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Abstract
Populations of species in ecosystems are often constrained by availability of resources

within their environment. In effect this means that a growth of one population, needs to be

balanced by comparable reduction in populations of others. In neutral models of biodiversity

all populations are assumed to change incrementally due to stochastic births and deaths of

individuals. Here we propose and model another redistribution mechanism driven by abrupt

and severe reduction in size of the population of a single species freeing up resources for

the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with

strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems

where infectious diseases play an important role. The emergent dynamics of our system is

characterized by cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating pop-

ulations. The population diversity peaks at the beginning of each wave and exponentially

decreases afterwards. Species abundances have bimodal time-aggregated distribution

with the lower peak formed by populations of recently collapsed or newly introduced species

while the upper peak - species that has not yet collapsed in the current wave. In most waves

both upper and lower peaks are composed of several smaller peaks. This self-organized

hierarchical peak structure has a long-term memory transmitted across several waves. It

gives rise to a scale-free tail of the time-aggregated population distribution with a universal

exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations

in the rules of our model such as diffusion between multiple environments, species-specific

growth and extinction rates, and bet-hedging strategies.

Author Summary

The rate of unlimited exponential growth is traditionally used to quantify fitness of species
or success of organizations in biological and economic context respectively. However,
even modest population growth quickly saturates any environment. Subsequent resource
redistribution between the surviving populations is assumed to be driven by incremental
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changes due to stochastic births and deaths of individuals. Here we propose and model
another redistribution mechanism driven by sudden and severe collapses of entire popula-
tions freeing up resources for the growth of others. The emergent property of this type of
dynamics are cyclic “diversity waves” each triggered by a collapse of the globally dominat-
ing population. Gradual extinctions of species within the current wave results in a scale-
free time-aggregated distribution of populations of most abundant species. Our study
offers insights to population dynamics of microbial communities with local collapses
caused e.g. by invading bacteriophages. It also provides a simplified dynamical description
of market shares of companies competing in an economic sector with frequent rate of
bankruptcy.

Introduction
Mathematical description of many processes in biology and economics or finance assumes
long-term exponential growth [1, 2] yet no real-life environment allows growth to continue
forever [3, 4]. In biology any growing population eventually ends ups saturating the carrying
capacity of its environment determined e.g. by nutrient availability. The same is true for econo-
mies where finite pool of new customers and/or natural resources inevitably sets a limit on
growth of companies. Population dynamics in saturated environments is often described by
neutral “community drift”models [5, 6] sometimes with addition of deterministic differences
in efficiency of utilizing resources [7].

Here we introduce and model the saturated-state dynamics of populations exposed to epi-
sodic random collapses. All species are assumed to share the same environment that ultimately
sets the limit to their exponential growth. Examples of such systems include local populations
of either a single or multiple biological species competing for the same nutrient, companies
competing to increase their market shares among a limited set of customers, etc. Specific case
studies can be drawn from microbial ecology where susceptible bacteria are decimated by bac-
teriophages (see e.g. [8, 9] and references therein), or paleontological record, where entire taxo-
nomic orders can be wiped out by sudden extinctions happening at a rate independent of order
size [10].

Model
Population growth P(t) of a single exponentially replicating species in a growth-limiting envi-
ronment is traditionally described by Verhulst’s [4] or logistic equation dP/dt = O � P � (1 − P/
Ptot), where the carrying capacity of the environment Ptot without loss of generality can be set
to 1. In this paper we consider the collective dynamics of multiple populations competing for
the same rate-limiting resource:

• Local populations are subject to episodic random collapses or extinctions. The probability of
an extinction is assumed to be independent of the population size. Immediately after each
collapse the freed-up resources lead to the transient exponential population growth of all
remaining populations Pi. The growth stops once the global population ∑j Pj reaches the car-
rying capacity Ptot = 1.

