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Abstract: The outbreak of coronavirus disease 2019 (COVID-19) has been spreading rapidly in China and the
Chinese government took a series of policies to control the epidemic. Therefore, it will be helpful to predict the
tendency of the epidemic and analyze the influence of official policies. Existing models for prediction, such as cabin
models and individual-based models, are either oversimplified or too meticulous, and the influence of the epidemic
was studied much more than that of official policies. To predict the epidemic tendency, we consider four groups
of people, and establish a propagation dynamics model. We also create a negative feedback to quantify the public
vigilance to the epidemic. We evaluate the tendency of epidemic in Hubei and China except Hubei separately to
predict the situation of the whole country. Experiments show that the epidemic will terminate around 17 March
2020 and the final number of cumulative infections will be about 78 191 (prediction interval, 74 872 to 82 474).
By changing the parameters of the model accordingly, we demonstrate the control effect of the policies of the
government on the epidemic situation, which can reduce about 68% possible infections. At the same time, we use
the capital asset pricing model with dummy variable to evaluate the effects of the epidemic and official policies
on the revenue of multiple industries.
Key words: coronavirus disease 2019 (COVID-19), epidemic prediction model, negative feedback, capital asset
pricing model, dummy variable
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0 Introduction

While coronavirus disease 2019 (COVID-19) has been
spreading rapidly in China and other regions, this virus
outbreak has received substantial attention from the
global public and was listed by the World Health Or-
ganization (WHO) as public health emergency of inter-
national concern (PHEIC). Given this situation, there
is an urgent need to predict the development of the
epidemic. To control the epidemic, the Chinese govern-
ment took actions rapidly[1]. They restricted the traffic,
extended the Spring Festival holiday, and even closed
Wuhan and other cities in Hubei. These measures are
actually double-edged swords. If the measures are not
strong enough, the virus transmission will become more
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difficult to control. Under this circumstance, measures
such as traffic control and regional closures are believed
to have positive impacts on controlling the epidemic.
However, the national economy may be impacted neg-
atively. Thus, some industries may be negatively im-
pacted. Therefore, studying and quantifying the effect
of official policies can help us better understand these
policies and prepare for the future. In general, we focus
our research on the epidemic prediction and influence
of official policies.

Traditionally, several existing models, such as cabin
models based on propagation dynamics, individual-
based models, and machine learning, can be used to
predict the tendency of the epidemic. For example, the
model of the susceptible, the exposed, the infected and
the recovered (i.e., SEIR model) is a cabin model. It di-
vides the population into the susceptible, the exposed,
the infected and the recovered, using differential equa-
tions to explain the transmission of the virus between
these groups. Cellular automation is a commonly-used
individual-based model[2]. It sets detailed rules for pop-
ulation mobility, which accurately simulates the situa-
tion in a specific group of people. However, the former
type for the predicting models always oversimplifies the



148 J. Shanghai Jiao Tong Univ. (Sci.), 2020, 25(2): 147-156

epidemic, leading to inaccurate prediction, while the
latter type is too meticulous to simulate the large-scale
situation such as the nationwide prediction. Further-
more, there are few related researches on the influence
of official policies. Most existing analyses focus on the
impacts of the epidemic itself[3-5]. Also, some researches
confuse the influence of official policies and the influence
of the epidemic after the policies were published. It may
give rise to some misunderstandings of the influence of
official policies.

In this paper, we give a reality-based analysis of the
transmission process of COVID-19 at first. The analysis
considers four groups of people: the incubated, the in-
fected, the recovered, and the dead. It also takes public
vigilance to the number of infections and the capacity
of virus transmission into consideration, which makes
the analysis more concise than SEIR model. Then
we build four differential equations and one functional
equation, which is called the model of the incubated,
the infected, the recovered, the death and an infection
function (i.e., CIRD-F model), to describe the trans-
mission of the epidemic. Using the data of cumula-
tive infections, we can conduct regression by the least
square method to quantify the public vigilance and the
capacity of virus transmission. After that, we can draw
curves to predict the number of future infections, in-
cubations, recoveries and deaths. We also use a capi-
tal asset pricing model with dummy variable[6-7], which
is called CAPM-DV model, to quantify the influence
of official policies on different industries. We first set
the value of the dummy variable according to the start
time of the epidemic to quantify the influence of the
epidemic[8-9]. Then, we set the value according to the
day when the policies were published to quantify the
influence of the epidemic after the policies. Therefore,
by subtracting the former influence from the latter, we
can figure out how the policies influence different in-
dustries.

