of labor.

With the complexification of multicellular organisms,
proliferation-quiescence transitions detached from the
availability in nutrients and became largely independent of the
macroenvironment to rely mostly on signals from neighboring
cells. Secreted compounds such as metabolites, vesicles or
proliferating factors, and importantly, the extracellular matrix,
play a crucial role in the control of quiescence, just like physical
cues such as the tension induced by the tissue architecture. This
has been comprehensively reviewed in Fiore et al. (2018).

The possibility of being quiescent in a plentiful environment
could have fostered some specific metabolic activities, as shown
for contact-inhibited fibroblasts (Lemons et al., 2010). In
fact, in heterotrophs such as humans, a part of quiescent
cell metabolism is dedicated to energy production through
catabolism, breakdown and re-synthesis of proteins. Part of it
can also be devoted to specific processes, such as the synthesis

FIGURE 1 | (A) Emergence of microenvironment and cell specialization. By “simple multicellular organism,” we mean a multicellular entity composed of identical cells
and by “complex multicellular organism,” an organism composed of non-identical cells i.e., cells with different cellular properties. As such, “complex multicellularity”
emerged together with cell specialization. Multicellularity physically generates a microenvironment that isolates some cells from the direct contact with
macroenvironment. Complex microenvironment (secreted metabolites, diffusive proteins, extracellular matrix, etc.) and the tissue architecture become key in
controlling quiescence. Hence, multicellularity may have allowed quiescence to evolve away from nutritional signals. (B) Quiescence in a buffered microenvironment
favors the emergence of cell specialization, which in turn generates a more complex microenvironment hence closing an auto-complexification loop.
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of extra-cellular matrix (ECM) compounds. Therefore, some
dedicated metabolic pathways can be active in the total absence
of proliferation (Valcourt et al., 2012). This probably opened
new avenues for the emergence of cellular functions specific of
quiescent cells. One typical example is the primary cilium, a
structure with several key sensing functions that is assembled
upon quiescence establishment by many types of mammalian
cells (Satir et al., 2010). Thus, quiescence and cell specialization
could have progressed hand in hand, progressively moving
away quiescence from its ancestral dependency toward the
macroenvironment. In this scheme, multicellularity might have
arisen first, then, microenvironment and quiescence could have
co-evolved, reciprocally acting on each other.

If cell specialization and quiescence co-evolved after the
multiple independent emergences of multicellularity, it may
be impossible to identify common properties of quiescent
cells that would be posterior to multicellularity. However, as
discussed above, some ancient quiescence properties inherited
from unicellular organisms were conserved. Quiescence, initially
selected for its ability to increase survival by slowing down
proliferation, would have allowed diversifying cellular functions
once reprocessed in a multicellular context. This was made
possible because multicellularity eventually isolate some cells
from the direct contact with macroenvironment. Hence, through
the generation of a microenvironment, multicellularity could
have allowed quiescence to evolve away from nutritional
signals. This new form of quiescence would have favored the
emergence of cell specialization, which in turn would have made
the microenvironment more complex, resulting in a sort of
relay race between quiescence and multicellularity (Figure 1).

This co-evolution between quiescence and cell specialization,
by offering major functional and structural opportunities to
innovate might have been chief to foster life diversification.
Thus, quiescence may have played an important role in
multicellular evolution.
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