• The environment is periodically reseeded with new species starting from the same small pop-
ulation size γ� 1 (measured in units of environment’s carrying capacity).
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We initially assume that growth rates and collapse probabilities of all species are equal to
each other. We also disregard the neutral drift [5] in sizes of individual populations during the
time between subsequent collapses. All these assumptions will be relaxed, simulated, and dis-
cussed later in the paper (see Supplementary Materials S1 Text, S1–S7 Figs). The number of
species in the steady state of the model is determined by the competition between the constant
rate of introduction of new species and the overall rate of extinctions in the environment that
is proportional to the number of species. To simplify our modeling we will consider a closely
related variant of the model in which the number of species N is kept strictly constant. In this
case each extinction event is immediately followed by the introduction of a new species. We
have verified that two versions of our model have very similar steady state properties. The
dynamics of the fixed-Nmodel is described by

dPi=dt ¼ O � Pi � ð1�
X

j

PjÞ � ZiðtÞ � Pi ; ð1Þ

where ηi(t) is the random variable which is equal to zero for surviving populations and has a
large positive value for populations undergoing an extinction/collapse.

To speed up our simulations we do not continuously calculate Eq (1) since most of the time
the carrying capacity of the environment is saturated and local populations do not change.
Instead we simulate the model at discrete time steps marked by extinction events. At every
time step a randomly selected local population goes extinct and a new species with population
γ� 1 is added to the environment. We then instantaneously bring the system to its the carry-
ing capacity by multiplying all populations by the same factor.

Results
In spite of its simplified description of the ecosystem disregarding pairwise interactions
between species our model has a rich population dynamics. Fig 1A shows time-courses of pop-
ulations in a system with N = 20 species and γ = 10−4. At certain times the carrying capacity
of the environment is nearly exhausted by just one dominant species with Pmax ’ 1 visible as
dark red stripes in Fig 1A. When such dominant species goes extinct, significant fraction of
resources suddenly becomes available and consequently all other populations increase by a
large ratio 1/(1 − Pmax). This marks the end of one and the start of another diversity wave that
initially is dominated by a large number of species with similar population sizes. In the course
of this new wave these species are eliminated one-by-one by random extinctions until only one
dominant species is left standing. Its collapse ends the current and starts the new wave. In Fig
1A one can clearly distinguish about 5 such waves terminated by extinctions of dominant spe-
cies #5, 15, 6, 19, and 16 correspondingly.

Fig 1B shows the time-course of just one local population of the species #6 on a logarithmic
scale. Between time steps 100 and 150 the population of this species nearly exhausts the carry-
ing capacity of the environment. Its local extinction at the time step 154 ended the third diver-
sity wave and started the fourth one. Note somewhat erratic yet distinctly exponential growth
of this species happening on the slow timescale set by the inverse frequency of extinctions. This
growth should not be confused with exponential re-population of recently collapsed environ-
ments that happens much faster (a small fraction of one time step).

Fig 2 follows the population diversity (grey shaded area) defined as DðtÞ ¼ 1=
XN

i¼1
PiðtÞ2

as a function of time in a system of size N = 1000. In general D can vary between* 1 when
one abundant species dominates the environment and N when all species are equally abundant.
The diversity is inversely proportional to the largest population Pmax(t) = maxi Pi(t). The diver-
sity waves (purple dashed arrows in Fig 2) are initiated when a dominating species collapses.
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As a consequence, at the start of each wave the diversity abruptly increases from* 1 to a sub-
stantial fraction of the maximal possible diversity N. After this initial burst triggered by the
global redistribution of biomass, the diversity exponentially declines as exp(−t/N) (the dot-
dashed line in Fig 2), driven by ongoing extinctions of individual populations. The typical dura-
tion, twave of a diversity wave is equal to the time required for all of the species present at the

Fig 1. Population dynamics. The simulated model has N = 20 species and γ = 10−4. (A) Time-courses of
populations of all species. The color denotes population size (see the color scale on the right) with the
dominating species visible as red horizontal bands. Note five diversity waves ending at purple dashed lines.
Transitions between these waves were triggered by extinctions of the dominating species # 5, 15, 6, 19, 16
correspondingly. (B) The time-course of the species # 6 with the logarithmic y-axis. Note the pattern of
intermittent periods of exponential growth fueled by local extinctions.