In our experiments, we predict the tendency of the
epidemic at first. We fit CIRD-F model in Hubei and
China except Hubei separately. The results show that
the situation in Hubei is much more severe than the
situation out of Hubei. By combining the two situa-
tions, we draw curves to predict the tendency of the
epidemic. Then we analyze influence of official policies
in two aspects. For one thing, we simulate the tendency
of the epidemic without the closure policy. If Wuhan
and other cities in Hubei were not closed, the situa-
tion of the whole country will be as severe as that in
Hubei. Therefore, we use CIRD-F model for Hubei to
predict the tendency of the epidemic in China, which
shows that the policies help reduce about 68% possible
infections. For another, we use CAPM-DV model to
quantify the economic influence of the policies on the
healthcare, transportation, construction, entertainment
and tourism industries.

1 Related Work

Existing related work can be divided into three
groups: � epidemiological and clinical features of
COVID-19;� mathematical methods of predicting the
epidemic; � influence of the official policies.

Epidemiological and Clinical Features Exist-
ing researches are mostly based on cases[10-11] and cal-
culate medical parameters such as the cure rate, the
mortality, the incubation period and the basic repro-
duction number. These data are an important basis for
building mathematical prediction models.

Mathematic Models[2,8,12] The methods of mod-
eling are used to predict the spread of the epidemic.
These methods are also used during SARS[8], Ebola[12]

and so on[2]. A commonly-used model is the cabin
model based on propagation dynamics. One of the most
basic models is SEIR model and its modification. This
type of models divides people into different categories
and describes the transmission of virus using differential
equations. The accuracy of parameters and the descrip-
tion of the transmission determine the effectiveness of
the model. Another method is to use individual-based
models like cellular automaton to simulate the trans-
mission of virus[2], which is direct and vivid. However,
it is difficult to simulate a domestic situation by mod-
els of this type. Furthermore, machine learning is also
used to conduct epidemic prediction[12]. This method
is based on big data. Besides, a more mature model
considers the public vigilance to the epidemic[8], using
negative feedback. However, the model omits the peo-
ple in incubation period, which oversimplifies transfor-
mation process of the infected population in different
stages.

Influence of Official Policies For one thing,
WHO and the global public fully affirm and praise the
performance of the government in the epidemic pre-
vention and control. For another, while some liter-
ature points out the negative economic effect of the
epidemic[3], most Chinese newspapers believe that the
economy will not be greatly affected. More studies are
focused on the influence of the epidemic rather than
the effect of official policies. For example, Ref. [8] uses
a CAPM-DV model to analyze the impact of the epi-
demic on economy during SARS.

In this paper, we use a cabin model based on prop-
agation dynamics, which is modified from the model
with negative feedback to predict the development of
COVID-19[8]. We also adopt the CAPM-DV model to
analyze official policies in an innovative way.

2 CIRD-F Model

To solve the shortcomings of previous models, we
build CIRD-F model and obtain more accurate predic-
tion. CIRD-F model is actually a series of differential
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equations explaining the transformation process of the
infected population in different stages. Four stages of
the infected population involve the incubation period,
the infection period, the state of recovery from COVID-
19, and the state of death due to COVID-19. CIRD-F
represents incubation (C), infection (I), recovery (R),
death (D) and a function (F) involving a feedback pro-
cess to explain the public vigilance to the epidemic, as
shown in Fig. 1.

C I R
D F

Transformation process of the infected
population in different stages
Feedback process

Fig. 1 Transformation process of the infected population
in different stages with the feedback process

To simplify and formulate the transformation pro-
cess of the infected population in different stages, we
make some basic assumptions. First of all, since the
Chinese government rearranges the medical resources
timely and has built two makeshift hospitals, there
would be enough beds in the hospital and each patient
would be quarantined immediately. Therefore, we as-
sume that the diagnosed patients will be immediately
quarantined into the hospital, and then they will not
be able to infect others. Secondly, since there is no re-
ported reinfection right now, we assume that the cured
patients will not be reinfected and will no longer have
the ability to spread the disease. Finally, since there is
no specific drug or available vaccine, we assume that the
cure rate and the mortality rate remain unchanged in
this paper. Namely, we do not consider the occurrence
of specific drugs for the time being.

