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Abstract

Release of cell surface-bound ligands by A-Disintegrin-And-Metalloprotease (ADAM) transmembrane metalloproteases is
essential for signalling by cytokine, cell adhesion, and tyrosine kinase receptors. For Eph receptor ligands, it provides the
switch between cell-cell adhesion and repulsion. Ligand shedding is tightly controlled by intrinsic tyrosine kinase activity,
which for Eph receptors relies on the release of an inhibitory interaction of the cytoplasmic juxtamembrane segment with
the kinase domain. However, a mechanism linking kinase and sheddase activities had remained elusive. We demonstrate
that it is a membrane-proximal localisation of the latent kinase domain that prevents ephrin ligand shedding in trans.
Fluorescence lifetime imaging microscopy and electron tomography reveal that activation extends the Eph receptor
tyrosine kinase intracellular domain away from the cell membrane into a conformation that facilitates productive
association with ADAM10. Accordingly, EphA3 mutants with constitutively-released kinase domains efficiently support
shedding, even when their kinase is disabled. Our data suggest that this phosphorylation-activated conformational switch
of EphA3 directly controls ADAM-mediated shedding.
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Introduction

The ADAM (A-Disintegrin-And-Metalloprotease) trans-

membrane proteases fulfil essential functions during normal

and pathological tissue- and organ-development [1]. ADAM10

and 17 in particular are widely expressed and knock-out mice

lacking expression of either gene show severe, lethal defects in

early development, in the formation of somites and the central

nervous system (ADAM10) and the cardiovascular system

(ADAM10/17). They have important roles in receptor tyrosine

kinase (RTK) and Notch signalling, highlighted by phenotypic

resemblance of ADAM 10/17 knockouts with those of Notch,

the epidermal growth factor receptor (EGFR) and EGFR

ligands [2,3,4,5]. ADAM10 and 17 both target a range of

EGFR ligands with distinct specificities [6], while ADAM10

cleaves both Notch and its ligand delta, as well as other targets

with prominent roles in disease including amyloid precursor

protein, interleukin 6 receptor [5], cadherins [7], and ligands

for Eph RTKs (Ephs) [8,9].

Ephs and their membrane bound ligands (ephrins) control cell

positioning during normal and oncogenic development by

modulating cell-cell adhesion and cell-cell segregation or repulsion

[10]. Similar to ADAMs, they function in developmental processes

including somite formation, neural and cardiovascular develop-

ment [11,12], which, together with their common expression

patterns, supports functional evidence for the critical role of

ADAM10 in Eph biology [8,9]. Eph function relies on the direct

contact between Eph- and ephrin-expressing cells, which triggers

the assembly of signalling clusters at the cell-cell interface [13] and

initiates Eph ‘‘forward’’ and ephrin ‘‘reversed’’ signals into the

respective cells [10]. For repulsion to proceed it is essential that the

multivalent [14,15] signalling complexes that tether Eph- and

ephrin-expressing cells are disrupted, allowing the cells to retract

via ensuing actin cytoskeletal rearrangement [16]. In the case of
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EphA/ephrin-A signalling clusters it was demonstrated that

ephrin-shedding by ADAM10, constitutively associated with Ephs

on the opposing cell [9], is required for repulsion to occur [8,9].

ADAM proteins are produced as inactive precursors that

become catalytically active upon removal of the prodomain during

secretion. Interestingly, there is little evidence for a substrate

cleavage sequence motif, and the regulation of proteolytic

specificity is achieved by interaction of substrates with the non-

catalytic disintegrin and cysteine-rich extracellular ADAM do-

mains. For ephrin cleavage, a substrate recognition module within

the cysteine-rich domain of ADAM10 specifically binds only the

high-affinity ligand-receptor complex to ensure that only Eph

receptor-bound ephrins are cleaved [9].

n addition to this direct control of ADAM10-facilitated

shedding, substantial evidence documents intracellular regulation

of ADAM proteases [4,5]. ADAM activity is enhanced upon

activation of (receptor) tyrosine kinase signalling by growth factors,

phorbol esters, or phosphatase inhibitors, while tyrosine kinase

inhibitors or dominant-negative RTK mutants attenuate ADAM

activity [4]. This protein kinase-controlled ADAM activity is an

essential component of the autocrine, mitogenic signalling that is

triggered by G-protein coupled [17,18] or stress-induced EGF

receptor transactivation [17,19]. Conversely, ADAM shedding of

L-selectin during leukocyte trafficking [20] is blocked by

Calmodulin (CaM), via its binding to the 17-residue L-selectin

intracellular domain (ICD), while CaM inhibitors trigger shedding

of the L-selectin ectodomain [21]. Surprisingly, while ADAM

family members harbour potential protein docking motifs [4],

cytoplasmic-truncated ADAM17 is fully functional [22], and

signalling mechanisms regulating ADAM activity have remained

elusive.

To elaborate the intracellular regulation of ADAMs by RTK

signalling we investigated ADAM10 catalysed ephrin-A5 cleavage

that is mediated by EphA3-expressing cells, as previous studies

demonstrated that this sheddase activity depends on ephrins

binding and activating the EphA3 RTK [8,9]. Our results suggest

that a conformational change in the EphA3 ICD, which upon

activation moves the kinase domain away from the plasma

membrane, relieves a steric hindrance preventing productive

association with ADAM10. We demonstrate that this loss of steric

hindrance, resulting from extension of the active Eph ICD, rather

than classical signalling via intermediate proteins, regulates the

sheddase activity of ADAM10.

Results

Intracellular Regulation of ADAM10-Mediated Ephrin
Cleavage

Eph activation, phosphorylation, and signalling relies on the

assembly of multimeric Eph/ephrin complexes [11,12]. For in vitro

experiments, recombinant proteins comprising two ephrin extra-

cellular domains fused onto the Fc portion of human IgG (ephrin-

Fc) can be clustered with anti-Fc antibodies to elicit Eph activation

[23,24,25]. We tested the cleavage of clustered or non-clustered

ephrin-A5-Fc by cell surface ADAM10 in cultures of HEK293T

(transformed human embryonic kidney cells) cells expressing either

wild type (Wt) EphA3 or mutant, kinase-inactive EphA3[K653M].

Immunoblot analysis confirmed that the release of ephrin-A5 from

the Fc complexes was dependent on pre-clustering and indeed was

greatly reduced in cultures of cells expressing the kinase-inactive

EphA3 mutant (Figure 1A, Figure S1A).

Surprisingly, however, co-immunoprecipitation analysis re-

vealed robust binding of ADAM10 to an EphA3 mutant lacking

the whole ICD (EphA3[DICD], Figure S1B). This implies that the

ADAM10/EphA3 association, which is necessary for ephrin

cleavage and involves constitutive as well as ephrin-augmented

interactions of their extracellular domains [8,9], does not require

the contribution of the EphA3 ICD. We therefore assessed if

cytoplasmic-truncated ADAM10[DICD] or EphA3[DICD] could

catalyse cleavage of Alexa-labelled ephrin-A5-Fc that had been

conjugated to Protein-A-coated Dynabeads, an experimental

approach previously used to characterise ephrin shedding by

ADAM10 [9]. In agreement with earlier studies [8], over-

expression of non-functional ADAM10 lacking the MP domain

(ADAM10DMP) acts as a dominant negative protein to effectively

prevent ephrin shedding (Figure 1B). By contrast, over-expression

of cytoplasmic-truncated ADAM10

[DICD] did not notably affect ephrin-A5 cleavage and internal-

isation (Figure 1B), indicating that the ADAM ICD may not be

required for its sheddase activity [22].

Likewise, cells over-expressing EphA3[DICD] efficiently sup-

ported ephrin-A5 shedding from Dynabeads, as evident from the

marked cell surface labelling with fluorescent ephrin that had been

released from the beads (Figure 1C). The lack of efficient

internalisation of the cleaved ephrin-A5 into cells in this case

suggested that the EphA3 ICD is required for internalisation of the

ligand/receptor complex, but is not essential for ligand cleavage.

Cell surface labelling was efficiently blocked by ADAM metallo-

protease inhibitors (Figure S2), consistent with ADAM-dependent

shedding of ephrin-A5 [9].

Author Summary

The Eph transmembrane receptors are part of the receptor
tyrosine kinase family and play important roles in
communication between neighbouring cells. An Eph
receptor binds to its ligand, membrane-tethered ephrin,
on a neighbouring cell so as to form a stable complex and
activate downstream signalling events. One such event is
regulation of ADAM10, a transmembrane protease of the
ADAM metalloprotease family, which provides a feedback
mechanism to Eph signalling. ADAM10 is located on Eph-
expressing cells and cleaves ephrin from its membrane
tether on the opposite cell (through its so-called sheddase
activity), thereby separating the cell-cell connection and
allowing the signalling complex to internalise. In other
biological contexts, activity of the ADAM metalloprotease
family underlies signalling mechanisms such as oncogenic
EGF-receptor transactivation, adhesion molecule shedding
and cytokine/chemokine release. In general, ADAM func-
tion is enhanced when receptor tyrosine signalling is active
and repressed when tyrosine kinase signalling is inhibited.
However, the mechanism through which receptor tyrosine
kinase signalling regulates ADAM10, have remained
elusive. By combining fluorescence lifetime imaging
microscopy (FLIM) and electron microscopic tomography
of EphA3, we have demonstrated in live cells at molecular
resolution that tyrosine phosphorylation of activated
EphA3 triggers a measurable movement of the kinase
domain away from the plasma membrane. Only this
conformation of the EphA3 kinase domain away from
the plasma membrane permits ADAM10 to come close
enough to EphA3 so that it can reach its tightly EphA3-
bound substrate, ephrin-A5. Our findings delineate a new
regulatory concept in cell-cell communication, whereby
control over proteolytic sheddase activity is provided by
an activation-induced switch in the conformation of the
cytoplasmic domain of a receptor tyrosine kinase, rather
than by a cytosolic signalling pathway.