doi:10.1371/journal.pcbi.1004440.g001

Fig 2. Diversity dynamics. The grey shaded area shows the the time course of the population diversity D ¼
1=
P

iP
2
i in our model with N = 1000 and γ = 10−12. Purple dashed lines mark the beginnings of diversity waves

when a collapse of the dominant species with Pmax ’ 1 leads to an abrupt increase in population diversity
from* 1 to* N. The diversity subsequently decreases/ exp(−t/N) (dash-dotted line).

doi:10.1371/journal.pcbi.1004440.g002
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start of the wave to go extinct one-by-one. Thus it is determined by N � exp(−twave/N)* 1 or

twave � N � log e N : ð2Þ

Fig 3 shows the time-aggregated distribution of population sizes for γ = 10−9 and N = 1000
(the grey shaded area). This logarithmically-binned distribution defined by π(P) = dProb(Pi(t)
> P)/dlog10 P were collected over 20 million individual collapses (time-steps in our model).
Thus, a time-aggregated distribution is rather different from a typical “snapshot” of the system
at a particular moment in time characterized by between 1 and N of highly abundant species in
the current diversity wave. The time-aggregated distribution is bimodal with clearly separable
peaks corresponding to two population subgroups. The upper peak consists of the species that
have not yet been eliminated in the current wave.

To better understand the dynamics of the system in Fig 3 we also show the distribution of
populations sizes at the very end of each diversity wave (green line) and at the beginning of the
next wave (red line). That is to say, for the green curve we take a snapshot of all populations
immediately after the dominant species with Pmax > 1 − 1/N was eliminated, but before the
available biomass was redistributed among all species. At those special moments, happening
only once every twave time steps, most population sizes are between γ and γ � N while a small
fraction reaches all the way up to* 1/N. During the rapid growth phase immediately after our
snapshot was taken, all populations grow by the same factor 1/(1 − Pmax)’ N thereby moving
all of them to the upper peak of the time-aggregated distribution thereby starting the new
wave. The red curve corresponds to the snapshot of all populations immediately after this
rescaling took place. It shows that at the very beginning of the new wave local populations are
broadly distributed between* N � γ and 1 with a peak around 1/N.

Fig 4A shows time-aggregated distributions of population sizes for γ = 10−10 and different
values of N ranging between 100 ad 10,000 while Fig 4B shows time-aggregated distributions
with N = 1000 and for a wide range of γ. One can see that for γ< 0.01/N, the tail of the distri-
bution for most abundant populations between 1/N and 1 is well fitted by a power law π(P)/
1/Pτ−1 ’ 1/P0.7 (dashed line in Fig 4B) corresponding to the power law distribution of popula-
tion sizes on the linear scale dProb(Pi(t)> P)/dP* 1/Pτ ’ 1/P1.7. Overall Fig 4A and 4B

Fig 3. Time-aggregated population size distribution. The grey shaded area shows the time-aggregated
distribution of population sizes in our model with γ = 10−9 andN = 1000 collected over 20 million collapses.
The green and red lines show the population size distributions collected, respectively, at the very end of each
wave and at the very beginning of the next wave as described in the text. Note that they roughly correspond
to two peaks of the time-aggregated distribution.

doi:10.1371/journal.pcbi.1004440.g003
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demonstrate that the exponent τ for different values of γ and N is remarkably universal. Indeed,
for a range of parameters where the upper and the lower peaks of π(P) are clearly separated, τ
approaches a universal value τ = 1.7.

An insight into the origins of the scale-free tail of the distribution of population sizes is
gained by considering a simplified version of our model in which at the start of each wave the
populations of all species are artificially set to be equal to each other resulting in the maximal
diversity. We further assume that γ� 1/N. The passage of time t elapsed since the beginning
of the current wave, leads to a decrease in the number of surviving species Nsurv(t) = Nexp(−t/
N), which all have the same population size P = 1/Nsurv(t) jointly filling up the carrying capacity
of the environment. Above we ignore a negligible fraction (* γ) of the total population of the
lower peak species. The time-aggregated probability for a species to have a population size Pi>
P = 1/Nsurv(t) is naturally given by Nsurv(t)/N/ 1/P and thus

ProbðPi > PÞ / 1

P
)