On the basis of the assumptions, we define the four
stages of infected population more precisely. The incu-
bation period is the first stage which a person experi-
ences after he is infected. People in the incubation pe-
riod show no symptoms and act like the healthy people.
Therefore, they may infect the healthy people and turn
the healthy into those in the incubation period. Ac-
cording to the statistics recently collected[6], the length
of incubation period is three days. The people in the
infection period are those who have undergone the incu-
bation period. People in the infection period show obvi-
ous symptoms, so they will be quarantined in the hospi-
tals immediately and be not able to infect the healthy.
Since different patients get different therapeutic effects
in the process of hospital treatment, some people in the
infection period will die and others will survive, which
corresponds to the state of recovery from COVID-19
and the state of death due to COVID-19. People in the

states of both recovery and death will not infect the
healthy.

We reckon that the cumulative number of confirmed
cases (the total number of people in the infection pe-
riod, the state of recovery and the state of death) will
affect public vigilance to the disease. With the increase
of the number of confirmed cases, public vigilance is
constantly improved. Because of the increased public
vigilance, the same number of cases of persons in the in-
cubation period will lead to fewer healthy people being
infected than the previous situation. In other words,
the growth of the confirmed cases decreases the growth
rate of people in the incubation period, which is called
a feedback process. The qualification of the feedback
process will be explained later.

Figure 1 shows the transformation process of the in-
fected population in different stages with the feedback
process, which is the basic idea of CIRD-F model. In
this figure, we can see two types of lines, the dashed
lines and the solid lines. The solid lines connect differ-
ent stages of the patients and show the transformation
process of the infected population in different stages.
The growth rates of the people in the incubation pe-
riod and the states of recovery and death remain un-
changed, which will be later explained in detail. The
dashed lines denote the feedback process describing the
infection function. The infection function is the growth
rate of people in the incubation period which is affected
by the confirmed cases and affects the rate of incubated
people infecting the healthy.

Based on the above analysis, CIRD-F model is shown
as follows:

F = a(nI + nD + nR) + b, (1)
dnC

dt
= −αnC + FnC, (2)

dnI

dt
= αnC − βnI − γnI, (3)

dnR

dt
= γnI, (4)

dnD

dt
= βnI, (5)

where

α =
1
Ct

, β =
1
T

T∑

i=2

nD,i − DD,i−1

Ii
,

γ =
1
T

T∑

i=2

nR,i − DR,i−1

Ii
.

Here, F represents the infection rate, nC represents the
number of people in the incubation period, nI repre-
sents the number of real-time infections, nR represents
the number of cumulative cures, nD represents the num-
ber of deaths, and t represents the outbreak duration;
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a represents the public vigilance to the number of in-
fections, and b represents the capacity of virus trans-
mission; α, β and γ represent the proportion of peo-
ple becoming infected after the incubation period every
day, the death rate and the cure rate, respectively; Ct

is the length of the incubation period. The subscript i
represents the ith day after 23 January 2020, and T is
the maximum value of i. What needs to be emphasized
here is that F is a feedback function.

The meanings of the five equations are explained as
follows. As to the first equation, F is impacted by nR,
nD and nI together. Here, we set nI + nD + nR = nT,
where nT is the number of the total infections (cumula-
tive infections). With the increase of the total number
of infected people, we believe that the government will
take more stringent measures to control the epidemic,
and the people will have a deeper understanding of the
epidemic. Therefore, with the growth of nT, F will de-
cline, which represents that the infectious ability of dis-
ease in human society is gradually weakened. The sec-
ond formula shows the law of population growth in the
incubation period in unit time. Some people in the in-
cubation period become confirmed patients (infections),
and the ratio of this process is α. Some healthy peo-
ple are still in the incubation period, which is directly
affected by the infection index F . The third formula
shows the increase in the number of diagnosed infec-
tions per unit of time. The proportion of people with a
ratio of α changes from incubation period to confirmed
patients. There are also a group of people cured and
another died as a result of failed rescue efforts. The
fourth and fifth equations are very simple, indicating
that a certain number of patients will turn into healthy
people and death cases under a certain cure rate and
mortality in a unit time.