Eph-Controlled Ephrin Shedding
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Figure 1. Ephrin shedding is inhibited by lack of kinase activity but not by cytoplasmic truncation of EphA3 or ADAM10. (A) EphA3
kinase activity is required for effective ephrin cleavage. HEK293T cells expressing EphA3 Wt or EphA3[KM] (with a mutated ATP-binding site, K653RM)
were treated with clustered (C) or non-clustered (NC) ephrin-A5-Fc. Cleaved ephrin-A5 was extracted by EphA3-Fc pulldown and recovered ephrin-A5
and total cell extracts were immunoblotted as indicated. Low level ephrin-A5 shedding observed with ephrin-A5-Fc -treated EphA3[KM] cells is likely
due to endogenous EphA3 present in parental HEK293T cells [45]. (B) Truncation of the ADAM10 ICD (DICD) does not affect ephrin-A5 cleavage and
internalisation. Cells expressing endogenous ADAM10 and EphA3-GFP were transfected with HA-ADAM10[DMP] (top), HA-ADAM10[DICD] (middle),

Eph-Controlled Ephrin Shedding
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Active EphA3 Conformation rather than Kinase Activity
Correlates with ADAM10-Mediated Ephrin Cleavage

To reconcile the observations that ephrin cleavage requires Eph

kinase activity but still occurs in the absence of the entire ICD, we

considered recent studies demonstrating an activation- and

phosphorylation-dependent release of the Eph juxtamembrane

(JM) segment from an inhibitory interaction with the kinase

domain [26]. The existence of this structural switch, which

converts a static/constrained conformation of the JM domain into

a dynamic/relaxed one [26,27], was recently confirmed also for

EphA3 [28].

We hypothesized that the inactive/constrained JM segment

positions the kinase domain close to the membrane, a configura-

tion that imparts a steric obstruction to the productive ADAM10/

EphA3 interaction and thereby controls ephrin shedding. To test

this hypothesis we examined whether forced approximation of the

EphA3 kinase domain to the plasma membrane affects ADAM10

association and function. For these experiments we designed a

series of EphA3 mutants (Figure 2A) including: i) ‘‘EphA3[DJX]’’

short (‘‘S’’), lacking JM residues 591–614 and replicating the

previously-reported EphB2[D599–621] [26]; ii) ‘‘EphA3[DJX]’’

long (‘‘L’’) lacking all JM residues 567–614; iii) ‘‘EphA3[2YE]’’

or control vector (bottom) and exposed to Alexa594ephrin-A5-Fc coated beads. EphA3-GFP, internalised ephrin-A5, and HA-ADAM staining (Alexa647)
were imaged by confocal microscopy. The relative ephrin-A5 labelling of receptor-expressing cells (mean+/2SEM), with or without ADAM10[DICD] or
ADAM10[DMP] co-expression, is shown. (C) Cleavage of ephrin-A5 from conjugated beads in the presence of EphA3[Dcyto]-expressing cells. HEK293T
cells expressing Wt EphA3-GFP or EphA3[Dcyto] as indicated were incubated with Alexa594ephrin-A5-Fc-conjugated beads before staining with
Alexa647anti-EphA3 antibody. Confocal microscope images show representative cells stained with cleaved ephrin-A5. Pseudocolours in the merged
images illustrate: green, EphA3-GFP; red, Alexa594ephrin-A5; blue, Alexa647anti-EphA3 antibody. The graph shows the relative ephrin-labelling of cells
(mean+/2SEM), with cells containing internalised ephrin shown in dark grey and cell-surface ephrin in light gray.
doi:10.1371/journal.pbio.1000215.g001

Figure 2. Mutation of the JM domain affects EphA3 phosphorylation and ADAM10 association. (A) Schematic structure of Wt EphA3-GFP
and derived ICD mutants (see text for details) that were used in these studies. Y, tyrosine; P, phospho-tyrosine; E, glutamate (pseudophosphorylation) ; X,
inactive kinase. (B) Tyrosine phosphorylation of Wt and mutant EphA3. EphA3 immunoprecipitates from lysates of ephrin-A5-Fc-stimulated cells were
immunoblotted with anti-phosphotyrosine and anti-EphA3 antibodies as indicated. (C) ADAM10 association with Wt and mutant EphA3. ADAM10
immunoprecipitates and total cell lysates from Wt or mutant (as indicated) EphA3-transfected cells (ephrin-A5-treated) were analysed for EphA3 and
ADAM10 by immunoblot (see Figure S4B). The average ratio (+/2SD) of EphA3 in precipitates relative to lysates (n = 2 experiments) is plotted, with
EphA3[2YE] as internal reference.
doi:10.1371/journal.pbio.1000215.g002

Eph-Controlled Ephrin Shedding
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where YRE substitutions of JM tyrosines generate an unfolded JM

domain [26]; and iv) EphA3[2YE-KM], a kinase-inactive form of

EphA3[2YE]. All mutants were expressed at the cell surface and

functional in ephrin-A5 binding (Figure S3). Loss of the JM

tyrosines Y596 and Y602 in the truncated (EphA3[DJXS]) or

YRE substituted (EphA3[2YE]) JM domain reduced ephrin-A5

induced phosphorylation (Figure 2B) without loss of EphA3 kinase

activity (Figure S4A). By contrast, only marginal phosphorylation

of EphA3[DJXL] (Figure 2B) suggests that the very close proximity

of the kinase domain to the inner membrane leaflet impedes the

substrate interaction for this mutant.

Importantly, all EphA3 mutants retained the capacity to

associate and co-immunoprecipitate with ADAM10 (Figure 2C,

Figure S4B), in agreement with our previous finding that ADAM

interacts with EphA3 via specific regions in their extracellular

protein domains [9]. However, compared to Wt EphA3 or

EphA3-[2YE], binding of the [DJXS] and [DJXL] mutants to

ADAM10 was notably reduced, supporting our hypothesis that

approximation of the EphA3 kinase domain to the plasma

membrane imparts steric obstruction to ADAM10 binding that

is relieved during JM domain unfolding. Also, binding to

ADAM10 of ‘‘kinase-dead’’ [2YE-KM] was reduced compared

to EphA3-[2YE] (Figure 2C), suggesting either that Eph kinase

activity may play a role in facilitating the ADAM10 interaction or

that JM domain unfolding of the [2YE-KM] mutant is incomplete,

as implied from the crystal structure [27].

To test our hypothesis of a conformational switch in the EphA3

JM domain that controls ADAM10 access and ephrin shedding,

we compared the ability of Wt and mutant EphA3 receptors to

support ADAM-catalysed shedding from ephrin-A5-coated beads

and internalisation into EphA3-expressing cells. Confocal micros-

copy confirmed that indeed both EphA3 JM-truncations signifi-

cantly affected the capacity to promote ephrin-A5 shedding,

whereas the [2YE] mutant behaved comparable to Wt EphA3

(Figure 3A, 3B). Interestingly, kinase-compromised EphA3[2YE-

KM] with an unfolded JM domain behaved similar to cytoplas-

mic-truncated EphA3[DICD] (Figure 1C): cell surface ephrin-

staining away from the beads revealed ability of this mutant to

support ephrin shedding but failure to internalise the shed ligand

(Figures 3A, 3B and S5A), also evident when soluble, pre-clustered

Alexa594ephrin-A5-Fc was used as substrate (Figure S5B). Since

EphA3[2YE] bearing an intact kinase but lacking JM tyrosines is

internalised normally, this argues for EphA3 endocytosis requiring

tyrosine kinase activity and/or phosphorylation, likely of the

remaining critical phosphorylation site within the Eph kinase

activation-loop [13]. We confirmed the ability to support ephrin-

shedding using immunoprecipitation analysis, revealing similar

levels of cleaved ephrin-A5 in cultures of EphA3[2YE] and

EphA3[2YE-KM] cells (Figure 3C).

These experiments indicate that it is the proximity of the EphA3

kinase domain to the plasma membrane rather than its kinase

activity per se that determines if shedding by ADAM10 is inhibited

or promoted. For further evidence, and to clarify if there is any

contribution from signalling intermediates that may communicate

between the Eph and ADAM cytoplasmic domains, as implied from

previous studies [4,5], we compared ephrin-A5 shedding by cells

co-expressing EphA3 mutants together with either Wt ADAM10 or

with cytoplasmic-truncated ADAM10[DICD] (Figures 3D and

S6B). ADAM10[DICD] would be expected to overcome the steric

hindrance exerted by EphA3 JM mutants, compared to full length

ADAM10. To avoid the potential ambiguity caused by the presence

of endogenous, Wt ADAM10/EphA3 complexes, we performed

these experiments in mouse embryonic fibroblasts (MEFs) from

ADAM10 KO mice [2] lacking any detectable ADAM10

expression (Figure S6A). Similar to our findings in HEK293T cells,

ephrin-A5 shedding in these MEFs was apparent upon co-

expression of either Wt or [DICD] ADAM10 together with Wt

EphA3, and was greatly reduced when either of the EphA3 JM

mutants EphA3[DJXL] or EphA3[DJXS] were expressed with Wt

ADAM10. Importantly, co-expression of cytoplasmic-truncated

ADAM10[DICD] together with EphA3[DJXL] or EphA3[DJXS]

‘‘rescued’’ the inhibitory effect of the JM positioning of the Eph

kinase domain and resulted in shedding comparable to that seen

with the Wt ADAM and Eph proteins (Figures 3D and S6B).

Together, these experiments demonstrate that ephrin-A5

shedding by ADAM10 is controlled by steric hindrance exerted

by the membrane-proximal EphA3 kinase domain, which prevents

the functional interaction with ADAM10 that is needed for

efficient substrate (ephrin) cleavage to occur.

Steric Hindrance as a Conserved Mechanism of ADAM
Regulation

In addition to controlling RTK function, ADAMs are key

modulators of cell–matrix interactions [29], and ADAM17-

catalysed exodomain shedding regulates the function of the

leukocyte adhesion protein L-selectin [20]. Of note, L-selectin

shedding is blocked by CaM binding to the L-selectin cytoplasmic

domain and is promoted by CaM inhibitors [21], indicating a

similar regulation by steric hindrance. Intriguingly, these inhibitors

also trigger metalloprotease-dependent EGFR signalling [30],

further suggesting that steric hindrance, in this case imparted by

CaM binding within the EGFR JM region [31], may promote

ADAM-catalysed ligand release.

To test the hypothesis that a bulky protein domain at the JM

position would impair a productive ADAM/EphA3 alignment, the

EphA3 cytoplasmic domain was replaced with that of L-selectin.