ProbðPi ¼ PÞ ¼ dProbðPi > PÞ
dP

/ 1

P2

The exponent τ = 2 predicted by this simplified model is realized in our actual model for
moderately high γ* 0.1, whereas smaller values of γ give rise to a different universal exponent
τ’ 1.7. The decrease of the exponent τ from 2 to 1.7 in our original model is the result of
unequal population sizes at the beginning of a new wave. In fact, we verified numerically that τ
= 2 is recovered if at the start of each wave one equilibrates all species abundances to 1/N. The

Fig 4. Time-aggregated distributions for different values of N and γ. Time-aggregated distributions of
population sizes in our model with A) γ = 10−10 andN = 100 (blue), N = 1000 (red), andN = 10,000 (green). B)
N = 1000 and varying γ ranging between 10−4 (green) to 10−10 (red) in ten-fold decrements. Note the
emergence of a nearly universal scale-free tail of the distribution fitted with τ’ 1.7 (dashed line).

doi:10.1371/journal.pcbi.1004440.g004
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first section of the S1 Text in supplementary materials provides additional details on how the
reduced population diversity D ¼ 1=

P
P2
i < N at the start of population waves affects the

exponent τ.
Two panels in Fig 5 illustrate the difference between the simplified (panel A) and the real

(panel B) models. In both versions of the model the average jump in the logarithm of surviving
populations grows exponentially with time t elapsed since the start of the current wave: −log(1
− Pcollapsed(t))’ exp(t/N)/N. However, unlike the simplified model, the population distribution
in our real model has a rich hierarchical structure with multiple sub-peaks in some waves
(color bands in Fig 5B). Remarkably this multi-modal distribution reappears in subsequent
waves, implying that the memory about the hierarchical structure in the upper part of the dis-
tribution is transmitted to emerging populations in the lower part with sizes starting at γ. At
the start of the next wave these same populations will move to the upper part of the distribution
thereby transmitting the history across waves. Colors of symbols in Fig 5 illustrate the origin of
multiple peaks. Indeed, populations in each of these peaks were born during the previous wave
under similar conditions (the number of substantial populations) as described in the caption.
Thus, the broadening of time-aggregated population distribution in our model compared to its
history-free version is a simple manifestation of a complex interplay between “upstairs” and
“downstairs” subpopulations transmitting memory across waves.

The population distribution in both upper and lower peaks is described by the same expo-
nent τ. This similarity reflects the fact that individual populations in the lower peak are exposed
to the same multiplicative growth as the ones in the upper peak. Finally, the intermediate
region of the distribution connecting two peaks is shaped by rescaling of all populations in the
lower peak as they are moved up at the beginning of a new diversity wave. When peaks are well

Fig 5. Memory of population size distribution is preserved across several diversity waves. Time
course of jumps −log[1 − Pcollapsed(t)] in the logarithm of surviving populations following a collapse of a
substantial population Pcollapsed(t) > 10−10 in A) the simplified model in which at the start of each wave all
populations are set equal to each other; B) our basic model. Both were simulated atN = 1000 and γ = 10−20.
Note that our basic model, unlike its simplified counterpart, preserves memory of population sizes distribution
across several subsequent diversity waves. This is manifested e.g. in similar fractal structure of jumps sizes
in waves #2-6 shown in panel B). Colors of symbols (see colorbar below) represent the log10 of the number
of substantial populations during the the previous wave, when a given population originated at the small size
γ. Thus red dots mark populations originated at the very end of the previous wave, while yellow dots—those
originated when there were two large populations left in the previous wave. Finally, green, blue, and purple
dots refer to older populations in the previous wave.

doi:10.1371/journal.pcbi.1004440.g005
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separated (as e.g. for low values of γ) the slope of the logarithmic distribution in this region has
almost exactly the same value τ − 1 = 0.7 and the opposite sign to the slopes in both the upper
and the lower peaks.

