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Abstract

Heterotrimeric G protein signaling is essential for normal hyphal growth in the filamentous fungus Neurospora crassa. We
have previously demonstrated that the non-receptor guanine nucleotide exchange factor RIC8 acts upstream of the Ga
proteins GNA-1 and GNA-3 to regulate hyphal extension. Here we demonstrate that regulation of hyphal extension results
at least in part, from an important role in control of asexual spore (conidia) germination. Loss of GNA-3 leads to a drastic
reduction in conidial germination, which is exacerbated in the absence of GNA-1. Mutation of RIC8 leads to a reduction in
germination similar to that in the Dgna-1, Dgna-3 double mutant, suggesting that RIC8 regulates conidial germination
through both GNA-1 and GNA-3. Support for a more significant role for GNA-3 is indicated by the observation that
expression of a GTPase-deficient, constitutively active gna-3 allele in the Dric8 mutant leads to a significant increase in
conidial germination. Localization of the three Ga proteins during conidial germination was probed through analysis of cells
expressing fluorescently tagged proteins. Functional TagRFP fusions of each of the three Ga subunits were constructed
through insertion of TagRFP in a conserved loop region of the Ga subunits. The results demonstrated that GNA-1 localizes
to the plasma membrane and vacuoles, and also to septa throughout conidial germination. GNA-2 and GNA-3 localize to
both the plasma membrane and vacuoles during early germination, but are then found in intracellular vacuoles later during
hyphal outgrowth.
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Introduction

Since the discovery of the first heterotrimeric G protein in

filamentous fungi in the 1990’s [1], G proteins have been found to

play key roles in diverse fungal processes ranging from asexual and

sexual development to pathogenicity of animal and phytopatho-

genic fungi (reviewed in Li et al, 2007). Most fungi possess three

Ga subunits and a single Gb and Gc protein, therefore allowing

for the assembly of three different heterotrimers. These three Ga
subunits can act independently to regulate separate pathways,

leading to differing phenotypes for single Ga mutants. For

example, Neurospora crassa GNA-1 is required for normal vegetative

growth, aerial hyphae formation and female fertility [2], whereas

GNA-3 is required for normal production of asexual spores

(conidia) and maturation of sexual spores (ascospores) [3]. In

contrast, the N. crassa Dgna-2 mutant displays only a mild

phenotype during growth on poor carbon sources [4]. However,

loss of GNA-2 exacerbates phenotypes of the Dgna-1 and Dgna-3

mutants, indicating that GNA-2 shares overlapping functions with

the other two Ga subunits [5,6]. Indeed, all three G proteins are

thought to act together to regulate certain processes, as mutants

lacking GNA-1 and GNA-3 or all three Ga subunits are severely

impaired in growth on solid medium, inappropriately conidiate in

submerged liquid culture and do not produce female reproductive

structures [6].

G protein coupled receptors (GPCRs), act as guanine nucleotide

exchange factors (GEFs) for Ga subunits, facilitating exchange of

GDP for GTP, thereby leading to activation and dissociation from

the Gbc dimer (reviewed in Li et al, 2007). However, recently a

non-receptor GEF capable of activating Ga proteins, RIC8, has

been identified in both animals and some fungi [7,8,9]. In N. crassa,

loss of ric8 leads to a severe growth impairment phenotype similar

to that in mutants lacking both gna-1 and gna-3 or all three Ga
subunit genes [9]. Expression of GTPase-deficient gna-1 or gna-3

alleles rescued many of the defects of the Dric8 mutant during

asexual growth on solid medium, and biochemical analyses
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showed that RIC8 can act as a GEF for both GNA-1 and GNA-3

in vitro, suggesting RIC8 acts upstream of both GNA-1 and GNA-

3, particularly during regulation of asexual growth on solid

medium [9]. Asexual hyphal growth is important for nutrient

scavenging and for the organism to spread throughout the

environment. In addition, it is important for encountering a mate

of the opposite mating type, which allows the sexual cycle to

proceed and produce the environmentally resistant sexual spores

(ascospores).

Using a strain expressing a functional RIC8-GFP fusion, we

have previously shown that RIC8 is a cytoplasmic protein [9].

Production of Ga-fluorescent protein fusions is problematic, as an

N or C-terminal tag can interfere with normal functioning of the

Ga protein. However, Dictyostelium discoideum Ga2 and mammalian

Gao have been successfully tagged by insertion of GFP in a fold

where it does not interfere with Gao function [10,11].

In this study we further probe the role of RIC8, GNA-1 and

GNA-3 in asexual hyphal growth and development. We analyze

conidial morphology and determine conidial germination rates in

ric8 and G protein subunit mutants and in Dric8 strains carrying

GTPase-deficient alleles of gna-1 or gna-3. We produce strains

expressing GNA-1, GNA-2 and GNA-3 proteins as internal

TagRFP fusions. We present here the first use of this internal

tagging method for localization of Ga proteins in filamentous

fungi. Using these strains, we determine the localization pattern of

Ga proteins in conidia and during conidial germination and test

for colocalization of RIC8 with GNA-1 and GNA-3.

Materials and Methods

Strains and growth conditions
Neurospora strains used in this study are listed in Table 1. For

vegetative growth analysis, strains were grown on Vogel’s minimal

medium (VM; [12]). To induce the formation of female structures

(protoperithecia) required for sexual crossing strains were grown

on synthetic crossing medium (SCM; [13]). Cultures were

inoculated with conidia and grown as described previously [4,14].