We surmised that CaM-loaded EphA3/L-selectin could not

effectively promote ephrin cleavage, while conversely inhibition

of CaM binding to this chimeric receptor using CaM inhibitors

should favour ADAM10 association and ephrin-A5 cleavage.

Control experiments confirmed inhibition of CaM binding (Figure

S7A) and increased ADAM10 association (Figure S7B). Indeed,

shedding from ephrin-A5-Fc coated beads was markedly higher

in inhibitor-treated than in untreated cells expressing EphA3/

L-selectin (Figure 4A, 4B). Furthermore, immunoblotting of

cleaved ephrinA5-Fc from cultures of EphA3/L-selectin cells

(Figure 4C) confirmed shedding in CaM-inhibitor-treated cells but

not in control cells, at levels that are comparable to those observed

in EphA3[2YE-KM] cell cultures (Figure 4C). Likewise, engineer-

ing of inactivating mutations into the CaM-binding domain [21]

(EphLsel EE) notably increased the capacity of these cells to

support ephrin shedding as compared to Wt EphA3-L-selectin

cells (Figure S7C). Of note, in these experiments ephrin-A5

labelled the cell membrane but was not internalised into cells with

EphA3/L-selectin, confirming the need for the intact EphA3

cytoplasmic domain for endocytosis. We confirmed CaM

inhibitor-induced shedding also of cell bound ephrin-A5, using

co-cultures of green-fluorescent protein (GFP)-ephrin-A5-express-

ing and EphA3/L-selectin-expressing cells (Figure S8A). In

agreement with these imaging experiments, immunoblotting of

cleaved GFP-ephrin-A5 recovered from GFP-ephrin-A5-express-

ing cells that had been co-cultured with EphA3/L-selectin-cells

revealed CaM inhibitor-induced shedding, which is absent in

inhibitor-treated control cells (Figure S8B). Thus, CaM binding to

the EphA3/L-selectin protein effectively regulates shedding of

ephrin-A5, further demonstrating that ADAM10 activity is

controlled by steric constraints in the JM region of a (chimeric)

Eph-Controlled Ephrin Shedding
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Figure 3. EphA3 JM and kinase domain mutations affect ephrin-A5 shedding and internalisation, respectively. (A) Ephrin
internalisation by cells expressing Wt EphA3 and EphA3 mutants illustrated in Figure 2A. Wt or mutant EphA3-GFP transfected cells (green) were
treated with Alexa594ephrin-A5-coated beads (red) and imaged by confocal microscopy. Individual and merged images are illustrated. Yellow arrow
heads denote areas of sustained interactions between cell surface EphA3 and ephrin-A5 beads. White arrows indicate areas of distinct binding of
cleaved ephrin and lack of internalisation in EphA3[2YE-KM] cells. (B) The quantitated relative ephrin-A5-labelling of receptor-expressing cells is
represented, with internalised ephrin fluorescence shown in grey and cell surface ephrin-A5 in unfilled bars. Mean values (n = 3 experiments, 30–100
cells each) are shown, with error bars indicating 95% confidence intervals determined by the ANOVA test for multiple comparisons. (C) Ephrin
cleavage by EphA3[2YE] is kinase independent. Ephrin-A5 shed from coated beads by cells expressing Wt or mutant EphA3-GFP, as indicated, was
recovered by pulldown with EphA3-Fc and immunoblotted with anti-ephrin-A5 (top) antibodies as in Figure 1A. The EphA3 level in cell lysates is also
shown (bottom). (D) Removal of the ADAM10 ICD reconstitutes ephrin shedding in cells expressing EphA3 JX mutants. ADAM102/2 MEFs
transfected with combinations of GFP-tagged EphA3 (Wt, DJXS or DJXL) and HA-tagged ADAM10 (Wt, DMP or DICD) were assayed for ephrin-A5
cleavage as in (A). The graph shows the mean ephrin staining of cells co-expressing the indicated constructs, with error bars indicating 95%
confidence intervals determined by ANOVA analysis.
doi:10.1371/journal.pbio.1000215.g003

Eph-Controlled Ephrin Shedding
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Figure 4. CaM-binding to chimeric EphA3/L-selectin regulates ephrin cleavage. (A) Confocal analysis of ephrin release: EphA3/L-selectin
transfected HEK293T cells were pre-treated with CaM inhibitors trifluoperazine dimaleate (TFP, 15 mM), Calm (2 mM), W7 (N-6-Aminohexyl0-5-chloro-
1-naphthalenesulfonamide, 50 or 100 mM), or vehicle control before incubation with Alexa488ephrin-A5-Fc beads. Cell surface EphA3/L-selectin
(Alexa647 a-EphA3 antibody, red) and Alexa488ephrin-A5 (green) were imaged in fixed cells by confocal microscopy. Insets show cells treated with
100 mM W7. (B) The ratio of ephrin-A5-associated and EphA3/L-selectin associated fluorescence was estimated from images of control or inhibitor-
treated cell cultures taken under identical conditions. Mean values are illustrated (n.4), with error bars indicating 95% confidence intervals

Eph-Controlled Ephrin Shedding
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EphA3 mutant that is devoid of tyrosine kinase– and kinase-

dependent signalling activity.

Activation of EphA3 Is Accompanied by Extension of the
ICD

To this point our analysis strongly argues for the notion that the

‘‘relaxed’’ and ‘‘constrained’’ conformations of active and inactive

EphA3, respectively, would direct functional or dysfunctional

alignment of ADAM10 with EphA3. To examine in intact cells, if

indeed activation uncoils the EphA3-kinase domain away from the

plasma membrane, we developed a Förster resonance energy

transfer (FRET) imaging approach [32] that is sensitive to the

distance between the EphA3-COOH (C)-terminus and the plasma

membrane. Here, we used fluorescence lifetime imaging micros-

copy (FLIM) to monitor FRET between EphA3-GFP and the

inner membrane leaflet of Cos7 cells labelled with membrane-

targeted tkRasRFP (red-fluorescent protein) (Figure 5A) [33].

Confocal FLIM analysis of live cells activated with clustered

ephrin-A5-Fc revealed that fluorescence lifetimes (t) of cell-

surface EphA3-GFP increased (showing reduced FRET)

10–20 min after stimulation (Figure 5B, 5C and Figure S9A,

S9B), indicating a drop of the cytoplasmic domain from a

membrane-proximal to a membrane-distal conformation. The

receptor population with increased fluorescence lifetimes (acti-

vated EphA3) returned to pre-stimulation levels at 40 min, likely

reflecting de-phosphorylation of activated EphA3. However,

energy transfer from GFP (donor) to tkRasRFP (acceptor) will

not only depend on their distance but also on the local acceptor

density that may vary as a function of time and space in a FLIM

time-lapse series. To account for this, the FRET rate (kT) per

acceptor density (kT/acceptor) that does not depend on the

concentration of acceptors in the plasma membrane [34] needs to

be determined. We estimated this parameter from the slopes of a

linear fit to the fluorescence rates (t21)–acceptor intensity (Iaccep)

2D-histograms of the confocal images at selected time points

(Figure 5C). Ephrin-A5 stimulation of EphA3 resulted in a

significant decrease in kT/acceptor values (Figure 5C), indicating

an increased GFP-RFP distance. The maximal decrease in the

kT/acceptor ratio was observed after 20 min stimulation and was

followed by partial recovery of the FRET efficiency to that seen

with inactive EphA3. By comparison, a confocal FLIM time series

of ephrin-A5 stimulated cells expressing constitutively active

EphA3[2YE]-GFP or inactive EphA3[3YF]-GFP, containing

Phe-replacements of all critical tyrosine residues (Figure 5D, 5E)

[16,27] yielded no significant change in the kT/acceptor slopes,

indicating that in this case stimulation does not notably change

the distance between GFP and RFP (Figure 5D, 5E). The lower

kT/acceptor value for EphA3[2YE]-GFP and the higher value for

EphA3[3YF]-GFP as compared to non-stimulated EphA3[wt]-

GFP are consistent with constitutively extended and constitutively

constrained conformations, respectively, of these receptor

mutants.

We note that single cell FLIM analysis of the Wt EphA3

conformation during stimulation exhibits considerable variance,

reflecting different mixtures of active and inactive receptor

populations at each spatially resolvable volume element in the

image. We therefore compared the constitutive conformations of

kinase active EphA3[2YE]-GFP with that of inactive EphA3[3YF]-

GFP. We computed cumulative 2D-histograms of fluorescence rates

versus acceptor intensities for the [2YE]-, [3YF]-, and [2YE-KM]-

mutants using fluorescence lifetime/acceptor intensity images of

cells for each of the mutant receptors (Figure 5F) obtained with

wide-field frequency-domain FLIM (Figure S9C [35]). The energy

transfer rate, kT/acceptor, was calculated from the slope of a linear

fit to the fluorescence rate—acceptor intensity 2D-histograms in

which the intercept was set to the measured fluorescence rate of the

donor (GFP) in the absence of acceptor. The EphA3[2YE]-GFP

mutant exhibited significantly (p = 7610214) lower FRET efficien-

cies (as apparent from kT/acceptor, right panel, Figure 5F) than the

inactive EphA3[3YF]-GFP mutant, indicating its extension from

the plasma membrane and confirming the conformational change

of the Wt EphA3 ICD observed upon stimulation of live cells. The

FRET efficiency of EphA3[2YE-KM]-GFP was in between these

extremes, suggesting that kinase-dead Eph with a flexible JM

domain adopts an intermediate position between a fully extended

and constrained cytoplasmic domain, as previously suggested [27].

The FRET rate (kT) is proportional to the fourth power of the

distance between the donor chromophore and acceptor plane [34].

From the fourth power root of the ratio of kT/acceptor of

EphA3[3YF]-GFP and EphA3[2YE]-GFP (Figure 5F), we can thus

estimate that the C-terminus of relaxed ([2YE]) EphA3-GFP is

1.3660.06 times further away from the plasma membrane than that

of constrained ([3YF]) EphA3-GFP.