Discussion
In this paper we explore the population dynamics in saturated environments driven exclusively
by near-complete collapses of sub-populations of competing species. This type of dynamics
strongly contrasts gradual changes implied in “community drift” neutral models [5] in ecology,
or incremental random walks of stock valuations of individual companies in economics. Con-
versely, collapse-driven dynamics assumes sudden and usually large changes of system compo-
sition. In ecology such collapses may be caused e.g. by invading predators or diseases, whereas
in the economy, companies of any size can go bankrupt e.g. through excessive debt amplifying
the effects of external perturbations.

First, let us consider biological systems. One of the predictions of our model is a multimodal
logarithmic distribution of population sizes. Indeed, while the time-aggregated distribution is
bimodal with distinct upper and lower peaks, populations within any given diversity wave clus-
ter together in several smaller peaks persisting over several waves (color stripes in Fig 5B). This
overall finding is supported by a growing body of literature [11–14] where multi-modal Species
Abundance Distributions (SAD) were reported for plants, birds, arthropods [14], marine
organisms including single cells, corals [12], nematodes, fishes, entire seafloor communities
[11], and even extinct brachiopods [15]. Like in our model, the empirical SADs range over
many orders of magnitude with a noticeable depletion (or several depletions) at intermediate
scales. The magnitude of this dip is usually somewhat less than predicted by our basic model
but is consistent with several of its variants described below. This includes the model variant #1
inspired by the neutral theory of biodiversity [5] thought to apply to a variety of ecosystems
including microbial communities [6, 7] (see S1 Fig in supplementary materials).

Needless to say, our model is not unique in generating multimodal distributions (see e.g.
[13] for other examples). Conversely, some of the variants of our model have diversity waves
even without any depletion in the middle of the log-binned SAD. We argue that a more reliable
characterization of underlying dynamical processes can be obtained from time-series data.
First, all systems capable of diversity waves are described by rapid large changes in populations
of individual species. Such sudden, population-scale shifts can occur e.g. due to introduced dis-
eases or the disappearance of keystone species [16, 17] thereby changing the composition of
the entire food-web. On the microbial scale, sudden invasion of a new bacteriophage may lead
to multiple orders of magnitude reduction in the population of susceptible bacteria [8, 18],
potentially leading to their complete local extinction [9]. Phage-driven collapses do not spare
bacteria with large populations and may even be biased towards such as postulated in the Kill-
the-Winner (KtW) hypothesis [19]. The magnitude and characteristic timescale of population
changes in microbial ecosystems is still being actively discussed in the literature. While
Ref. [20] reports that over half of all bacterial species in marine environments varied between
being abundant and rare over a three-year period, other studies [21] found more modest vari-
ability at the level of species or genera over weeks to months period. However, everyone seem
to agree on dramatic and rapid (often on the scale of days [22]) population shifts at the level of
individual bacterial strains [8, 21, 23] caused by phage predation [22]. Except for interchange-
able gene cassettes (metagenomic islands) responsible for either phage recognition cites or
alternatively resistance to phages [24], these strains routinely have very similar genomes and
thus may have near identical growth rates. Hence, they are capable of coexistence in the satu-
rated state implicitly assumed in our model.

Diversity Waves in Collapse-Driven Population Dynamics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004440 September 14, 2015 8 / 15



Extinctions and collapses in our model are caused exclusively by exogenous effects such as
natural catastrophes or predation by external species not sharing the carrying capacity of our
environment. Real-life ecosystems can also collapse due to endogenous effects, i. e. internal
interactions between species. Such intrinsic collapse mechanisms were the sole focus of earlier
models by us and others (see e.g. [9, 25, 26]).

On vastly longer, geological timescales, the collapse-driven dynamics of our model resem-
bles that of species extinctions and subsequent radiations in the paleontological record [27, 28].
One example is the recolonization by mammals of a number of ecological niches vacated by
dinosaurs after the end-Cretaceous mass extinction thought to be preceded by a gradual deple-
tion of diversity among dinosaurs who were finally wiped out by a singular catastrophic event
[29]. Interestingly, the extinction rate of taxonomic orders appears to be independent of their
size quantified by the number of genera they contains [10], which is also one of the assump-
tions of our basic model.