Ga-TagRFP strain construction
To observe the cellular localization of GNA-1, GNA-2 and

GNA-3, TagRFP [15] was inserted into a conserved loop region

within the Ga protein. This conserved loop region was found to be

optimal for insertion of tags with conservation of Ga protein

function in Dictyostelium discoideum Ga2 [11] and chinese hamster

Gnao [10]; see Fig. 1). Primers were designed to prepare the Ga-

TagRFP fusion constructs using yeast recombinational cloning,

and are listed in Table 2. TagRFP was amplified from pAL3-

Lifeact [15]; provided by Nick Read, University of Edinburgh) and

the appropriate Ga N- and C-terminal fragments were amplified

from cDNA clones. These fragments were inserted into pRS426

using yeast recombinational cloning [16]. The Ga-TagRFP fusion

construct was then subcloned from pRS426 into pMF272 [17] as

an EcoRI/XbaI fragment, resulting in replacement of sgfp from

pMF272 with the Ga-TagRFP fusion and placing it under the

control of the ccg-1 promoter. The fusion constructs were then

transformed into his-3 Dgna-1, Dgna-2 or Dgna-3 gene replacement

mutants (See Table 1). Transformants were then screened by

Southern blotting to ensure correct integration of the construct

(data not shown).

Western blot analysis
Western blotting was used to detect Ga-TagRFP fusion proteins

in whole-cell extracts prepared from macroconidia. Conidia from

6–7 day flask cultures were collected using sterile water, pelleted

and stored at 280uC. After thawing on ice, the conidia were

Table 1. Strains used in this study.

Strain Relevant genotype Comments Source

74-OR23-IVA Wild type, mat A FGSC 2489a FGSC

r81-5a Dric8::hph+ mat a Dric8 mutant [9]

3B10 Dgna-1::hph+ mat a Dgna-1 mutant [38]

FGSC 12378 Dgna-2::hph+ mat a Dgna-2 mutant FGSC

31c2 Dgna-3::hph+ mat A Dgna-3 mutant [3]

g1.3 Dgna-1::hph+ Dgna-3::hph+ mat a Dgna-1 Dgna-3 double mutant [6]

noa Dgna-1::hph+ Dgna-2::pyrG+Dgna
-3::hph+ mat A

Dgna-1 Dgna-2 Dgna-3 triple mutant [6]

R81* Dric8::hph+ gna-1Q204L::his-3+ mat A gna-1Q204L in Dric8 background [9]

R82* Dric8::hph+ gna-2Q205L::his-3+ mat A gna-2Q205L in Dric8 background [9]

R83* Dric8::hph+ gna-3Q208L::his-3+ mat A gna-3Q208L in Dric8 background [9]

42-8-3 Dgnb-1, mat A Dgnb-1 mutant [43]

5-5-3 Dgng-1, mat A Dgng-1 mutant [18]

D1his3 Dgna-1::hph+, his-3, mat A This Study

D2his3 Dgna-2::pyrG+, his-3, mat a This Study

31 h Dgna-3::hph+, his-3, mat A This Study

2-1 Dgna-1::hph+, gna-1-TagRFP::his-3+ mat A Expresses GNA-1-TagRFP This Study

5-1 Dgna-2::hph+, gna-2-TagRFP::his-3+ mat a Expresses GNA-2-TagRFP This Study

12-1 Dgna-3::hph+, gna-3-TagRFP::his-3+ mat A Expresses GNA-3-TagRFP This Study

R8GFP Dric8::hph+, ric8-GFP::his-3+, mat a Expresses RIC8-GFP [9]

aFGSC, Fungal Genetics Stock Center, Kansas City, MO.
doi:10.1371/journal.pone.0048026.t001
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resuspended using 1 ml of extraction buffer (10 mM HEPES,

pH 7.5, 0.5 mM EDTA, 0.5 mM PMSF, 1 mM DTT and 0.1%

v/v of fungal protease inhibitor (Sigma-Aldrich, St. Louis, MO;

Product #T8215) and then transferred to a mortar. The conidia

were vigorously crushed using a mortar and pestle under liquid

nitrogen. Roughly equal amounts of ground tissue were then

transferred to 2 ml screw cap tubes, and topped off with additional

extraction buffer if necessary. Samples were spun at 3,300 RPM

(1,0006g) for 10 minutes at 4uC in a microcentrifuge and the

supernatants (whole cell extracts) retained.

Protein concentration was determined using the Bradford

Protein Assay (Bio-Rad, Hercules, CA). Samples containing

50 mg of whole-cell protein were subjected to SDS-PAGE using

10% gels and gels transferred to nitrocellulose membranes as

described previously [18]. Western analysis was performed using a

polyclonal RFP antibody (#R10367, Invitrogen, Carlsbad, CA) as

the primary antibody at a dilution of 1:2000. A horseradish

peroxidase conjugate antibody (Bio-Rad) was used as the

secondary antibody at a dilution of 1:5000 and chemiluminescent

detection was performed as described previously [18].

Microscopy
For analysis of conidial germination, 86106 conidia were spread

on 100 mm 10 ml VM agarose plates and incubated at 30uC for 0,

4, 6 or 8 h. Cells were then visualized using differential

interference contrast (DIC) microscopy using an Olympus IX71

inverted microscope (Olympus America, Center Valley, PA) with a

606 oil immersion objective (NA = 1.42). Images were captured

using a QIClickTM digital CCD camera (QImaging, Surrey,

British Columbia, Canada) and analyzed using Metamorph

software (Molecular Devices Corporation, Sunnyvale, CA). For

analysis of conidial anastomosis tubes, conidia were spread on VM

agarose, and imaged after 5–16 h at 30uC as detailed above.

For observation of Ga localization, VM agarose plate cultures

were prepared as described above. Germinating conidia were

analyzed using a Leica TCS SP5 II confocal microscope with a

636 oil objective (NA = 1.40; Leica Microsystems Inc., Buffalo

Grove, IL). The Ga-RFP strains were visualized with the Hybrid

Detection system (HyD) laser at an excitation of 543 nm, and

emission of 565–665 nm.