We use the data from 23 January 2020 to conduct
the calculation. The initial values of nC, nI, nR and nD

are set as follows: nI,0, nR,0 and nD,0 are the numbers
of the ones on 23 January 2020. Since the incubation
period is three days, nC,0 is the difference of the cumu-
lative number of infections on 25 January 2020 and 26
January 2020. In our fitting process, the sum of squares
of residuals is required to be minimized to achieve the
best result, so we use the least square method to fit.

Here are the strengths and weaknesses of CIRD-F
model. In terms of strengths, our model takes the in-
cubation period into account. Therefore, the model is
more accurate and closer to the reality. We set up a
negative feedback function, in which a and b can well
reflect the attitude of the government and people to the
epidemic, making the later policy analysis more conve-
nient. Our model is not a traditional warehouse model,
which requires less data and has higher accuracy. There
are also some weaknesses of our model. In the modeling
process, it is assumed that people would fully follow the
instructions of the government. Such a prediction may

be more ideal than the real situation. In our calculation
process, the calculation of cure rate and death rate is
not very rigorous. In reality, both the cure rate and the
death rate are functions of time, which is not reflected
in the calculation process.

3 Mechanism of CAPM-DV Model

Through CIRD-F model, we can figure out the devel-
opment of the epidemic and the effectiveness of official
policies, but it is still difficult to quantify the economic
impact of official policies. Therefore, we need a capi-
tal asset pricing model with a dummy variable to solve
this problem. Traditional capital asset pricing model
(CAPM) mainly studies the relationship between ex-
pected return of assets in the securities market and
systematic risk[4]. Therefore, it shows how a certain
capital asset is influenced in the background of a cer-
tain market. The dummy variable is a qualified inde-
pendent variable[3], which is used to analyze the effect
of abnormal factor. The model is

(rE − rf)i = ω(rM − rf)i + λnD,i + ε, (6)

where rE means the daily expected return of certain
capital asset, rf means the daily risk-free interest rate,
rM means the daily expected return of the certain mar-
ket, ω is system risk which is defined in the traditional
CAPM, ε is the disturbance, and λ is the influential fac-
tor. We need to fit ω and λ. The focus of this analysis
is λ. If λ is significantly greater than 0, it indicates that
the capital asset is influenced by the abnormal factor
positively; if λ is significantly less than 0, it indicates
that the capital asset is influenced by the abnormal fac-
tor negatively.

Recent study with auto-regressive distributed lag
model shows that the increase and decrease in eco-
nomic factors impact the stock returns, which are very
sensitive, in China[13]. Furthermore, a study which fo-
cuses on several Central and Eastern European coun-
tries shows that there is a high level correlation between
each country’s gross domestic product (GDP) and its
national stock exchange index[14]. Since the GDP or
GDP per capita of most of these countries is similar to
that of China, we infer that the result also applies to
China. On the basis of these studies, we assume that
there is a strong relationship between the stock mar-
ket and the economy in China. Therefore, we focus
on the Shanghai Stock Exchange and reckon that the
stock indices in certain industry represent the economy
situation of certain industry.

In this way, “certain capital asset” of CAPM-DV
model means “certain industry”. “Certain market” is
referred to in particular as Shanghai Stock Exchange in
this paper. Furthermore, we use the five-year govern-
ment bonds to represent the risk-free interest. Namely,
rE,i means the daily income rate of the stock in certain
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industry on the ith day; rf,i means the daily income
rate of five-year government bonds, which remains un-
changed; rM,i means the daily income rate of Shanghai
Composite Index on the ith day. We use equal weight
method to calculate the indices rE,i and rM,i of each
industry separately. The complete calculations are

PE,i =
m∑

j=1

Pi,j , (7)

rE,i = ln
PE,i

PE,i−1
, (8)

rM,i = ln
PM,i

PM,i−1
, (9)

where Pi,j means the closing price of the jth stock in
certain industry on the ith day, PE,i means the daily
income of certain industry on the ith day, m means the
number of stocks in certain industry, and PM,i means
the closing price of Shanghai Composite Index on the
ith day.