Electron Tomography of Quantum Dot (Qdot) Labelled
EphA3 Confirms Increased Span of the Active EphA3 ICD

To examine at increased resolution the change in the span

between the plasma membrane and the carboxy-terminus of the

latent and activated receptor, we used electron microscopy (EM) to

image the EphA3 C-terminus that had been labelled with

streptavidin-conjugated Qdots (SA-Qdots [36]). We achieved the

site-specific targeting with SA-Qdots by engineering onto the

EphA3 C-terminus a biotin acceptor peptide (AP), which can be

specifically biotinylated using the E. coli biotin ligase (BirA) [37].

We validated the feasibility of the approach by binding SA-

Qdots to an NH2-terminal AP-tagged and biotinylated EphA3

(APN-EphA3). Confocal microscopy revealed that SA-Qdot

staining of APN-EphA3 cells correlated with anti-EphA3 staining

and shifted to a cytoplasmic compartment upon ephrin-stimula-

tion (Figure 6A), suggesting intact endocytosis of Eph-signaling

clusters [13]. EM of these cells revealed Qdots at the outer cell

surface at discernible distances from the plasma membrane

(Figure 6B). Considering that a reasonably broad range of

estimates (17–29 nm) likely reflects flexibility of the AP-tag linker

region, this provides an apparent distance between Qdots and

plasma membrane of ,24 nm (Figure 6C).

In order to image the span of the EphA3 cytoplasmic domain

we analysed cells co-expressing a cytoplasmic form of BirA

together with EphA3, AP-tagged at the C-terminus (APC-EphA3).

Microinjection of SA-Qdots into APC-EphA3-expressing cells and

sectioning of non-permeabilised cells allowed EM of EphA3-

bound Qdots at the intact plasma membrane (Figure 6D). We used

electron tomography with alignment, reconstruction, and segmen-

tation of 3D images (Figure 6E) to estimate Qdot/membrane

determined by the ANOVA test for multiple comparisons. (C) Biochemical analysis of ephrin release: EphA3/L-selectin transfected HEK293T cells were
pre-treated with CaM inhibitors (as in (A), using 50 mM W7) or vehicle control and incubated with ephrin-A5-Fc coated beads. In parallel, EphA3[2YE-
KM]-expressing cells were incubated with ephrin-A5-Fc coated beads only. Ephrin-A5 recovered by EphA3-Fc pulldown was immunoblotted with a-
ephrin-A5 antibodies. Total lysates were probed for EphA3/L-selectin (Eph-Sel) expression with a-EphA3 antibodies (bottom). * indicates non-relevant
proteins recognised by a-EphA3 antibodies in total lysates.
doi:10.1371/journal.pbio.1000215.g004
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Figure 5. FLIM analysis shows EphA3 activation accompanies extension of the cytoplasmic domain. (A) Schematic of the FRET-assay;
FRET (yellow arrow) reflects the proximity between the GFP on the EphA3 C-terminus and tkRasRFP on the inner plasma membrane (Kin, kinase
domain). (B) Confocal FLIM time-series of EphA3-GFP in tkRasRFP co-transfected COS7 cells at indicated times (min) after ephrin-A5 stimulation. Upper
row: EphA3-GFP fluorescence intensity images. Middle row: tkRasRFP fluorescence intensity images. Lower row: fluorescence lifetime images of EphA3-
GFP; the colour bar inset indicates the fluorescence lifetime range in ns. (C) Upper panel: 2D-histograms of fluorescence rate t21 versus tkRasRFP
acceptor intensities for 0 min (red) and 20 min (blue) of the EphA3-GFP confocal FLIM series. Linear fitting of the time series 2D-histograms are
indicated by solid lines. Lower panel: acceptor normalized energy transfer rate, kT/acceptor, for selected time points after EphA3 stimulation as
derived from the slope of the fits to the 2D-histograms. (D) Upper panel: 2D-histograms of t21 tkRasRFP acceptor intensities for 0 min (red) and 20 min
(blue) of a 2YE-EphA3-GFP confocal FLIM time series after ephrin-A5 stimulation (see also Figure S6F). Lower panel: acceptor normalized energy
transfer rate, kT/acceptor, of the time series as in (C). (E) Upper panel: 2D-histograms of t21 tkRasRFP acceptor intensities for 0 min (red) and 20 min
(blue) of a 3YF-EphA3-GFP confocal FLIM time series after ephrin-A5 stimulation. Lower panel: acceptor normalized energy transfer rate, kT/acceptor,
of the time series as in (C). (F) Left panel: 2D-histograms of fluorescence rate, t21, versus acceptor intensities for EphA3 [2YE], [3YF], and [2YE-KM]
obtained from at least 16 fluorescence lifetime/acceptor intensity images obtained with wide-field frequency-domain FLIM. Right panel: linear fitting
of these data showed a significant difference between the slopes (kT/acceptor) for EphA3-GFP-[2YE] and EphA3-GFP-[3YF].
doi:10.1371/journal.pbio.1000215.g005
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Figure 6. EM of Qdot labelled EphA3 reveals the molecular span to the plasma membrane. (A) Confocal microscopic images of APN

EphA3/HEK293T cells, biotinylated with recombinant biotin ligase (BirA) and labelled with SA-Qdots605. Cells were left non-stimulated (top and
middle panel) or ephrin stimulated (bottom panel). To show the specificity of binding of the SA-Qdots to EphA3, samples were co-stained with an
EphA3-specific monoclonal antibody. Qdot staining is shown in red in the merged images. (B) EM image of biotinylated APN EphA3/HEK293T cells
labelled with SA-Qdots605. Arrowheads mark EphA3-tethered Qdots on the outer cell membrane; insert: enlarged section of the (red) boxed area. (C)
Histogram depicting distances between Qdots bound to the NH2terminus of EphA3 and the plasma membrane. Distances were measured from EM
images of biotinylated APN EphA3/HEK293T cells that were incubated with SA-Qdots605 as shown in (B). (D) SA-Qdot605 micro-injected cells
expressing APC-EphA3[2YE] and [3YF] as indicated. Each image represents a 10 nm thick computational slice after 3D reconstruction from EM
tomography. Arrow heads indicate Qdots. (E) 3D reconstruction of an entire tilt series of images of a cell expressing APC-EphA3[3YF] (plasma
membrane, blue; Qdots, yellow; and marked by red arrowheads). A corresponding movie is included as supporting information (Video S1). (F)
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distances. For APC-EphA3[3YF] cells (Figure 6D, right panel),

these ranged from 8–18 nm, with an average span from the

membrane of approximately 12 nm (12.32+/23.1 nm, Figure 6F).

Expression of Wt EphA3 or of EphA3[2YE] rapidly leads to

perturbation of the plasma membrane due to EphA3 activation

and endocytosis (Figure S10) and prevented assignment of Qdot/

membrane distances with and without ephrin stimulation. To

allow comparison of data from EM tomography with our FRET

analysis, we therefore analysed APC-EphA3[2YE], representing

EphA3 with relaxed JM regions, while co-expressing the clathrin-

assembly protein AP180 to block endocytosis [38] of activated

receptors in these cells (Figure 6D, left panel). The distribution of

Qdot positions in these cells was clearly different to APC-

EphA3[3YF] cells, suggesting for activated EphA3[2YE] an

average span of approximately 19 nm (19.37+/23.8 nm,

Figure 6F), approximately 1.660.5 times wider than that of

inactive [3YF]EphA3. This relative distance increase is consistent

with that determined by FLIM (above) and confirms a notable

extension of the activated receptor away from the plasma

membrane.

Discussion

Intracellular regulation of ADAM sheddases is known to control

the release of transmembrane growth factor precursors and the

activation of corresponding growth factor receptors. It was

identified as a cause for EGF receptor transactivation almost a

decade ago [17,19]. However, the mechanism linking kinase and

sheddase activities has remained elusive since its inception. We have

now elucidated a previously unrecognized conformational switch

that is embedded in the cytoplasmic domains of Eph receptors and

ADAMs and controls ADAM-function and Eph signalling.

Furthermore, marking the EphA3 C-terminus with fluorescent

(GFP) and electron-dense (Qdots) tags allowed for the first time to

demonstrate in live cells at molecular resolution that receptor

activation and tyrosine phosphorylation triggers a measurable shift

of the kinase domain away from the plasma membrane. The

increased span of activated EphA3 that we estimated by FLIM and

EM tomography is consistent with partial extension of the 64-

residue (G569 – N633) receptor JM domain with a maximal

theoretical (b-sheet) span of ,20 nm. While it would seem

formally possible that extension of the activated EphA3 ICD

reflects an unfolding of the linker connecting the kinase with the

C-terminal SAM domain, recently elucidated crystal structures of

the EphA3 ICD argue against this possibility [28]: in the structures

of the active and of the inactive form, this C-terminal linker is

tethered to the base of the kinase, indicating that the C-terminal

part of the EphA3 cytoplasmic domain maintains a rigid, kinase-

associated configuration.

Together, our data suggest a model (Figure 7) where the

inactive, membrane-proximal receptor kinase domain obstructs

the productive alignment with ADAM10 that is necessary for

effective ephrin cleavage. This alignment of the ADAM and Eph

extracellular domains relies on a shift of the activated kinase

domain away from the membrane and on docking of the

ADAM10 substrate-recognition site to the high-affinity Eph/

ephrin complex [9]. Such a conformational switch provides rapid

and precise control of ADAM10-sheddase activity and challenges

the relevance of signalling intermediates that are thought to be

involved in the control of ADAM10 sheddase activity [4,5]:

N Our finding that cytoplasmic truncation of ADAM10 or of

EphA3 does not affect ephrin shedding confirms previous

studies revealing that phorbol ester-stimulated shedding by

ADAM17 is not effected by deletion of its cytoplasmic domain

[22].

N We further show that EphA3 JM mutations that permanently

raise the kinase domain close to the plasma membrane

significantly reduce ADAM10 association and ephrin shed-

ding, while mutations that cause constitutive extension

promote ephrin cleavage. This holds true irrespective of kinase

activity, as kinase-inactive but conformationally ‘‘relaxed’’

EphA3[2YE-KM] supports shedding, while EphA3[DJXS]

with an active but membrane-proximal kinase does not.

N Importantly, we demonstrate that inhibition of shedding by the

membrane-proximal Eph kinase domain occurs only with

intact ADAM10, but is effectively rescued with cytoplasmic-

truncated ADAM10 as sheddase: This indicates that it is

indeed the relief from a steric clash between the membrane-

proximal receptor domain and the ADAM10 cytoplasmic tail

that provides the molecular switch that allows productive

shedding to occur.