To confirm vacuolar localization, conidia from the Ga-TagRFP

strains were inoculated onto VM agarose plates and incubated as

described above. An aliquot containing 30 ml of a 20 mg/ml

solution of Oregon Green 488 carboxylic acid diacetate (Carboxy-

DFFDA; catalog number O6151; Molecular Probes) was applied

to a coverslip. An agarose block containing germinating conidia

was inverted onto the coverslip and incubated for 5 minutes at

room temperature in the dark. Images were obtained using the

Leica TCS SP5 II confocal microscope described above. GFP

images were obtained by excitation at 488 nm, with emission

collected from 500–535 nm. RFP images were obtained with

excitation at 543 nm and emission from 555–700 nm. Images

were captured sequentially in order to prevent crosstalk among

samples.

The vacuolar and plasma membrane localization of GNA-1-

TagRFP was further explored by imaging a heterokaryon that

expresses GNA-1-TagRFP and a GFP fusion of the Ca2+ ATPase,

NCA-3 [19]. NCA-3-GFP is known to localize to vacuoles and the

plasma membrane [19]. The two strains were co-inoculated onto a

VM slant in order to produce a heterokaryon with conidia

expressing both fluorescent proteins. Conidia were inoculated onto

VM agarose plates as described above and imaged 6 h later using

a 543 nm HyD laser and 488 nm laser on the Leica TCS SP5 II

confocal microscope. Images were captured sequentially.

Possible co-localization of RIC8 and GNA-1 or GNA-3 was

investigated through co-culturing of the RIC8-GFP strain with the

GNA-1-TagRFP or GNA-3-TagRFP strains on a VM slant to

produce a heterokaryon expressing two fluorescent proteins.

Conidia from the heterokaryons were inoculated onto VM

agarose plates as described above, followed by incubation at

30uC for 0 or 6 h for GNA-1-TagRFP/RIC8-GFP and 0 or 4 h

for the GNA-3-TagRFP/RIC8-GFP fusion strain. Images were

obtained by confocal microscopy, as described above.

Statistical analysis
Germination rates of strains relative to wild type were

determined using Student’s two-sided t test, with values paired

by day of analysis [20]. Multiple comparisons within time points

were corrected using the false discovery rate (FDR) approach of

[21]. Differences in arthroconidiation and germination rates

between strains were determined using Student’s unpaired two-

sided t test. Germination rates were first normalized for daily

Figure 1. Alignment of Ga proteins. Amino acid alignment of N.
crassa GNA-1, GNA-2, GNA-3 and chinese hamster GNAO1 (Genbank
accession number ABA77543.1), showing position of the conserved
loop into which TagRFP was inserted.
doi:10.1371/journal.pone.0048026.g001
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differences in wild type germination rates. All statistics were

performed in R [22]; code is available on request. Details of the

statistical analyses are presented in Tables 3, 4, 5, 6.

Results

Loss of ric8 or both gna-1 and gna-3 leads to
overproduction of arthroconidia

We have previously demonstrated that Dgna-1 and Dric8 single

mutants, Dgna-1 Dgna-3 double mutants, and the triple Ga mutant

have smaller colony sizes than wild type [2,6,9]. The defects of the

latter three mutants are similar and much more severe than those

of the Dgna-1 strain [6,9]. Smaller colony size could result from

slow germination, reduced hyphal extension or both phenomena.

In order to determine whether germination defects contribute to

the overall reduction in colony size, we investigated early events

during germination of conidia in Dric8 mutants and in strains

lacking G protein subunit genes.

We began with an analysis of conidial morphology. All five N.

crassa G protein subunit mutants (Dgna-1, Dgna-2, Dgna-3, Dgnb-1

and Dgng-1) produce normal-looking macroconidia (Fig. 2; Fig. 3).

However, Dric8, the Dgna-1 Dgna-3 double mutant and the triple

Ga mutant all display an increased proportion of arthroconidia

(wild type 6.2%60.8%; Dric8 36.0%63.6%; Dgna-1 Dgna-3

47.1%63.6%; and Dgna-1 Dgna-2 Dgna-3 43.8%61.7%) (Fig. 2,

Table 3). Arthroconidia are formed by fragmentation of hyphae

[23]. Introduction of GTPase-deficient alleles for any of the three

Ga genes did not lead to a significant reduction in the proportion

of arthroconidia in the Dric8 background (Dric8, gna-1Q204L

36.8%62.5%; Dric8, gna-2Q205L 37.6%64.2%; Dric8, gna-3Q208L

36.0%64.3%) (Fig. 2, Table 3). Therefore, inhibition of

arthroconidiation depends on RIC8, GNA-1 and GNA-3, and

constitutive activation of a Ga subunit is not sufficient to override

the phenotype in Dric8 mutants.

In N. crassa, arthroconidiation has been proposed to be the

default conidiation pathway in mutants with defects in macro-

conidiation [24]. Arthroconidia are the major cell type used to

disseminate many animal fungal pathogens, such as the valley

fever fungus Coccidioides immitis and dermatophytes in the genera

Mycosporum, Trichophyton and Epidermophyton [25,26,27]. To

date, little is known about the regulation of arthroconidiation in

these fungi, but it seems clear that RIC8, GNA-1 and GNA-3

impact this process in N. crassa.

G protein signaling is required for conidial germination,
but is not essential for conidial anastomosis tube
formation

We next investigated the ability of macroconidia from the

various strains to form conidial anastomosis tubes (CATs) and to

germinate on solid medium. CATs are small tube-like structures

produced by conidia early during colony initiation (rev. in [28]).

The results demonstrate that Dric8 and all G protein subunit single

and double mutants produce CATs from macroconidia (Fig. 4).

We next analyzed conidial germination (both macroconidia and

arthroconidia) in the various strains at 4, 6 and 8 h after plating on

Table 2. Primers used in this study.