After we set the range of the subscript i and the
dummy variable nD,i, which will be explained in Sub-
section 4.2.2, we use linear regression to fit ω and λ.
If nD,i equals to 0 and 1 before and after the epidemic
broke out respectively, the absolute value of λ means
the level of influence of the epidemic on certain in-
dustry and the sign of λ reflects whether the epidemic
influences the industry positively or negatively. Sim-
ilarly, if nD,i equals to 0 and 1 before and after the
government published official policies respectively, the
absolute value of λ means the level of influence of the
epidemic after official policies were published on the in-
dustry and the sign of λ reflects whether the influence
on the industry is positive or negative. It should be
noted that ω means the level of risk of the stocks in
certain industry and it is not the focus of our research.

4 Experiments and Analyses

We conduct several experiments to predict the ten-
dency of the epidemic and evaluate the influence of of-
ficial policies. In Subsection 4.1, we collect the cumu-
lative number of infections from 23 January 2020 to 1
March 2020 from the National Health Commission of
the People’s Republic of China. On the basis of these
data, we use CIRD-F model to predict the tendency
of the epidemic. In Subsection 4.2.1, we use the re-
sult in Subsection 4.1 to evaluate how many possible
infections will be reduced by official policies. In Sub-
section 4.2.2, we randomly collect closing prices of 42

listed company stocks in Shanghai Stock Exchange and
Shanghai Composite Index from 2 January 2019 to 20
February 2020 from China International Capital Cor-
poration (CICC) wealth. According to these data, we
evaluate the economic influence of official policies on
five industries separately.
4.1 Epidemic Prediction

In this section, we separate the procedure into two
different parts: the data prediction of Hubei and the
data prediction of the whole country except Hubei. The
reason why we separate the procedure is that most cities
in Hubei have taken strict traffic control. Also, Hubei
is a major epidemic area and the medical resources are
saturated. Therefore, the cute rate γ, the death rate β,
the public vigilance a, and the virus transmission ca-
pacity b in Hubei are evidently different from the ones
in the other areas. After making the predictions sep-
arately, we figure out the trend of the epidemic of the
whole country.

For the data prediction of China except Hubei, we use
the total number of infections (i.e., nT) from 23 January
2020 to 1 March 2020 to fit the parameters a and b.
For Hubei, since the government revised the diagnosis
standard on 13 February 2020 and the total number
of infections that day increased by over ten thousand,
we modify the range of data used for fitting accordingly.
We assume that the reason why the government revised
the standard was that as the epidemic developed, the
old diagnosis standard lost its effectiveness. Therefore,
we reckon that the new standard after 13 February 2020
is effective and the old standard stayed valid until 6
February 2020. On the basis of the assumption, we use
the total number of infections from 23 January 2020 to
6 February 2020 and from 13 February 2020 to 1 March
2020 to fit the parameters a and b.

Using the corresponding data in Hubei and China
except Hubei, we acquire the values of a and b sepa-
rately. Since we set the steps of a and b as 5 × 10−7

and 5 × 10−3 respectively, we also set the prediction
intervals of a and b as ± (5 × 10−7) and ± (5 × 10−3)
respectively. The values and the prediction intervals
of the used parameters are shown in Table 1. Figure
2 shows the tendency and changes of different popula-
tions (recovered people, death toll and so on) in Hubei.
Figure 3 shows the tendency in China except Hubei. In
the two figures, the solid line means the estimated num-
ber of infections in different stages, the shadow means
the prediction intervals and the scatter means the data
used to fit the model.

Table 1 The values of the used parameters in CIRD-F model

Region α β × 103 γ × 103 nC,0 nI,0 nR,0 nD,0 a × 106 b × 102

Hubei 1/3 4.64 24.03 371 494 31 24 −(9 ± 0.5) 63 ± 0.5

China except Hubei 1/3 0.56 53.14 398 277 3 1 −(49 ± 0.5) 64 ± 0.5
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Fig. 2 Data prediction of Hubei from 23 January 2020 to
2 April 2020
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Fig. 3 Data prediction of China except Hubei from 23 Jan-
uary 2020 to 2 April 2020

Through comparing the values of a and b in Hubei
and China except Hubei, we find that the absolute value
of a in China without Hubei is significantly greater than
that in Hubei and the values of b in both regions are
basically the same. The reason to the first fact is that
the absolute value of a represents the public vigilance
to the number of cumulative infections, and since the
epidemic is more severe in Hubei, the vigilance in Hubei
is weaker than that in China without Hubei. The reason
to the second fact is that the value of b represents the
capacity of virus transmission which only depends on
the virus itself and remains unchanged.