These findings have considerable implications for the under-

standing of Eph signalling: Currently it is established that contacts

between Eph and ephrin-expressing cells that fail to activate robust

Eph phosphorylation will lead to cell spreading and cell-cell

adhesion while cell-contact induced Eph activation and phospho-

tyrosine signalling result in cell rounding and cell segregation

[11,12,39]. Studies demonstrating the critical role of ADAM10-

catalysed ephrin shedding for cell repulsion revealed that

interaction with a cleavage-resistant ephrin mutant leads to

persisting Eph/ephrin contacts but does not prevent cell rounding

(axon collapse) [8], suggesting independent—but tightly synchro-

nised—processes during cell repulsion. They further imply that the

cell-biological consequence of an Eph/ephrin contact is deter-

mined only during assembly of the Eph/ephrin complex: Thus,

synchronisation of cell rounding and segregation requires a

molecular switch that rapidly relays the signalling competence of

the Eph kinase to the protease controlling ephrin shedding.

We now have elaborated the molecular mechanics of this relay in

which kinase-active and kinase-inactive Eph receptors adopt distinct

protein configurations that allow productive and unproductive

association with ADAM10, respectively. Previously, we demon-

strated that processed, catalytically active ADAM10 lacking the

inhibitory pro-domain [5] is associated with EphA3 also in the

absence of ephrin-A5 contact [9]. In the current context this implies

that ADAM10 is ‘‘on standby’’ to release Eph-bound ephrin from

interacting cells in the moment EphA3 becomes tyrosine-phos-

phorylated and adopts a conformation that allows ADAM10

alignment for optimal substrate access. Such a mechanism provides

for the synchronised Eph-triggered cell rounding and segregation

that is observed during cell-cell repulsion.

A host of stimuli that promote ADAM-mediated shedding,

including most prominently phorbol esters and calcium iono-

phores, have been described [5]. However, while interaction with

Histogram showing the cytoplasmic span of inactive versus active EphA3. Membrane-Qdot distances were measured in cells expressing biotinylated
APC-EphA3[3YF] (blue) or APC-EphA3[2YE] (red) that had been labelled with micro-injected SA-Qdots605. Qdot/plasma membrane distances are
plotted at 3 nm intervals (3YF, n = 30; 2YE, n = 37). Kolmogorov-Smirnov (KS) and t statistical tests suggested a highly significant (p,0.001) difference
between the two datasets.
doi:10.1371/journal.pbio.1000215.g006
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signalling proteins, in particular via SH3-binding motifs, have

been postulated, it has remained unclear if and how the different

agents could modulate ADAM activity [4]. The concept of

regulation via cytosolic intermediates has been challenged in

particular by the finding that PMA (phorbol-12-myristate-13-

acetate) efficiently activates an ADAM17 mutant lacking the ICD

[22]. Furthermore, CaM inhibitor and calcium-ionophore-

induced shedding of EGFR-ligands by ADAM10 is retained

partially by a mutant lacking the ICD [40]. Our findings now

reveal an entirely novel concept of RTK/ADAM regulation

whereby the conformation of the cytoplasmic domain directly

regulates ADAM activity rather than involving intermediate

signalling proteins and kinase activity per se.

It is tempting to speculate that steric hindrance represents a

conserved mechanism for receptor-regulated ADAM activity.

Regulated L-selectin shedding provides an important example of

Figure 7. Model for activation-mediated release of the membrane-proximal Eph kinase domain promoting productive ADAM10
alignment and ephrin shedding. The (helical) JM segment (red) of the unligated Eph receptor is tethered to the small (N-terminal) lobe of the
kinase [24], keeping the kinase domain (green) in an inactive, membrane-proximal conformation. Ephrin binding, Eph clustering (for simplicity only
one Eph/ephrin pair is illustrated instead of a cluster), activation, and auto-phosphorylation result in release of the tyrosine-phosphorylated JM
segment into a dynamic disordered protein fold [25] that allows extension of the kinase domain and the Eph C-terminus away from the membrane.
ADAM10, constitutively associated with the receptor, can then bind a new site formed by the Eph/ephrin complex via the ADAM10 substrate
recognition motif, which in turn mediates the correct orientation of the protease domain for ephrin cleavage [7]. The stoichiometry of the ADAM10/
Eph/ephrin complex remains to be elaborated. Importantly, this productive alignment of ADAM10 and Eph RTK relies on a RTK configuration where
its kinase domain—exerting steric hindrance for ADAM10 association—is removed from the plasma membrane.
doi:10.1371/journal.pbio.1000215.g007
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a very different receptor system that may be controlled by a

mechanism, where CaM binding to the L-selectin ICD [21] and its

ensuing conformational change seem to hinder the ability of

ADAM17 to shed L-selectin. Notably, upon protein binding to its

target site, CaM changes from an elongated to a globular structure

[41] with very similar dimensions (4–5 nm diameter) to the RTK

kinase domain. Our observation that CaM-binding to an EphA3/

L-selectin chimeric receptor can also regulate ADAM10 cleavage

of ephrins would seem to confirm steric hindrance as a mechanism

regulating Eph-associated ADAM activity and to suggest this as a

more widely conserved concept of ADAM regulation. For

example, steric hindrance could also explain the regulation of

ADAM activity by other RTKs such as the EGFR, which binds

CaM within the JM region [31] and controls ADAM-facilitated

ligand shedding in an activation dependent manner [5]. Indeed,

EGFR signalling can be triggered in a metalloprotease-dependent

manner by CaM inhibitors [30], preventing CaM access to a

binding site within the EGFR JM region [31].

Interestingly, our data suggest that ephrin cleavage and its receptor-

mediated internalisation may be controlled separately, since EphA3

with ‘‘relaxed’’ JM but inactive kinase domain effectively supports

ephrin cleavage but is not internalised. While details of Eph

endocytosis mechanisms remain to be elaborated, this finding is

consistent with signalling-dependent RTK endocytosis potentially

involving the ubiquitin ligase Cbl [42]. Importantly, effective

internalisation of the EphA3 2YE mutant suggests that the JM

tyrosines may not be essential for this endocytic signalling mechanism.

Lastly, we have developed a novel imaging strategy, which

bridges the gap between structural and cell-biological imaging, to

provide functional information for individual proteins in whole

cells at molecular resolution, and which could have applications in

a wide range of cell-biological systems. Our integrated FLIM- and

EM-based analyses reveal that Eph RTK activation triggers, in

addition to tyrosine phosphorylation, a measurable extension of

the ICD towards the cytosol. The previously unforeseen functional

consequences of this conformational change for downstream Eph

signalling and the regulation of ADAM10 activity are likely to

have important implications for the understanding of ADAM-

regulated biological processes in development and disease.

Material and Methods

Expression Constructs
Inactive EphA3 was made by substitution of residue K653 to M

in EphA3-GFP [13]. Insertion into bovine ADAM10-HA [9] of a

KpnI restriction site at C698 and removal of the ICD (retaining the

C-terminal HA tag) yielded ADAMDcyto. For EphA3-L-selectin, a

NheI restriction site at EphA3 G565 together with annealed L-

selectin ICD oligonucleotides (forward: 59CTAGGAGATTAAA-

AAAAGGCAAGAAATCCAAGAGAAGTATGAATGACCC-A-

TATTAA; reverse: 59CTAGTTAATATGGGTCATTCATACT-

TCTCTTGGATTTCTT-GCCTTTTTTTAATCTC) were in-

serted, with a terminal stop codon. For EphA3-APN the AP-tag

[37] was inserted after the EphA3 signal sequence (after Gly20), and

for EphA3-APC the AP-tag was inserted into a XmaI site engineered

into the EphA3 C-terminus (Val983).

Biochemical Analyses
Cleaved ephrin-A5 was extracted from pooled Protein-A

Sepharose-pre-cleared lysates and culture supernatants of cells

that had been treated with pre-clustered or non-clustered ephrin-

A5-Fc by using EphA3-Fc coupled to Protein-A-Sepharose. Pull-

downs were analysed by anti-ephrin-A5 immunoblot. Cleavage of

cell-surface ephrin-A5 was assayed in 1-h co-cultures of ephrin-

A5-expressing HEK293T cells and EphA3/L-selectin transfected

cells by extracting ephrin-A5 from cell lysates with EphA3-Fc

coated Protein-A Sepharose. Where indicated, cells were treated

prior to ephrin-A5-stimulation with CaM inhibitors trifluopera-

zine, calmidazolium (Calm), or W7, or metalloprotase inhibitors

TAPI1 or GM6001 (Calbiochem). For CaM-co-precipitation

EphA3/L-selectin and Wt EphA3 tagged with a biotin AP were

biotinylated with BirA [37] and recovered on SA dynabeads.

Other co-immunoprecipitation experiments were performed

as indicated with anti-ADAM10 mAb (R&D Systems), anti-

ADAM10 polyclonal Ab39177 (Abcam), with anti-EphA3 mAb

IIIA4 [9] pre-coupled to mini-leakTM agarose (Kem-En-Tec,

Copenhagen), and with anti-phosphotyrosine Sepharose (4G10,

Upstate Biotechnology). Transient expression of all EphA3

constructs was optimised by transfecting each at four cDNA

concentrations and selecting samples with similar expression levels

by Western blotting total lysates. Western blotting was performed

with antibodies against ephrin-A5 (R&D systems), EphA3 [43],

HA (3F10, Roche), ADAM10 (Biogenesis and Abcam Ab39177),

phosphotyrosine (4G10, Upstate Biotechnology), and CaM

(Upstate Biotechnology).

Confocal Microscopy
3-channel confocal microscopy was performed by sequential

scanning on Olympus FV1000 or Leica SP5 confocal microscopes.

Quantitation of internalised ephrin-A5-associated fluorescence

was achieved using ImageJ or Metamorph image analysis software

by selecting regions of cells to exclude bead-associated fluores-

cence. Microscopic evaluation of ephrin cleavage by EphA3/L-

selectin expressing cells, where ephrin-A5 was not internalised but

remained complexed at the plasma membrane, was done by

estimating the level of Alexa488-ephrin labelling relative to the

expression level of the Alexa647IIIA4 anti-EphA3 antibody-stained

receptor [15] on cell membranes (Figure 4B). Interactions between

cell-surface ephrin-A5 and EphA3/L-selectin were analysed using

ephrin-A5-GFP transfected cells [9].