The second application of our model is to company size dynamics in economics. The size or
the market share of a publicly traded company reflected in its stock price is well approximated
by a random walk with (usually) small incremental steps [30]. However, as in the case of eco-
systems, this smooth and gradual drift does not account for dramatic rapid changes such as
bankruptcies or market crashes. In case of companies the main driver of sudden changes is
their debt [31]. When the intrinsic value of a company is much smaller than its debt, even
small changes in its economical environment can make it insolvent not sparing even the biggest
companies from bankruptcies (think of Enron and Lehman Brothers). Empirically, the year-
to-year volatility of company’s market share varies with its size S, ΔS/S/ S−0.2[32].

Abundance distributions in our original model and many of its variants are characterized
by a power-law tail with an exponent τ close to 2. This is in approximate agreement with the
empirical data on abundance distributions of bacteria in soil samples [33], marine viruses
(phages) [34]. In the economics literature, the distributions of company sizes [35], as well as
those of wealth of individuals [36] are known to have similar scale-free tails. Recent data for
company sizes [35] and personal wealth [36] suggest 1/P1.8 tail of the former distribution and
1/P2.3 tails of the latter one. Traditionally, scale-free tails in these distributions were explained
by either stochastic multiplicative processes pushed down against the lower wall (the minimal
population or company size, or welfare support for low income individuals) [37–39], by vari-
ants of rich-get-richer dynamics [40], or in terms of Self-Organized Criticality [25, 41]. The
emphasis of the latter type of models on large system-wide events (avalanches [25, 41] or col-
lapses [42]) and on separation of timescales is similar in spirit to collapse-driven dynamics in
our models. A potentially important socio-economic implication of our model is that during
each wave contingent sub-peaks in the “upstairs” part of the distribution are imprinted on the
“downstairs” part and thereby can be repeated in the new wave following the “revolution”.

Needless to say, our models were simplified in order to compare and contrast the collapse-
driven dynamics to other mathematical descriptions of competition in saturated environments.
The S1 Text in supplementary materials describes several variants of our basic model that in
addition to population collapses include the following elements:

1. “Neutral drift model” assumes changes of population sizes during time intervals between
collapses as described in Ref. [5]. In this model in addition to collapses a population of size

Pi randomly drifts up and down DPi / � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pið1� PiÞ

p
. The resulting diversity waves and

time-aggregated distributions can be found in the supplementary S1 Fig.

2. “Exponential fluctuations model” is another variant of the neutral scenario where popula-
tion sizes between collapses undergo slow multiplicative adjustments ΔPi / ±Oi Pi restricted
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by the overall carrying capacity of the environment. Details and the resulting time-aggre-
gated distribution can be found in the supplementary S2 Fig.

3. “Interconnected environments model” is another neutral variant of our basic rules in which
spatially separated sub-populations of the same species are competing with each other for
the same nutrient. Sub-populations are connected by the diffusion, that is much slower than
the diffusion of the shared nutrient. In this model a collapsed sub-population is replenished
by a small number γ of individuals diffusing from other environments, see the supplemen-
tary S3 Fig.

4. “Kill-the-Winner (KtW) model” where collapse probability c systematically increases with
the population size as suggested by studies of phage-bacteria ecosystems [19]. In this partic-
ular case the diversity dynamics and the scale-free tail of the population distribution
becomes sensitive to the extent that the large populations are disfavoured by collapse. When
the collapse probability is proportional to population size, one obtains a flat distribution
where numbers of species in each decade of population sizes are equal to each other, see the
supplementary S4 Fig.

5. “Kill-the-Loser (KtL) model”, where collapse probability c systematically decreases with the
population size P as c(P)* P−0.2 as suggested by the empirical studies of company dynam-
ics [32]. As seen in the supplementary S5 Fig, the diversity dynamics and the scale-free tail
of the population distribution are both remarkably robust with respect to introduction of
size-dependent collapse rate.

6. “Fitness model” in which each of the species has its own growth rate Oi during rapid re-pop-
ulation phase and its own collapse probability ci. The supplementary S6 Fig show that the
overall shape of the time-aggregated distribution is similar to that in our basic model,
whereas its lower panel illustrate the interplay between population size and the the two vari-
ables that define the species’ fitness.