Name Anneals to Sequence (59–39)

pRS426g1-F1 pRS426/N9 gna-1 ACGCCAGGGTTTTCCCAGTCACGACTCTAGAATGGGTTGCGGAATGAGTACAGAGGAG

g1TagRFP-R1 N9 gna-1/TagRFP GCATGTTCTCCTTAATCAGCTCGCTCATCTCTAGGGACTCCATGGCCTCGAGAATG

g1TagRFP-F1 TagRFP/C9 gna-1 CGACCTCCCTAGCAAACTGGGGCACAAGTTGCCACTCGCCGATCAGCGCGTCGAG

pRS426g1-R1 C9 gna-1/pRS426 GCGGATAACAATTTCACACAGGAAACAGCGAATTCTCAAATCAAACCGCAGAGACGCAGG

TagRFP-F TagRFP ATGAGCGAGCTGATTAAGGAG

TagRFP-R TagRFP CTTGTGCCCCAGTTTGCTAGG

pRS426g3-F1 pRS426/N9 gna-3 GTAACGCCAGGGTTTTCCCAGTCACGACTCTAGAATGGGCGCATGCATGAGCAAGAACG

g3TagRFP-R1 N9 gna-3/TagRFP GCATGTTCTCCTTAATCAGCTCGCTCATATCAAACTGGTGCATAGCATTCACAAC

g3TagRFP-F1 TagRFP/C9 gna-3 GCGACCTCCCTAGCAAACTGGGGCACAAGATCCAGCCAGCAGATCCGTCGCTACGG

pRS426g3-R1 C9 gna-3/pRS426 CGGATAACAATTTCACACAGGAAACAGCGAATTCTCATAGAATACCGGAGTCTTTAAGGG

pRS426g2-F1 pRS426/N9 gna-2 GTAACGCCAGGGTTTTCCCAGTCACGACTCTAGAATGTGTTTCGGGGGTCGTGGAAAGG

g2TagRFP-R1 N9 gna-2/TagRFP GCATGTTCTCCTTAATCAGCTCGCTCATGTTGAACTCATTCATCGCATCAAAGATC

g2TagRFP-F1 TagRFP/C9 gna-2 GCGACCTCCCTAGCAAACTGGGGCACAAGATCAAGCTGGAGGATGAAGATAATGAG

pRS426g2-R1 C9 gna-2/pRS426 GGATAACAATTTCACACAGGAAACAGCGAATTCCTACAGGATAAGTTGTTTCAGGTTTCG

TagRFP-F2 TagRFP TCTAGAATGAGCGAGCTGATTAAGGAG

TagRFP-R2 TagRFP GAATTCTCACTTGTGCCCCAGTTTGC

doi:10.1371/journal.pone.0048026.t002

Table 3. Statistical analysis of arthroconidiation.

Strain 1 Strain 2 t a df b pc sigd

Dric8 Wild type 28.02 2.18 0.024 *

Dgna-1Dgna-3 ’’ 211.02 2.18 0.018 *

Dgna-1Dgna-
2Dgna-3

’’ 220.41 2.81 0.002 **

Dric8gna1* Dric8 20.19 3.51 0.991 ns

Dric8gna2* ’’ 20.28 3.92 0.991 ns

Dric8gna3* ’’ 0.01 3.90 0.991 ns

aStudent’s t statistic,
bdegrees of freedom,
cprobability value, and d significance range, where ns is not significant;
*, 0.05$p.0.01;
**, 0.01$p.0.001. Statistically significant results are bolded.
doi:10.1371/journal.pone.0048026.t003
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solid medium. In wild-type, greater than 70% of the conidia have

germinated by 4 hr after inoculation, with nearly 100% germina-

tion after 8 h (Fig. 5; Table 7). In contrast, germination is

significantly reduced in Dric8, Dgna-3, Dgna-1 Dgna-3 and the triple

Ga mutants relative to wild type at all time points (Fig. 2, 6).

Germination of the Dgna-1 mutant also appears to be slower than

wild-type, but this is only statistically significant at 6 h. However,

the observation that germination of the Dgna-1 Dgna-3 mutant is

significantly lower than the Dgna-3 mutant supports a compensa-

tory role for GNA-1 in conidial germination (Fig. 2, 6). Loss of gna-

2 had no effect on conidial germination, and did not exacerbate

the germination defect of the Dgna-1 Dgna-3 mutant (Fig. 2). Taken

together, the results indicate that RIC8, GNA-3, and to a lesser

extent GNA-1, play important roles during conidial germination.

Subsequently, we tested whether constitutive activation of any

of the three Ga subunits could rescue the conidial germination

defect of Dric8 strains. Introduction of the GTPase-deficient gna-1

or gna-2 alleles did not significantly improve germination, (Fig. 2,

6; Table 4, 5). Strikingly, constitutive activation of gna-3 in the

Dric8 background resulted in a significant increase in conidial

germination, approaching that of the wild-type strain (Fig. 6;

Table 4, 5). The ability of the GTPase-deficient gna-3 allele to

bypass the Dric8 germination defect supports RIC8 acting through

GNA-3 to regulate conidial germination in N. crassa. We also

probed a possible role for the Gb and Gc subunits during conidial

Table 4. Statistical analysis of germination rates relative to wild type.