FLIM
Time-domain confocal FLIM was performed in transiently

transfected Cos7 cells grown on coverslips or glass bottom dishes

(MatTek Corp.). FLIM images were obtained using an Olympus

Fluoview 1000 microscope, equipped with a Picoharp 300 photon

counting setup (Picoquant, Germany). GFP was excited with a

470 nm diode (Sepia II, Picoquant, Germany). Images of 5126512

pixels were acquired detecting approximately 108 photons. Images

of the donor fluorescence decays were processed using the

SymPhoTime software package (v4.2, Picoquant) and the calculated

average fluorescence lifetime (t) images are presented in pseudo-

colour. The average fluorescence lifetime t(xy) images were

calculated from the parameters (a1,a2,t1,t2) of a double exponential

fit of the fluorescence decay curves [F(x,y,t)] in each pixel:

F x,y,tð Þ~a1 x,yð Þ
{t

t1 x,yð Þza2 x,yð Þ

{t

t2 x,yð Þ ð1:1Þ

At pixel x, y the average fluorescence lifetime is:

t~ a1t1

a1za2
z a2t2

a1za2
ð1:2Þ

t21-acceptor intensity (Ia) 2D-histograms were computed from the

confocal FLIM images as described below for wide-field frequency-

domain FLIM except that a bin size of 100 counts was used for the

acceptor intensity.

Eph-Controlled Ephrin Shedding

PLoS Biology | www.plosbiology.org 13 October 2009 | Volume 7 | Issue 10 | e1000215



For wide-field frequency-domain FLIM (Figure S9) we used an

IX70 inverted microscope (Olympus, Japan) equipped with a 100/

1.4 NA oil immersion lens, a 476 nm argon laser and narrow-band

emission filter (HQ510/20; Chroma) for GFP, a 100-W mercury

arc lamp with high Q Cy3 filter set (excitation filter, HQ545/30;

dichroic, Q580LP; emission filter, HQ610/75) for RFP, and a

dichroic beamsplitter (Q495 LP; Chroma Technology, Brattle-

boro, VT) and narrow-band emission filter.

Raw FLIM data were processed in IPLab (Scanalytics, Fairfax, VA,

USA) to generate a binary mask for the intensity threshold operation

data and a mask for the ROI used in background correction of the raw

data. Using the raw FLIM data and mask, phase- and modulation

lifetime images were generated using scripts written in Python

programming language (http://www.python.org) with the Numarray

extension for numerical computing (http://www.stsci.edu/resources/

software_hardware/numarray) further augmented with low-level

routines written in C [44,45]. A cumulative 2D-histogram of

fluorescence lifetime (t) versus acceptor intensity (Ia) was generated

from the multiple fluorescence phase-lifetime images ($16 images)

and corresponding acceptor intensity images using a bin size of 320

intensity units (arbitrary units). The standard error in the fluorescence

lifetimes for each bin was calculated from the averages of all the

images. The donor to acceptor energy transfer rate kT normalized to

acceptor density (kT/acceptor) was obtained from the slope of a linear

fit to the t212Ia (acceptor intensity) 2D-histograms. The t212Ia 2D-

histograms were fitted to a linear equation:

1

t
Iað Þ~

kT

acceptor

� �
Iazkd ð1:3Þ

in which prior knowledge of the fluorescence lifetime in the absence of

acceptor (measured, td = 1.96 ns) was used to constrain the intercept,

kd, to 0.51. The slope kT/acceptor is proportional to

the energy transfer rate per acceptor yielding 1.9+/20.16 for

EphA3[3YF]-GFP, 0.56+/20.08 for EphA3[2YE]-GFP and 1.27+/

20.16 for EphA3[2YE-KM]-GFP. The relative distance increase

from GFP to the plasma membrane, comparing both conformations,

(R2YE/R3YF) can be calculated from:

R2YE

R3YF

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT

acceptor

� �
3YF

kT

acceptor

� �
2YE

4

vuuuuut ð1:4Þ

yielding a distance increase of GFP to the plasma membrane of

1.36+/20.06 for EphA3[2YE]-GFP relative to EphA3[3YF]-GFP.

EM
For EM we biotinylated AP-tagged EphA3 receptors in intact

cells using either exogenous or co-transfected biotin ligase (BirA)

[37], as indicated, before labelling with SA-Qdots605 (Invitrogen).

Labelled cells were washed in PBS, fixed in 2.5% Glutaraldehyde,

2% sucrose for 40 min, and prepared on ice for EM by ‘‘epon’’

embedding: cells were rinsed in CaCo buffer (30 min), post-fixed

in 2% osmium tetroxide (40 min), washed (water), and stained

with 0.5% uranyl acetate (30 min). Fixed, washed cells were

dehydrated in graded ethanol solutions, embedded in epon 812

(Serva), and hardened (48 h) at 60uC. Epoxy-embedded blocks

were cut into 50 or 250 nm sections (Leica Ultracut S microtome)

and mounted on Formvar coated grids. Grids were post-stained

with led-citrate (1 min) at room temperature, rinsed with water,

and air dried. APC-EphA3 expressing cells, stably co-expressing

APc-EphA3 together with a cytoplasmic form of BirA for efficient

biotinylation of the AP-tagged EphA3 C-terminus, were either

microinjected with Qdots prior to fixation (where indicated) or

were fixed in 4% PFA, 0.5% Glutaraldehyde, 2% sucrose

(30 min), permeabilised with 0.1% Triton 6100, and incubated

with SA-Qdots605 for 1 h. Washed samples were then fixed in

2.5% Glutaraldehyde, 2% sucrose, and prepared for EM as

described above. This approach partially solubilises the plasma

membrane and required computer-assisted assignment of the exact

plasma membrane/cytoplasm boundaries.

Electron Tomography
We collected at room temperature single-axis tilt series of

chemically fixed cells at 1–2u angular increment between 267u to

+67u using CM200 and Tecnai 30 microscopes (FEI, Eindhoven,

The Netherlands) and the Tietz tomography interface (Tietz,

Gauting, Germany) for data acquisition. Serial EM images were

recorded on 2 k62 k and 4 k64 k pixel CCD cameras at a

defocus level of 22 mm, with a pixel size at the specimen level of

0.7 nm. We aligned the projection images of the samples using

cross-correlation techniques. The merit figure of the aligned tilt-

series had a value of approximately 1 nm, indicating no

significant shrinkage of the sample. Reconstructions were

performed [46] using weighted back-projection algorithms and

visualized with isosurface and volume-rendering techniques in the

Amira software package (Mercury Computer Systems, San

Diego, CA, USA, www.amiravis.com). We de-noised three-

dimensional images with nonlinear anisotropic diffusion and

semi-automatically segmented those using erosion and dilation

operations after roughly segmenting regions of the reconstruc-

tions manually. Plasma membranes localisation in the electronic

images was semi-automated, with their boundaries determined

using dilation and erosion operations. Qdot detection was fully

automated according to their size and contrast using thresholding

techniques [46].

Supporting Information

Figure S1 Tyrosine phosphorylation and ADAM10 as-
sociation of EphA3 mutants. (A) Phosphorylation of Wt and

mutant EphA3 after incubation with clustered ephrinA5 Fc.

HEK293T cell clones stably expressing either Wt or kinase

inactive EphA3[K653M], or parental HEK293T cells, were

incubated with vehicle control (2), with non-clustered (NC) or

clustered (C) ephrinA5-Fc for 15 min prior to lysis. EphA3

immuno-precipitates were analysed by Western blot with anti-

phosphotyrosine (a-PY) and lysates with anti-EphA3 antibodies as

indicated. (B) The EphA3/ADAM10 association does not require

their ICDs. a-HA immunoprecipitates from cells expressing HA-

ADAM10, and/or Wt EphA3 or EphA3[DICD], were immuno-

blotted for EphA3 (top) or ADAM10 (bottom); total lysates were

probed for EphA3 (right). (U), unprocessed; (P), processed

ADAM10. Single exposures of blots are shown with non-relevant

lanes removed.

Found at: doi:10.1371/journal.pbio.1000215.s001 (0.64 MB TIF)

Figure S2 Inhibition of EphA3DICD-dependent ephrin
cleavage by metalloprotease inhibitors. Cells transiently

expressing EphA3[DICD] were incubated 1 h with the metallo-

protease inhibitor GM6001 (10 and 20 mM) or the ADAM-specific

inhibitor TAPI1 (50 mM) prior to incubation with Alexa594-

ephrin-A5-coated beads. After 40 min the cells were placed on ice,

stained with anti-EphA3 (IIIA4)-Alexa647, fixed and imaged by

confocal microscopy.

Found at: doi:10.1371/journal.pbio.1000215.s002 (4.45 MB

DOC)
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Figure S3 Cell surface expression and ephrin binding
capacity of EphA3 mutants. HEK293T cells were transfected

with Wt or mutant EphA3-GFP constructs as indicated and

analysed for cell surface EphA3 expression by labelling with

Alexa647-conjugated IIIA4 anti-EphA3 antibody specific for the

native EphA3 conformation [13] and with Alexa594-conjugated

ephrinA5-Fc (ephrinA5-Alexa594). Flow cytometric analysis shows

cell surface receptor expression (a-EphA3-Alexa647) relative to

overall expression level (GFP) and to the ability of cells to bind

ephrin-A5-Alexa594. The fraction of GFP-tagged EphA3 protein

on the cell surface was estimated as fraction of GFP-tagged

receptor recognised by the anti-EphA3 antibody: all EphA3 ICD

mutants are expressed at the plasma membrane and bind the

IIIA4 antibody and ephrin-A5 at levels similar to the Wt

receptor.

Found at: doi:10.1371/journal.pbio.1000215.s003 (0.96 MB TIF)

Figure S4 Phosphotyrosine profile and ADAM10 bind-
ing capacity of EphA3 JM mutants. (A) Phosphotyrosine

profile in cells transfected transiently to express Wt EphA3 and

JM mutants. HEK293T cells were transfected with expression

constructs for Wt EphA3-GFP or derived mutants, as indicated,

and cells treated with non-clustered or pre-clustered ephrin-A5 Fc

for 10 min. Anti-phosphotyrosine (PY) antibody (4G10) immuno-

precipitates from whole cell lysates were probed with anti-PY,

and total lysates with anti-EphA3 antibodies, as indicated.