7. “Resilience model” as a variant of the above fitness scenario, in which collapsing species do
not necessarily go into extinction. Instead, each species is assigned its own “survivor ratio”
γi defined by the population drop following a collapse: Pi! γi Pi. As in the previous variant
each of the species is also characterized by its own growth rate Oi. The supplementary S7
Fig shows that for intermediate populations the time-aggregated distribution is described by
a power law scaling. Compared to the basic model it has a broader scaling regime and larger
likelihood to have most of the “biomass” collected in one species.

S1 Text and captions to supplementary S1–S7 Figs provide more detailed description of
model dynamics in each of these cases. Overall, the ‘simulations of the variants of our basic
model described above preserve the general patterns of collapse-driven dynamics such as diver-
sity waves, and a broad time-aggregated distribution of population sizes with scale-free tail for
the most abundant species.

The classic definition of the fitness of a species in terms of its long-term exponential growth
rate [43] is clearly inappropriate for our model. Indeed, the long-term growth rate of each of
our species is exactly zero. One must keep in mind though that fitness is a very flexible term
and has been defined in a variety of ways [44] reflecting (among other things) different time-
scales of growth and evolution [25], and relative emphasis on population dynamics vs. risk
minimization [45]. An appropriate way to quantify species’ success in a steady state system like
ours is in terms of their time-averaged population size hPi(t)it.

In the last two variants of our basic model we add fitness-related parameters to each of the
species: its short-term exponential growth rate Oi (model 6 and 7), its propensity to large
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population collapses quantified by their frequency ci (model 6), and the severity of collapses
quantified by surviving fraction γi of the population (model 7). Fig 6 shows the average popula-
tion size hPi(t)it as function of Oi and γi in the model 7. As expected, species with larger short-
term growth rates and larger surviving ratios also tend to have substantially larger populations
(the red area in the upper right corner of Fig 6).

While in our models the probability ci and magnitude γi of collapses are assumed to be inde-
pendent of growth rate Oi in reality they are often oppositely correlated. Indeed, in biology
much as in economics/finance fast growth usually comes at the cost of fragility and exposure to
downturns forcing species to optimize trade-offs.

Some environmental conditions favor fast growth even at the cost of a higher risk of col-
lapse, whereas others call for sacrificing growth to minimize probability or severity of collapses.
Species in frequently collapsing environments considered in our study are known to employ
bet-hedging strategies [2, 45–47] to optimize their long-term growth rate. This is obtained by
splitting their populations into “growth-loving” and “risk-averse” phenotypes [45, 47, 48]. One
example of this type of bet-hedging is provided by persistor sub-populations of some bacterial
species consisting of γ* 10−4 of the overall population [49, 50] increasing to as much as γ =
10−2 in saturated conditions (S. Semsey, private communications). A bet-hedging strategy with
persistor sub-population 10−2 somewhat reduces the overall growth rate (only by 1%) while
dramatically reducing the severity of collapses caused by antibiotics. From Fig 6 one infers that
this is indeed a good trade-off.

In this study we presented a general modeling framework for systems driven by redistribu-
tion of rate-limiting resources freed up by episodic catastrophes. The population dynamics in
such systems happens on at least four hierarchical timescales. At the shortest timescale the
populations grow exponentially repopulating resources vacated during a catastrophic extinc-
tion event. This exponential growth results in a steady state at which the system is poised

Fig 6. Average population vs species’ properties in the “Resilience model” variant #7. Time-averaged
population of a species (see color scale on the right) plotted as a function of its re-population growth rateΩi

(x-axis) and population drop after collapses γi (y-axis). in a variant of our model with fitness differences
between species. Note that the population increase with bothΩi and γi. Populations and fitness parameters of
N = 1000 species were taken from 50 million snapshots of the model.

doi:10.1371/journal.pcbi.1004440.g006
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exactly at the carrying capacity of the environment. At even longer timescales the system is
described in terms of diversity waves that are the main focus of this study. These waves are an
emergent dynamical property of the system in which population of surviving species grows,
while diversity exponentially decays. Remarkably the information about the “upstairs”and
“downstairs” population peaks survives the “revolution” at the end of each wave. This memory
gives rise to the final, longest timescale in our system correlating several consecutive waves. All
of this complexity is already present in our basic one-parameter model. We believe that this
model and its variants provide the foundation for future studies of collapse-driven dynamics in
ecosystems, market economies, and social structures.