Strain 1
Strain
2 0 h 4 h 6 h 8 h

ta dfb pc sigd t df p sig t df p sig t df p sig

Dgna-1 Wild
type

1.00 4 0.772 ns 1.94 4 0.140 ns 3.77 4 0.027 * 2.41 4 0.090 ns

Dgna-2 ’’ 0.02 4 0.982 ns 1.92 4 0.140 ns 20.52 4 0.627 ns 21.41 4 0.254 ns

Dgna-3 ’’ 0.15 4 0.982 ns 5.59 4 0.008 ** 7.91 4 0.003 ** 5.63 4 0.009 **

Dric8 ’’ 21.10 5 0.772 ns 7.63 5 0.002 ** 21.86 5 0.000 *** 26.88 5 0.000 ***

Dgna-1Dgna-3 ’’ 1.73 3 0.772 ns 19.80 3 0.001 *** 49.08 3 0.000 *** 23.66 3 0.001 ***

Dgna-1Dgna-2Dgna-3 ’’ 20.06 3 0.982 ns 22.73 3 0.001 *** 21.47 3 0.001 *** 36.33 3 0.000 ***

Dric8gna1* ’’ 1.73 3 0.772 ns 21.36 3 0.001 *** 24.97 3 0.001 *** 9.71 3 0.005 **

Dric8gna2* ’’ 1.00 2 0.772 ns 16.80 2 0.006 ** 14.89 2 0.007 ** 13.34 2 0.009 **

Dric8gna3* ’’ 20.47 3 0.922 ns 10.23 3 0.004 ** 7.90 3 0.007 ** 12.48 3 0.003 **

Dgnb1 ’’ 20.84 2 0.772 ns 1.65 2 0.240 ns 1.32 2 0.349 ns 0.51 2 0.660 ns

Dgng1 ’’ 21.40 2 0.772 ns 5.08 2 0.050 * 1.95 2 0.233 ns 3.90 2 0.083 ns

aStudent’s t statistic,
bdegrees of freedom,
cprobability value, and d significance range, where ns is not significant;
*, 0.05$p.0.01;
**, 0.01$p.0.001;
***, p#0.001. Statistically significant results are bolded.
doi:10.1371/journal.pone.0048026.t004

Table 5. Statistical analysis of germination rates between strains other than wild type.

Strain 1 Strain 2 0 h 4 h 6 h 8 h

t a df b pc sigd t df p sig t df p sig t df p sig

Dric8 Dric8gna1* 22.05 4.9 0.097 ns 21.47 6.7 0.188 ns 0.39 7.9 0.710 ns 2.30 4.3 0.078 ns

Dric8 Dric8gna2* 21.38 3.0 0.260 ns 21.42 6.9 0.198 ns 20.41 3.8 0.705 ns 20.07 3.0 0.946 ns

Dric8 Dric8gna3* 0.21 3.3 0.847 ns 3.60 6.3 0.011 * 13.06 8.0 0.000 *** 14.34 8.0 0.000 ***

Dric8 Dgna-3 20.67 6.4 0.527 ns 0.86 8.5 0.411 ns 1.79 5.6 0.128 ns 3.18 4.9 0.025 *

Dric8 Dgna-1Dgna-3 22.05 4.9 0.097 ns 21.77 7.0 0.119 ns 21.81 7.0 0.114 ns 21.22 6.6 0.263 ns

Dgna-3 Dgna-1Dgna-3 21.12 6.9 0.301 ns 22.66 5.4 0.042 * 22.80 4.4 0.044 * 23.70 5.2 0.013 *

Dgna-1
Dgna-3

Dgna-1Dgna-
2Dgna-3

1.04 5.4 0.343 ns 0.07 5.9 0.946 ns 0.17 4.1 0.877 ns 20.64 5.3 0.551 ns

aStudent’s t statistic,
bdegrees of freedom,
cprobability value, and d significance range, where ns is not significant;
*, 0.05$p.0.01;
**, 0.01$p.0.001;
***, p#0.001. Statistically significant results are bolded.
doi:10.1371/journal.pone.0048026.t005
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Table 6. Statistical analysis of germination rates between wild type and Ga-TagRFP expressing strains.

Strain 1
Strain
2 0 h 4 h 6 h 8 h

t a df b pc sigd t df p sig t df p sig t df p sig

Dgna-1/GNA-1-TagRFP Wild
type

20.95 2 0.515 ns 21.48 2 0.651 ns 20.24 2 0.833 ns 23.60 2 0.158 ns

Dgna-2/GNA-2-TagRFP Wild
type

0.82 2 0.515 ns 0.93 2 0.651 ns 3.29 2 0.122 ns 0.46 2 0.692 ns

Dgna-3/GNA-3-TagRFP Wild
type

0.78 2 0.515 ns 20.53 2 0.651 ns 3.38 2 0.122 ns 2.83 2 0.158 ns

aStudent’s t statistic,
bdegrees of freedom,
cprobability value, and d significance range, where ns is not significant.
doi:10.1371/journal.pone.0048026.t006

Figure 2. G proteins and the RIC8 GEF are required for normal conidiation and conidial germination. Conidia were harvested as
described in the Materials and Methods. An aliquot containing 86106 conidia was spread on a 100 mm 10 ml VM solid medium plate and spore
germination monitored at 30uC over time. DIC (differential interference contrast) micrograph images were obtained using an Olympus IX71
microscope with a QIClick digital CCD camera and analyzed using Metamorph software. Scale bar = 5 mm. Strains are wild type (74-OR23-IVA), Dgna-1
(3B10), Dgna-2 (FGSC 12378), Dgna-3 (31c2), Dric8 (r81-5a), Dgna-1, Dgna-3 (g1.3), Dgna-1, Dgna-2, Dgna-3 (noa), Dric8, gna-1Q204L (R81*), Dric8, gna-
2Q205L (R82*), Dric8, gna-3Q208L (R83*). Arrowheads indicate arthroconidia.
doi:10.1371/journal.pone.0048026.g002