We assume that the infected people are quarantined
in hospitals. Therefore, we define the end of the epi-

demic as the day when the number of people in the
incubation period drops to zero. According to our pre-
diction, the number of people in the incubation period
in Hubei will drop to zero in the middle of March, about
17 March 2020. Furthermore, if the situation in Hubei
is not taken into account, the national epidemic will
end around 2 March 2020. In other words, the last pa-
tient in the incubation period in the country will be
diagnosed and quarantined on 2 March 2020.

The actual data of the number of infections can be
used to prove the accuracy of our prediction. Com-
paring the estimation interval of the total number of
infections (the blue shadow) with the actual data (the
pink scatters) in Figs. 2 and 3, we find that all the data
predictions are in the estimation interval.

We assume that the circulation of personnel in Hubei
and other areas of the country is seriously blocked, so
we simply add the results of the previous two predic-
tions and get the prediction of the whole country. The
tendency of the epidemic is shown in Fig. 4. Figure 5
shows the timeline of the development of the epidemic.
From the figure, several important time nodes and cor-
responding data of the national epidemic can be ob-
tained. As the reality, the peak of the national epidemic
came around 17 February 2020, when the total number
of infected people was about 72 265 (prediction interval,
70 453 to 73 684). The national epidemic will end on 17
March 2020, which is the same as the end date of the
epidemic in Hubei. By that time, about 78 191 (predic-
tion interval, 74 872 to 82 474) people will be infected.
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Fig. 4 Data prediction of the whole country from 23 Jan-
uary 2020 to 2 April 2020

We also calculate the goodness-of-fit of R2 for the
models of Hubei and China except Hubei. We arrange
the actual data of daily infection total (i.e., nI,i+nD,i+
nR,i, recorded as nT,i), which is defined in Eq. (2) and
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8 February 2020 to
10 February 2020

Summit of incubations Summit of infections End of the epidemic

16 February 2020 to
18 February 2020

17 March 2020

nC=15 866 (prediction
interval, 15 367 to 15 914)
nT=43 281 (prediction

interval, 37 968 to 48 511)

nI=4 809 (prediction
interval, 3 739 to 6 102)
nT=72 265 (prediction

interval, 70 453 to 73 684)

nC→0
nT=78 191 (prediction

interval, 74 872 to 82 474)

Fig. 5 Timeline of the trend of the epidemic

used for fitting, in chronological order as nT,1, nT,2, · · · ,
nT,K , where K means the total number of the samples.
The coefficient of determination is

R2 = 1 −

K∑

k=1

(nT,k − n̂T,k)2

K∑

k=1

(nT,k − n̄T,k)2
, (10)

where nT,k means the number of daily infection to-
tal of the kth sample, n̄T,k means the average of all
the samples, and n̂T,k means the estimated number of
daily infection total corresponding to the date of the
kth sample. The values of R2 for the models of Hubei
and China except Hubei are 0.995 99 and 0.990 78 re-
spectively, which are both close to 1 and show the high
goodness-of-fit. However, while the actual number of
the daily increased infections (nT,i − nT,i−1) in China
except Hubei remains between 6 and 10 for about ten
days from 23 February 2020, the corresponding esti-
mated numbers of daily increased infections decrease
rapidly to zero. It shows that the model cannot describe
the ending period of the epidemic very accurately.
4.2 Influence of Official Policies

In this section, we consider the policy impact of the
government from two aspects. These two aspects are
the control of the epidemic and the impact on the econ-
omy. To analyze the impact of epidemic control, we use
the previous model. As to the economic impacts, we
will use a CAPM with dummy variable to assess the
impact on different industries. Since the Chinese gov-
ernment mainly published its policies on 23 January
2020, we assume that the influence of official policies
started from 23 January 2020.
4.2.1 Reducing Possible Infections

In the previous work, we have predicted the epidemic
situations in Hubei and China except Hubei, and ob-
tained some crucial parameters. Since the epidemic in
Hubei is much more severe than that out of Hubei, the
government published a series of policies on 23 January
2020. If these policies were not published, the situation
of the whole country would become as severe as that of