Positions on the Western blot corresponding to molecular weights

of GFP-EphA3 and IgG (heavy and light chains) are indicated on

the left. Phosphorylated protein bands at the GFP-EphA3

position in the left panel are likely due to auto-phosphorylation

due to high transient over-expression of the EphA3 constructs in

these samples. (B) ADAM10 association with Wt and mutant

EphA3. ADAM10 immunoprecipitates and total cell lysates from

Wt or mutant (as indicated) EphA3-transfected cells (ephrin-A5-

treated) were analysed for EphA3 and ADAM10 by immunoblot.

Single exposures of blots are shown with non-relevant lanes

removed.

Found at: doi:10.1371/journal.pbio.1000215.s004 (1.02 MB TIF)

Figure S5 The extended (active) EphA3 ICD conforma-
tion is sufficient for ephrin cleavage, while internalisa-
tion requires an intact kinase. (A) Cells expressing Wt

EphA3-GFP, EphA3[2YE]-GFP, or kinase-inactive EphA3[2YE

KM]-GFP were incubated with Alexa594ephrinA5-coated beads or

(B) pre-clustered, soluble Alexa594ephrinA5. EphA3-GFP (green)

and Alexa594ephrin (red) fluorescence in fixed cells was imaged by

confocal microscopy. Individual micrographs from fluorescent

channels, the merged images, and phase-contrast images are

shown. Yellow arrow heads denote areas of sustained interactions

between cell surface EphA3 and ephrin-A5 beads. White arrows

mark cell-membrane areas with bound- but not internalised

Alexa594ephrin.

Found at: doi:10.1371/journal.pbio.1000215.s005 (2.71 MB TIF)

Figure S6 Removal of the ADAM10 ICD reconstitutes
ephrin shedding in cells expressing EphA3 JX mutants.
(A) Confirmation that ADAM102/2 MEFs do not contain

detectable ADAM10. Lysates of HEK293Ts, ADAM102/2, or

Wt MEFs were immunoprecipitated with 1, protein A beads alone;

or with 2, anti-human specific ADAM10 monoclonal antibodies

(RND); or 3, with anti-ADAM10 polyclonal antibodies (Abcam).

Immunoprecipitates were immuno-blotted with polyclonal anti-

ADAM10 antibodies. U, unprocessed; P, processed ADAM10. (B)

ADAM102/2 MEFs transfected with combinations of GFP-

tagged EphA3 (Wt, DJXS, or DJXL) and HA-tagged ADAM10

(Wt, DMP, or DICD) were incubated with Alexa594ephrinA5-

coated beads. After 40 min the cells were fixed, permeabilised, and

stained with anti-HA and Alexa647-labelled secondary antibodies.

Images show single-section confocal micrographs, together with

the merged images (EphA3-GFP, green; Alexa594- ephrin-A5, red;

Alexa647-anti-HA, blue).

Found at: doi:10.1371/journal.pbio.1000215.s006 (4.57 MB TIF)

Figure S7 CaM inhibitors regulate association of
EphA3-L-selectin with CaM and with ADAM10 and
trigger ephrinA5 shedding by EphA3-L-selectin express-
ing cells. (A) CaM inhibitors block association of CaM with

EphA3-L-selectin. Cells expressing AP-tagged EphA3/L-selectin

or Wt AP-EphA3 were treated with CaM inhibitors trifluoper-

azine (TFP) or Calm or vehicle control, as indicated. Following

biotinylation of AP-tagged receptors, EphA3 complexes were

recovered by SA pulldown and analysed by Western blot with

anti-CaM and anti-EphA3 antibodies. The positions of Wt

EphA3 and of the EphA3/L-selectin fusion protein are indicated.

(B) CaM inhibitors modulate the association of EphA3/L-selectin

with ADAM10. HEK293T cells expressing EphA3/L-selectin

(left panels) or Wt EphA3 (right panels) were pre-treated (30 min)

with CaM inhibitors TFP (20 mM), Calm (2 mM), N-6-Amino-

hexyl0-5-chloro-1-naphthalenesulfonamide (W7, 100 mM), or

vehicle control before lysis. ADAM10 immunoprecipitates were

analysed by Western blot with anti-EphA3 or anti-ADAM10

antibodies, and total lysates with anti-EphA3 antibodies, as

indicated. The graph shows amounts of EphA3/L-selectin (left

panels) or EphA3 (right panels) in ADAM10 immunoprecipitates

relative to control lanes as determined by densitometry. (C)

Mutation of the CaM-binding site in EphA3-L-selectin reduces

its ability to support ephrinA5 cleavage. L358E and K359E

substitutions, reported to affect CaM binding to the L selectin

cytoplasmic domain, were introduced into the EphA3/L selectin

chimera to produce EphLsel EE. HEK293T cells, transfected

with Wt EphA3-L-selectin or with EphLsel EE were incubated

with Alexa594-labelled ephrinA5 beads; the capacity to promote

ephrin cleavage was monitored by measuring ephrin labelling of

the cell membrane. Ephrin labelling relative to receptor

expression was determined in 50 regions from five individual

micrographs for each sample. The mean+/2SEM are shown in

the graph.

Found at: doi:10.1371/journal.pbio.1000215.s007 (1.48 MB TIF)

Figure S8 CaM-binding to chimeric EphA3/L-selectin
regulates ephrin cleavage from cells. (A) Microscopic

analysis of cleavage of GFP-ephrinA5 from cells. EphA3/

L-selectin transfected HEK293T cells were pre-treated (15 min)

with CaM inhibitors trifluoperazine (TFP, 15 mM), Calm (2 mM),

W7 (50 mM), or vehicle control before incubation (1 h) with cells

expressing GFP-ephrinA5. Cell surface EphA3/L-selectin

(Alexa647 a-EphA3 antibody, red) and GFP-ephrinA5 (green)

were imaged in fixed cells by confocal microscopy, micrographs

from individual green and red fluorescence channels, and merged

images are shown. The outline of GFP-ephrin-A5 expressing cells

is indicated (….) for clarity. The open arrow head points at the

interface between untreated, EphA3/L-selectin, and GFP-

ephrinA5 cells. Yellow arrowheads indicate areas on CaM-

inhibitor-treated EphA3/L-selectin cells that are not in direct

contact with GFP-ephrin-A5 expressing cells but reveal obvious

ephrin staining. (B) Biochemical analysis of GFP-ephrinA5

cleavage from cells. EphA3/L-selectin transfected HEK293T cells

were pre-treated as in (A) with TFP, Calm, or vehicle control, then

incubated for 1 h with stably transfected ephrinA5/HEK293T

cells. Ephrin-A5 was recovered from cell lysates by pulldown with

EphA3-Fc beads and detected on Western blot with a-ephrinA5

Eph-Controlled Ephrin Shedding
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antibodies. Full-length and cleaved ephrin are indicated. Total

lysates were also probed for EphA3/L-selectin expression with

a-EphA3 antibodies (bottom). Cleaved ephrin-A5 was quantitated

by densitometry.

Found at: doi:10.1371/journal.pbio.1000215.s008 (2.57 MB TIF)

Figure S9 FLIM analysis of the EphA3-ICD reveals
extension of the activated EphA3 transmembrane do-
main. (A) Wide field frequency domain FLIM time-series of

EphA3-GFP (green) and tkRasRFP (red) co-transfected COS7 cells

at indicated times (min) after ephrin-A5 stimulation. Upper row:

EphA3-GFP fluorescence intensity images. Lower row: fluores-

cence phase lifetime (tQ) images of EphA3-GFP colour bar inset

indicates the fluorescence lifetime range in ns. Lower image:
tkRasRFP fluorescence intensity image. (B) Histograms of GFP

phase lifetimes tW calculated on a pixel-by-pixel basis for the cells

displayed in (A). (C) Example of GFP phase (tW) and modulation

(tM) fluorescence lifetime images obtained by FLIM to generate

t1-acceptor 2D-histograms (Figure 5F) of tkRasRFP-COS7 cells co-

expressing Wt, [2YE], [2YE KM], or [3YF] EphA3-GFP. Strong

(cytosolic) EphA3 GFP fluorescence was blacked out to exclude

areas where the detector was saturated. Cumulative (2D) phase

(tW) and modulation (tM) fluorescence lifetime histograms of cell

populations (right panels) indicate significant fluorescence lifetime

differences between EphA3-GFP-[2YE] and EphA3-GFP-[3YF].

(D) The Kolmogorov-Smirnov (KS) test was performed to assess if

fluorescence lifetimes of either EphA3-GFP [3YF] or EphA3-GFP

[2YE] measured in a large population of tkRasRFP-Cos7 cells are

distinct. A highly significant (p,0.001) difference between the two

datasets suggests a measurable change in the donor (EphA3-GFP)/

acceptor (RFP-labelled membrane) distance. The two datasets

were entered for the KS test at http://www.physics.csbsju.edu/

stats/KS-test.html. (E) Acceptor photobleaching confirms the

reliability of fluorescence lifetime imaging to detect FRET.
tkRasRFP-transfected (red) Cos7 cells co-expressing EphA3-GFP

[3YF] (green) were imaged by FLIM. The images were taken from

the same cell before (bottom row) and following (top row) RFP

(acceptor) photobleaching. Areas of the cell where the fluorescent

acceptor was photobleached show an increase in the GFP lifetime

of the donor compared to the nonbleached sample, confirming the

fidelity of lifetime imaging to detect FRET.

Found at: doi:10.1371/journal.pbio.1000215.s009 (2.47 MB TIF)

Figure S10 EM of Qdot-labelled EphA3. EM images of

fixed APC-EphA3-expressing HEK293T cells without pretreat-

ment (A) or following ephrin stimulation (B), showing plasma

membrane disruption and endocytosis, respectively. Cells were

fixed, permeabilized, and stained with SA-Qdots 605 prior to EM

plastic embedding. Inserts show an enlarged section of the boxed

(red) areas, using computer-assisted assignment to delineate the

exact plasma membrane/cytoplasm boundary. Arrowheads mark

EphA3-tethered Qdots on the inner cell membrane.