RIC8, Galpha Proteins and Spore Germination

PLOS ONE | www.plosone.org 6 October 2012 | Volume 7 | Issue 10 | e48026



Figure 3. Germination of Dgnb-1 and Dgng-1 mutants. A. Conidia of wild-type (74-OR23-IVA), Dgnb-1 (42-8-3) and Dgng-1 (5-5-3) strains were
harvested as described in the Materials and Methods. An aliquot containing 86106 conidia was spread on VM solid medium and germination
monitored at 30uC over time. DIC images were obtained using an Olympus IX71 microscope with a QIClickTM digital CCD camera and analyzed using
Metamorph software. Bar = 5 mm. B. Proportion of germinated conidia of N. crassa wild-type, Dgnb-1 and Dgng-1 strains at various times after
inoculation onto VM medium. Error bars are 6SE for a minimum of three independent experiments (n = minimum of 100 cells for all strains). Strains
are the same as in A.
doi:10.1371/journal.pone.0048026.g003

Figure 4. G protein mutants produce conidial anastomosis tubes (CATs). Conidia were used to inoculate 100 mm 10 ml solid VM agarose
plates as described in Fig. 2. Plates were incubated at 30uC for 5–16 h depending on the germination rate of the mutant strain. Images were captured
and analyzed and strains are the same as in Fig. 2. Arrowheads indicate positions of CATs. Bar = 5 mm.
doi:10.1371/journal.pone.0048026.g004
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germination (Fig. 3, Table 4). Similar to the results exploring

conidial morphology, germination is largely unaffected in Dgnb-1

and Dgng-1 mutants, aside from a slight delay in Dgng-1 4 h after

inoculation.

The three Ga proteins localize to the plasma membrane
and vacuoles during conidial germination

Having demonstrated that Ga proteins are important for

conidial germination, we next investigated the subcellular local-

ization of these proteins during this process. For these experiments,

we took advantage of previous studies in Dictyostelium and

mammalian cells demonstrating that insertion of a fluorescent

tag in a loop region of the Ga subunit does not disrupt the

interaction with the Gbc dimer or interfere with Ga function

(Fig. 1; [10,11].

We expressed all three Ga-TagRFP fusions under control of the

highly expressed ccg-1 promoter from the his-3 locus in the

corresponding Ga mutant strain (see Materials and Methods).

Expression of GNA-1-TagRFP complemented the conidial

germination (Table 6) and female fertility defects and partially

complemented the growth rate phenotype of the Dgna-1 mutant

(data not shown). Expression of GNA-3-TagRFP in the Dgna-3

mutant restored conidial germination back to wild-type levels at all

time points investigated (Table 6).

We confirmed that the three TagRFP constructs are expressed

as full-length fusion proteins in conidia using Western analysis with

an RFP antiserum (Fig. 7). TagRFP is 27 kD and each Ga is

approximately 41 kD. Correspondingly, each of the three Ga
fusion proteins migrated close to their predicted molecular mass of

68 kD. Interestingly, although all three genes are expressed under

control of the same promoter from a common genomic site, levels

of GNA-1 are much higher than those of GNA-2 and GNA-3.

This suggests some post-transcriptional regulation of Ga protein

levels, with GNA-1 accumulating to higher levels in N. crassa. In

addition, potential degradation products were observed for all

three proteins (Fig. 7; asterisks), suggesting at least some of the

variation in protein levels may be due to differences in protein

turnover.

We examined the strains expressing TagRFP fusion proteins

during conidial germination using confocal fluorescent microscopy

(Fig. 8). Conidia were plated on solid medium and examined at

four time points (0, 4, 6 and 8 h). At 0 h, all three Ga proteins

localized to the plasma membrane and vacuoles (Fig. 8, 9A). The

plasma-membrane localization is consistent with results previously

observed during cell fractionation studies in our laboratory [2,5,6];

data not shown). The vacuolar localization of GNA-1-TagRFP,

GNA-2-TagRFP, and GNA-3-TagRFP was validated by the

overlapping signal observed between TagRFP and the carboxy-

DFFDA vacuolar dye during confocal microscopy (Fig. 9A). In

addition, a strain expressing a GFP-tagged protein, NCA-3, a Ca2+

ATPase known to localize to vacuoles and the plasma membrane,

was combined with the GNA-1-RFP strain to produce a

heterokaryon [19]. Many conidia and germinating hyphae from

these heterokaryons exhibit green and red fluorescence, indicative

of the presence of both NCA-3-GFP and GNA-1-TagRFP.

Confocal microscopy of conidia from this heterokaryon confirmed

that GNA-1 localizes to the plasma membrane and vacuoles

(Fig. 9B). It is unclear whether the vacuolar fluorescence represents

a functional localization or a site of protein turnover.

At 4 h of conidial germination, GNA-1 continued to display

plasma membrane and vacuolar localization, and could also be

observed on the first septum separating the conidium and the

developing hypha (Fig. 8). In contrast, GNA-2 and GNA-3 were

predominantly found in vacuoles, with less apparent plasma

membrane localization (Fig. 8). At 6 h, GNA-1 was present in the

Figure 5. Germination rate of wild-type N. crassa. Values are taken from Table 7. Error bars are 6SE for twelve independent experiments
(n = minimum of 60 cells).
doi:10.1371/journal.pone.0048026.g005
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plasma membrane, vacuoles and septa. (Fig. 8). GNA-2 exhibited

a similar localization as observed at 4 h. Interestingly, in addition

to vacuolar localization, GNA-3 was also found in distinct patches

on the plasma membrane of the original conidium (Fig. 8). These

patches were observed in 50% or more of the cells being sampled.

At 6 h, the plasma membrane patches were even more easily

observed in GNA-3-TagRFP strains, as the fluorescence in

vacuoles and other regions of the plasma membrane began to

weaken (Fig. 8). At 8 h, GNA-1-TagRFP fluorescence was still

relatively strong in plasma membrane, vacuoles and septa (Fig. 8).

In contrast, GNA-2- and GNA-3-TagRFP fluorescence was too

dim to analyze in 8 h germlings (data not shown).