Hubei. To simulate the above situation, we use the val-
ues of the parameters α, β, γ, a and b in Hubei and the
initial numbers nC,0, nI,0, nR,0 and nD,0 in the whole
country and solve the differential equations. The values
of the parameters mentioned above are shown in Table
1. Figure 6 shows the development of the epidemic if
the policies were not published. As shown in Fig. 6, the
predicted number of cumulative infections greatly ex-
ceeds the actual number of cumulative infections, which
means the control of the government is effective. If it is
not controlled, there will be 131 594 (prediction inter-
val, 124 655 to 139 350) cases of infection at the end of
the epidemic. The comparison between the simulation
and the current situation shows that official policies de-
crease the number of possible infections by about 68%.
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Fig. 6 Situation of the whole country if the policies were
not published from 23 January 2020 to 2 April 2020

Moreover, we use the values of the parameters
α, β, γ, a and b in China without Hubei and the initial
numbers nC,0, nI,0, nR,0 and nD,0 in the whole coun-
try and solve the differential equations. The values of
the parameters mentioned above are shown in Table 1.
The above simulation reflects the situation that Hubei
acts like other regions in China. Figure 7 shows the
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situation that Hubei implements strict control at the
early stage of the outbreak. It can be seen that the
total cumulative infections will be far lower than the
current cumulative infections. If Hubei takes actions
like other regions, there will be only 24 787 (prediction
interval, 24 534 to 25 044) cases of infections at the end
of the epidemic. The comparison between the simula-
tion and the current situation shows that if the Hubei
takes action as quickly as the other regions, the number
of possible infections will decrease by about 68%.
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Fig. 7 Situation of the whole country if Hubei takes actions

more timely from 23 January 2020 to 2 April 2020

4.2.2 Economic Impacts
In this section, we use CAPM-DV model to calculate

the economic impacts of the epidemic and official poli-

cies on different industries. The industries are health-
care, transportation, construction, tourism and enter-
tainment. Since the stock index can represent the per-
formance of certain industry in a large economic envi-
ronment, we randomly collect closing prices of 42 listed
company stocks in the five industries from 2 January
2019 to 20 February 2020. The companies are all listed
in Shanghai Stock Exchange and located in all over the
world. We list the stock code and its corresponding
industry in Table 2.

After collecting the stock indices of the above stock
codes from CICC wealth, we gain the values of rf,i,
PM,i and Pi,j . The usual closing price PM,i of Shanghai
Composite Index ranges from 2 000 to 3 000, the usual
closing price Pi,j of each stock ranges from 0 to 15 yuan,
and rf,i equals to 0.117�. The range of the subscript
i will be explained later. Assume that we have deter-
mined the range of i. On the basis of the above data,
we use the equal weight method, which is described in
Section 3, to calculate the parameters rE,i and rM,i in
CAPM-DV model.

Economic Influence of the Epidemic First, we
analyze the impact of the epidemic on each industry
by comparing the performances of the stock market
before and after the epidemic broke out. Therefore,
the range of subscript i is from 2 January 2019 to 20
February 2020 and the dummy variable nD,i is set as:
when i is later than 31 December 2019, nD,i equals to
1; when i is between 2 January 2019 and 30 December
2019, nD,i equals to 0. December 31, 2019 is the day
when Wuhan reported the epidemic. Therefore, we can
use linear regression to calculate the influential index λ
for each industry separately. The results are shown in
Table 3.

Table 2 Data source of CAPM-DV model

Industry Stock code

Healthcare 600222 600223 600380 600466 600789 600796 600812 600866

Transportation 600029 600386 600611 600708 600834 601111 601766

Construction 600039 600170 600463 600502 600820 600970 600986 601226 601789

Tourism 600054 600258 600555 600593 600754 601007 603043 603099 603869

Entertainment 600037 600088 600246 600386 600633 600716 600831 601801

Table 3 Influential index of the epidemic

Industry λ × 103 Description

Healthcare 3.73 The epidemic brings 0.373% additional income to the healthcare industry

Transportation −3.48 The epidemic causes 0.348% additional loss to the transportation industry

Construction −2.45 The epidemic causes 0.245% additional loss to the construction industry