Found at: doi:10.1371/journal.pbio.1000215.s010 (1.01 MB TIF)

Video S1 EM tomographic reconstruction of Qdot-
labelled EphA3-bearing cell membrane. EM tomography

of a protrusion of APC-EphA3 [3YF]-transfected cells, where

Qdots label the EphA3 COOH-terminus. The movie shows an

iso-surface visualization of the 3D tomographic reconstruction

displayed in Figure 6E from any aspect (360u). The plasma

membrane is visualized in blue and Qdots are shown in dark

yellow.

Found at: doi:10.1371/journal.pbio.1000215.s011 (0.47 MB AVI)

Acknowledgments

We thank D. Nikolov (MSKCC, NY) for discussions, and the following

collaborators for help: I. Harper and S. Firth (Monash Micro Imaging) for

confocal microscopy, J. Riches (EMBL) for electron tomograms, U.

Haselmann (EMBL) and S. Dongard (MPI) for sectioning EM samples, R.

Kern for microinjection, A. Kinkhabwala (MPI) for statistical analysis, and

G. Reed, L. Atapattu, and A. Mensinga (Monash) for technical assistance.

Author Contributions

The author(s) have made the following declarations about their

contributions: Conceived and designed the experiments: PWJ SHWK

ASF PIB ML. Performed the experiments: PWJ SHWK KT BG OS.

Analyzed the data: PWJ SHWK ASF PIB ML. Contributed reagents/

materials/analysis tools: ASF MG AYT PS. Wrote the paper: PWJ PIB

ML.

References

1. Kheradmand F, Werb Z (2002) Shedding light on sheddases: role in growth and

development. Bioessays 24: 8–12.

2. Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, et al. (2002)

The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but

not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11: 2615–2624.

3. Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, et al. (1998) An

essential role for ectodomain shedding in mammalian development. Science 282:

1281–1284.

4. Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases:

multidomain proteins with multiple functions. Genes Dev 17: 7–30.

5. Blobel CP (2005) ADAMs: key components in EGFR signalling and

development. Nat Rev Mol Cell Biol 6: 32–43.

6. Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, et al. (2004) Distinct

roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands.

J Cell Biol 164: 769–779.

7. Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, et al. (2005)

ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-

catenin nuclear signalling. Embo J 24: 742–752.

8. Hattori M, Osterfield M, Flanagan JG (2000) Regulated cleavage of a contact-

mediated axon repellent. Science 289: 1360–1365.

9. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, et al.

(2005) Adam meets eph: an ADAM substrate recognition module acts as a

molecular switch for ephrin cleavage in trans. Cell 123: 291–304.

10. Pasquale EB (2005) Eph receptor signalling casts a wide net on cell behaviour.

Nat Rev Mol Cell Biol 6: 462–475.

11. Lackmann M, Boyd AW (2008) Eph, a protein family coming of age: more

confusion, insight, or complexity? Sci Signal 1: re2.

12. Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease.

Cell 133: 38–52.

13. Wimmer-Kleikamp SH, Janes PW, Squire A, Bastiaens PIH, Lackmann M

(2004) Recruitment of eph receptors into signaling clusters does not require

ephrin contact. J Cell Biol 164: 661–666.

14. Himanen JP, Rajashankar KR, Lackmann M, Cowan CA, Henkemeyer M, et

al. (2001) Crystal structure of an eph receptor-ephrin complex. Nature 414:

933–938.

15. Smith FM, Vearing C, Lackmann M, Treutlein H, Himanen J, et al. (2004)

Dissecting the EphA3/Ephrin-A5 interactions using a novel functional

mutagenesis screen. J Biol Chem 279: 9522–9531.

16. Lawrenson ID, Wimmer-Kleikamp SH, Lock P, Schoenwaelder SM, Down M,

et al. (2002) Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-

expressing 293T and melanoma cells by CrkII and Rho-mediated signalling.

J Cell Sci 115: 1059–1072.

17. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, et al. (1999) EGF

receptor transactivation by G-protein-coupled receptors requires metalloprotei-

nase cleavage of proHB-EGF. Nature 402: 884–888.

18. Yan Y, Shirakabe K, Werb Z (2002) The metalloprotease Kuzbanian

(ADAM10) mediates the transactivation of EGF receptor by G protein-coupled

receptors. J Cell Biol 158: 221–226.

19. Fischer OM, Hart S, Gschwind A, Ullrich A (2003) EGFR signal transactivation

in cancer cells. Biochem Soc Trans 31: 1203–1208.

20. Rosen SD (2004) Ligands for L-selectin: homing, inflammation, and beyond.

Annu Rev Immunol 22: 129–156.

21. Kahn J, Walcheck B, Migaki GI, Jutila MA, Kishimoto TK (1998) Calmodulin

regulates L-selectin adhesion molecule expression and function through a

protease-dependent mechanism. Cell 92: 809–818.

22. Reddy P, Slack JL, Davis R, Cerretti DP, Kozlosky CJ, et al. (2000) Functional

analysis of the domain structure of tumor necrosis factor-alpha converting

enzyme. J Biol Chem 275: 14608–14614.

Eph-Controlled Ephrin Shedding

PLoS Biology | www.plosbiology.org 16 October 2009 | Volume 7 | Issue 10 | e1000215



23. Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, et al. (1994)

Ligands for EPH-related receptor tyrosine kinases that require membrane
attachment or clustering for activity. Science 266: 816–819.

24. Stein E, Lane AA, Cerretti DP, Schoecklmann HO, Schroff AD, et al. (1998)

Eph receptors discriminate specific ligand oligomers to determine alternative
signaling complexes, attachment, and assembly responses. Genes Dev 12:

667–678.
25. Vearing C, Lee FT, Wimmer-Kleikamp S, Spirkoska V, To C, et al. (2005)

Concurrent binding of anti-EphA3 antibody and ephrin-A5 amplifies EphA3

signaling and downstream responses: potential as EphA3-specific tumor-
targeting reagents. Cancer Res 65: 6745–6754.

26. Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, et al. (2001)
Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the

unphosphorylated juxtamembrane region. Cell 106: 745–757.
27. Wiesner S, Wybenga-Groot LE, Warner N, Lin H, Pawson T, et al. (2006) A

change in conformational dynamics underlies the activation of Eph receptor

tyrosine kinases. Embo J 25: 4686–4696.
28. Davis T, Walker J, Loppnau P, Butler-Cole C, Allali-Hassani A, et al. (2008)

Autoregulation by the juxtamembrane region of the human ephrin receptor
tyrosine kinase A3 (EphA3). Structure 16: 873–884.

29. White JM (2003) ADAMs: modulators of cell-cell and cell-matrix interactions.

Curr Opin Cell Biol 15: 598–606.
30. Tebar F, Villalonga P, Sorkina T, Agell N, Sorkin A, et al. (2002) Calmodulin

regulates intracellular trafficking of epidermal growth factor receptor and the
MAPK signaling pathway. Mol Biol Cell 13: 2057–2068.

31. Martin-Nieto J, Villalobo A (1998) The human epidermal growth factor receptor
contains a juxtamembrane calmodulin-binding site. Biochemistry 37: 227–236.

32. Bastiaens PI, Pepperkok R (2000) Observing proteins in their natural habitat: the

living cell. Trends Biochem Sci 25: 631–637.
33. Apolloni A, Prior IA, Lindsay M, Parton RG, Hancock JF (2000) H-ras but not

K-ras traffics to the plasma membrane through the exocytic pathway. Mol Cell
Biol 20: 2475–2487.

34. Bastiaens P, de Beus A, Lacker M, Somerharju P, Vauhkonen M, et al. (1990)

Resonance energy transfer from a cylindrical distribution of donors to a plane of

acceptors. Location of apo-B100 protein on the human low-density lipoprotein

particle. Biophys J 58: 665–675.
35. Squire A, Verveer PJ, Bastiaens PI (2000) Multiple frequency fluorescence

lifetime imaging microscopy. J Microsc 197 (Pt 2): 136–149.

36. Giepmans BN, Deerinck TJ, Smarr BL, Jones YZ, Ellisman MH (2005)
Correlated light and electron microscopic imaging of multiple endogenous

proteins using Quantum dots. Nat Methods 2: 743–749.
37. Howarth M, Takao K, Hayashi Y, Ting AY (2005) Targeting quantum dots to

surface proteins in living cells with biotin ligase. Proc Natl Acad Sci U S A 102:

7583–7588.
38. Zhao X, Greener T, Al-Hasani H, Cushman SW, Eisenberg E, et al. (2001)

Expression of auxilin or AP180 inhibits endocytosis by mislocalizing clathrin:
evidence for formation of nascent pits containing AP1 or AP2 but not clathrin.

J Cell Sci 114: 353–365.
39. Holmberg J, Frisen J (2002) Ephrins are not only unattractive. Trends Neurosci

25: 239–243.

40. Horiuchi K, Le Gall S, Schulte M, Yamaguchi T, Reiss K, et al. (2007)
Substrate selectivity of epidermal growth factor-receptor ligand sheddases and

their regulation by phorbol esters and calcium influx. Mol Biol Cell 18: 176–188.
41. Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends

Cell Biol 10: 322–328.

42. Schmidt MH, Dikic I (2005) The Cbl interactome and its functions. Nat Rev
Mol Cell Biol 6: 907–919.

43. Lackmann M, Oates AC, Dottori M, Smith FM, Do C, et al. (1998) Distinct
subdomains of the EphA3 receptor mediate ligand binding and receptor

dimerization. J Biol Chem 273: 20228–20237.
44. Verveer PJ, Squire A, Bastiaens PI (2000) Global analysis of fluorescence lifetime

imaging microscopy data. Biophys J 78: 2127–2137.

45. Verveer PJ, Wouters FS, Reynolds AR, Bastiaens PI (2000) Quantitative
imaging of lateral ErbB1 receptor signal propagation in the plasma membrane.

Science 290: 1567–1570.
46. Frangakis AS, Hegerl R (2006) Segmentation of three-dimensional electron

tomographic images. In: Frank J, ed (2006) Electron Tomography. New York:

Springer.

Eph-Controlled Ephrin Shedding

PLoS Biology | www.plosbiology.org 17 October 2009 | Volume 7 | Issue 10 | e1000215