We have previously demonstrated that RIC8 exhibits cytosolic

localization in conidia and mature hyphae using fluorescent

microscopy with an inverted compound microscope [9]. In this

study, we utilized the more discriminating method of confocal

fluorescence microscopy to explore possible co-localization of

GNA-1-TagRFP and/or GNA-3-TagRFP with RIC8-GFP in

Figure 6. Quantitation of conidial germination rates in G protein and ric8 mutants. The proportion of germinated conidia of wild-type, Ga
mutant and Dric8 strains was determined at various times after inoculation onto solid medium. Error bars are 6SE for a minimum of three
independent experiments (n = minimum of 60 cells for all strains). Strains and conditions are the same as in Fig. 2.
doi:10.1371/journal.pone.0048026.g006

Table 7. Germination rate of wild-type N. crassa.

0 h 4 h 6 h 8 h

Average percentage of conidia germinated 0.4 75.3 91.0 96.0

Standard error 0.1 4.7 2.1 1.1

doi:10.1371/journal.pone.0048026.t007

Figure 7. Western blot detection of Ga-TagRFP fusion proteins.
Samples containing 50 mg of protein from conidial extracts were
subjected to western blot analysis with a RFP primary antiserum as
described in the Materials and Methods. Strains are Dgna-1, gna-1-
TagRFP (2.1), Dgna-2, gna-2-TagRFP (5.1), Dgna-3, gna-3-TagRFP (12.1)
and wild type (untransformed control; 74-OR23-IVA). TagRFP is 27 kD,
while the predicted size of the three TagRFP fusion proteins is 68 kD.
Potential degradation products for each RFP fusion are noted with
asterisks.
doi:10.1371/journal.pone.0048026.g007
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cellular compartments during conidial germination. For these

experiments, we cultured strains carrying the RIC8-GFP and

GNA-1-TagRFP constructs together to produce heterokaryons

expressing both fluorescent proteins. Similar to previous results,

RIC8-GFP is cytosolic and excluded from vacant areas that

appear to be vacuoles (Fig. 10). In contrast, GNA-1-TagRFP is

located in the plasma membrane and vacuoles (Fig. 10) and the

merged image did not reveal co-localization with RIC8-GFP in

conidia or young germlings (Fig. 10). Similarly, co-localization was

also not observed between GNA-3-TagRFP and RIC8-GFP

(Fig. 10). In addition, there was no evidence for co-localization

between the GNA-3 fluorescent patches and RIC8 (Fig. 10).

Discussion

G proteins regulate nearly every facet of growth and develop-

ment in fungi. During asexual development, in particular, they

have been found to regulate both the timing and level of

conidiation (rev. in [29], and in recent years have also been

shown to regulate conidial germination [30,31,32,33,34]. Here, we

report evidence showing that in N. crassa G protein signaling

regulates both conidial development and germination, and this is

regulated through the non-receptor GEF RIC8.

We observed that loss of any single G protein subunit has no

effect on conidial morphology in N. crassa. However, loss of both

gna-1 and gna-3 Ga genes leads to a dramatic increase in

arthroconidia formation, which is also observed in the Dric8

mutant. Arthroconidia are formed by the fragmentation of

vegetative hyphae [23] and their production is proposed to be a

default pathway in mutants defective in macroconidiation [24].

Expression of constitutively active (GTPase deficient) GNA-1 or

GNA-3 in the Dric8 mutant background does not lead to reduced

arthroconidiation, suggesting RIC8 controls arthroconidia forma-

tion through Ga-dependent and independent mechanisms. While

the exact mechanism by which RIC8 and the Ga proteins

negatively regulate arthroconidiation is unclear, it may involve the

MAK-1 MAP kinase signaling pathway, as deletion of any of the

three kinases of this pathway leads to an overproduction of

arthroconidia [35]. Additionally, loss of rgb-1, homologous to the B

subunit of type 2A Ser/Thr phosphatases, also leads to production

Figure 8. Localization of Ga proteins in germinating conidia. Conidia from strains expressing GNA-1-TagRFP, GNA-2-TagRFP, GNA-3-TagRFP
and untransformed controls were inoculated on solid medium and analyzed after 0, 4, 6 and 8 h of growth. Images were captured by bright field and
the 543 nm HyD laser using the Leica TCS SP5 II inverted confocal microscope. The arrowhead, asterisk and solid arrow correspond to plasma
membrane, vacuole and septa localization, respectively. Panels are only shown for time points in which fluorescence can be detected above
background. All panels are 46 zoom, with the exception of GNA-1 at 8 h, which is 26. Scale bar = 5 mm.
doi:10.1371/journal.pone.0048026.g008
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of large amounts of arthroconidia, perhaps through a negative

effect on the MAK-1 pathway [24]. Interestingly, in spite of the

requirement for G protein signaling genes during conidial

development and germination, Dric8 and all G protein subunit

single and double mutants were found to produce conidial

anastomosis tubes from macroconidia. However, it remains

unclear whether the conidia from these mutants that do not

germinate are also unable to produce conidial anastomosis tubes.

Conidial germination was found to be significantly reduced in

the Dgna-3 mutant, indicating GNA-3 regulates conidial germina-

tion in N. crassa, as has been reported for homologs in Penicillium

marneffei [34], Aspergillus nidulans [30] and Botrytis cinerea [31]. The

germination defect is exacerbated in the Dgna-1 Dgna-3 double

mutant, revealing a role for GNA-1 in the absence of GNA-3.