Supporting Information
S1 Text. Fokker-Planck equation for the basic model and detailed description of model var-
iants 1-7.
(PDF)

S1 Fig. Neutral drift model. This variant extends our basic model with N = 1000 and collapse
ratio γ = 10−9 by adding the neutral drift at rate r taking place between subsequent collapse

events in our standard model: Pi ! Pi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � Pið1� PiÞ

p
. The lower panel shows the time-

aggregated distributions in our system simulated for 106 collapse events. The grey shaded area
refers to our basic, unmodified model, i.e. to the r = 0 case, while three color lines correspond
to r = 10−9 (blue), r = 10−7 (green), and r = 10−5 (red). The upper four panels illustrate typical
time courses of the diversity D(t) = 1/∑Pi(t)

2 in our basic model and for three values of the rate
r color-coded as in the lower panel.
(TIFF)

S2 Fig. Exponential fluctuations model. Figure shows this model with N = 1000, γ = 10−9,
and n = 0.02 (green), n = 0.1 (blue), n = 0.5 (red) system simulated for 106 collapse events. The
grey shaded area shows the time-aggregated population distribution in our basic model, corre-
sponding to the n = 0 limit.
(TIFF)

S3 Fig. Interconnected environments model. Figure shows time-aggregated species abun-
dance distributions in the model with N = 1000 environments connected by diffusion of
strength γ = 10−9 simulated over 106 collapse events. The basic model with the same parameters
is shown as the grey shaded area.
(TIFF)

S4 Fig. “Kill-the-Winner” (KtW) model.Model variant in which larger populations are pref-
erentially targeted for collapse: ci / Ps

i . Different colors correspond to time-aggregated SADs
in the model with N = 1000, γ = 10−9, and σ = 0.01 (green), 0.2 (blue), and σ = 1.0 (red) simu-
lated over 5 � 106 collapse events. The grey shaded area refers to time-aggregated population
distribution in our basic, unmodified model with the same N and γ.
(TIFF)

S5 Fig. “Kill-the-Loser” (KtL) model.Model variant in which the collapse probability declines
with population size as a power law with exponent -0.2. The figure shows an N = 1000, γ = 10−9

system simulated for 106 collapse events. The upper panel illustrates the recurrent diversity
waves, whereas the lower panel shows time-aggregated distributions, with the grey shaded area
referring to our standard model.
(TIFF)
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S6 Fig. Fitness model.Model variant with heterogeneous, species-specific growth rates and
extinction probabilities. Each species is assigned a growth rate Oi used when it repopulates the
freed-up carrying capacity of the environment. It also has its own collapse probability ci. Both
Oi and ci are logarithmically distributed in the interval between 0.1 and 1. The purple curve in
the upper panel shows the time-aggregated population distribution whereas the grey shaded
area is that for the standard model where species’ growth and collapse rates are all equal to
each other. The lower panel shows the average growth rate hOii (blue) and the average collapse
probability hcii (red shaded area) of species binned by their collected at every time step. Both
curves represent time-aggregated averages of individual populations.
(TIFF)

S7 Fig. Resilience model.Model variant with heterogeneous, species-specific growth rates and
survival ratios following a collapse. Each of N = 1000 species is assigned a growth rate Oi 2
[0.1,1] and collapse size γi 2 [10−9,10−2], both logarithmically distributed. A) The blue curve
shows the time-aggregated population distribution, whereas the grey area refers to that in our
basic model. B) The average growth rate hOii (blue) and the average survival ratio hγiimulti-
plied by 200 (red shaded area) binned by the population size collected at every time step. Both
curves represent time-aggregated averages of individual populations. C) The average (arithme-
tic) population size as a function of species’ survivor ratio γi. D) The average (arithmetic) popu-
lation size as a function of species’ growth rate Oi.
(TIFF)
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