Tourism −0.58 The epidemic causes 0.058% additional loss to the tourism industry

Entertainment — The epidemic does not influence the entertainment industry directly
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Economic Influence of Official Policies Then,
we analyze the impact of the epidemic on each in-
dustry when official policies were conducted by com-
paring the performances of the stock market before
and after the policies were conducted. Therefore, the
range of subscript i is from 31 December 2019 to 20
February 2020 and the dummy variable nD,i is set

as follows: when i is later than 23 January 2020,
nD,i equals to 1; when i is between 31 December
2019 and 22 January 2020, nD,i equals to 0. January
23, 2020 is the day when the Chinese government
started publishing policies. Similarly, we conduct the
calculation for each industry and show the results in
Table 4.

Table 4 Influential index of the epidemic after the policies were published

Industry λ × 103 Description

Healthcare −0.64 The epidemic causes 0.064% additional loss to the healthcare industry

Transportation −2.60 The epidemic causes 0.260% additional loss to the transportation industry

Construction −3.45 The epidemic causes 0.345% additional loss to the construction industry

Tourism −2.20 The epidemic causes 0.220% additional loss to the tourism industry

Entertainment — The epidemic does not influence the entertainment industry directly

If we subtract the values of λ in Table 3 from the
corresponding ones in Table 4, we can calculate the
economic impact of official policies. On the positive
side, the policies bring 0.088% additional income to the
transportation industry. On the negative side, the poli-
cies cause 0.437%, 0.1% and 0.162% additional losses to
the healthcare, construction and tourism industries, re-
spectively.

There are some interesting points. � Although
the epidemic stimulates the healthcare industry, offi-
cial policies negatively influence this industry. Possibly,
the reason is that when the epidemic continues, public
emotions have stabilized. Thus, most people stay at
home, no longer buying drugs blindly. � Although
the epidemic negatively impacts the transportation in-
dustry, the policies show positive to this industry. Pos-
sibly, the reason is that the epidemic has reduced the
tourism, but the deployment of materials and personnel
after the policies were conducted relatively stimulates
the transportation industry.

The model provides a universal method to calculate
the impact on industries. As long as we get the stock
indices of several companies in a certain industry, we
can calculate the impact of the government on this in-
dustry quickly. More commonly, the dummy variable
can be used to calculate the impact of a certain period
on a certain industry. We can set different interval of i
to determine when the dummy variable nD,i equals to
0 and when it equals to 1. However, in this paper, we
do not collect the data of all listed companies in certain
industry, so errors probably exist.

5 Conclusion

We provide CIRD-F model to analyze the spread
and influence of COVID-19. We use different parame-
ters to predict the trend of the epidemic in and out of

Hubei. The influence of official policies is divided into
two parts: virus transmission, and economy.

When predicting the tendency of the epidemic, we
adopt the negative feedback to quantify public vigilance
and consider the difference between people in the in-
cubation and infection period. We also take different
situations in and out of Hubei into consideration. The
results can be used to evaluate the possible infections
which are reduced by official policies. When quantify-
ing the economic influence of the policies on different
industries, we calculate the influence of the epidemic
and the influence of the epidemic after the policies were
published. Using these results, we can evaluate how the
policies influence different industries.

According to our calculation, the termination date of
the epidemic in Hubei are different from that of other
parts of China. The former is around 17 March 2020,
while the latter is around 2 March 2020. Therefore, the
epidemic in China will terminate on 17 March 2020. It
means that the outbreak will not last long. Accord-
ing to the different situations in and out of Hubei, we
find that official policies are very helpful in reducing the
number of infections. From the perspective of China,
if the control is not timely, there will be about 50 000
more infected people. If Hubei acts like other regions
in China, the number of infected people will be greatly
reduced, which further confirms the importance of early
prevention and control of the epidemic. Furthermore,
we use CAPM-DV model to calculate the economic im-
pacts of the epidemic and official policies on different in-
dustries. The epidemic influences the healthcare indus-
try positively and impacts the transportation, construc-
tion and tourism industries negatively. By contrast,
the policies relatively influence the construction indus-
try positively and impact the transportation, health-
care and tourism industries negatively.
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However, when using the CIRD-F model, we assume
that the cure rate and the death rate remain unchanged
to simplify the calculation. In the future work, we can
treat the cure rate and the death rate as a function of
time to give a more accurate prediction.
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