GNA-1 homologs have been shown to regulate conidial germina-

tion in other fungi [32,33,36]. Germination is reduced in the Dgna-

1 mutant relative to wild type, but this is only statistically

significant 6 h after inoculation, consistent with GNA-1 playing a

more minor role in N. crassa. The observation that GNA-3 is more

important during germination in N. crassa than GNA-1 is

interesting, given the Dgna-1 mutant displays a greater reduction

in hyphal extension rate than the Dgna-3 mutant [2,3]. This

suggests that GNA-1 is more important for overall extension of

hyphae rather than for early events during germination, while the

converse is true for GNA-3. Germination of the Dgna-2 mutant is

no different than wild type and germination is similar in Dgna-1

Dgna-2 Dgna-3 triple and Dgna-1 Dgna-3 double mutants, implying

that GNA-2 is not required for conidial germination in N. crassa.

Our results demonstrate that the non-receptor GEF RIC8

regulates conidial germination primarily through the GNA-3 Ga
subunit, with minor contribution from GNA-1. This observation is

consistent with results from GTP binding assays demonstrating

Figure 9. All three Ga proteins localize to vacuoles. A. Conidia expressing the corresponding Tag-RFP Ga were inoculated onto 100 mm solid
VM at a concentration of 86106 conidia per plate. Plates were incubated at 30uC for 4 h (GNA-2 and GNA-3) or 6 h (GNA-1). The vacuolar dye
Carboxy-DFFDA was applied at a concentration of 20 mg/ml. Images were captured using the Leica TCS SP5 II inverted confocal microscope. The RFP
and GFP panels were merged to create the overlay. B. Conidia expressing both GNA-1-TagRFP and NCA-3-GFP were inoculated onto 100 mm solid
VM at a concentration of 86106 conidia per plate. Plates were incubated at 30uC for 6 h. Images were captured using the Leica TCS SP5 II inverted
confocal microscope. The RFP and GFP panels were merged to create the overlay. All panels are 46 zoom. Bar = 5 mm.
doi:10.1371/journal.pone.0048026.g009
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that RIC8 exhibits greater GEF activity towards GNA-3 than

GNA-1 [9]. Interestingly, in M. oryzae loss of MoRIC8 does not

affect conidial germination [7]. Instead, MoRIC8 is required for

normal asexual growth, conidiation, appressorium formation and

pathogenicity [7].

It is likely that RIC8 and the Ga proteins regulate conidial

germination in N. crassa through modulation of cAMP levels

[3,9,37,38]. The N. crassa Dric8 mutant has decreased adenylyl

cyclase protein and the Dric8 mutation can be suppressed by a

mutation in the protein kinase A regulatory subunit [9]. A

mutation in the regulatory subunit leads to hyperactivation of the

PKA catalytic subunit, thereby bypassing the need for wild-type

levels of adenylyl cyclase. The Ga subunit GNA-3 is required to

maintain wild-type levels of adenylyl cyclase, further supporting a

role for G proteins in cAMP-dependent conidial germination [3].

In B. cinerea and A. nidulans cAMP plays a key role in conidial

germination regulated by GNA-3 homologs [31,39].

In this study we pioneered the use of an internal Ga tagging

method in filamentous fungi based on a successful approach used

in Dictyostelium and mammalian cells, inserting TagRFP into a

conserved loop region in the Ga subunits [10,11]. Using this

approach we were able to localize GNA-1, GNA-2 and GNA-3

during conidial germination, revealing that all three Ga proteins

localize to the plasma membrane in ungerminated conidia and

young germlings and that GNA-1 can be detected in septa in older

hyphae. All three Ga subunits were also detected in vacuoles,

however, it is unclear if this is a functional localization, as proteins

are often targeted for degradation by the vacuole [40]. Perhaps the

most intriguing finding was the observation of patches of GNA-3-

TagRFP on the plasma membrane at later time points during

germination of conidia. This change in localization during the

transition from conidium to germling may be related to the

requirement for GNA-3 during conidial germination; further

analysis is necessary to explore this hypothesis.

Using purified proteins in in vitro assays, we have previously

demonstrated that RIC8 can bind to and act as a GEF for GNA-1

and GNA-3 [9]. However, confocal microscopy of strains

expressing GNA-1-TagRFP or GNA-3-TagRFP and RIC8-GFP

did not reveal any evidence for co-localization of either Ga protein

with RIC8 in conidia or hyphae, suggesting the interaction may be

transient. Studies in Drosophila neuroblasts have demonstrated

cytoplasmic localization of Ric-8, while Gai was found in the

apical cortex [41]. Ric-8 was also observed in ‘spot-like’ structures

close to the apical cortex that partially colocalized with Gai,

indicating that their interaction may take place on the cytoplasmic

face of the plasma membrane or in the cytoplasm [41].

Interestingly, the GNA-1-TagRFP signal was stronger than that

of GNA-2 and GNA-3, and detectable over a longer period,

suggesting this protein fusion may be more stable. This conclusion

is also supported by the results from western analysis using RFP

antibodies. In yeast, the Ste2p GPCR is ubiquitinated and

targeted to the vacuole for degradation [42]. Analysis of N. crassa

Figure 10. Localization of GNA-1-TagRFP and GNA-3-TagRFP with RIC8-GFP in germinating conidia. Conidia from a fused strain
expressing GNA-1-TagRFP or GNA-3-TagRFP and RIC-8-GFP were harvested as described in the Materials and Methods. An aliquot containing 86106

conidia was spread on a 100 mm VM solid medium plate. Images were captured using a Leica TCS SP5 II inverted confocal microscope. Conidia were
imaged immediately after inoculation on the solid medium plate. Conidia were allowed to germinate for 6 h or 4 h at 30uC before imaging. The first
two panels were merged to create the third panel. All panels are 46 zoom. Scale bar = 5 mm.
doi:10.1371/journal.pone.0048026.g010
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GNA-1, GNA-2 and GNA-3 using UbPred (http://www.ubpred.

org/) predicts that GNA-1 and GNA-2 contain potential

ubiquitination target sites, which may explain the vacuolar

localization of these proteins. Future studies will explore whether

this vacuolar localization is functional, and if so investigate the

importance of G protein signaling in the vacuole.
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