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Abstract

Morphological variation between individuals can increase niche segregation and decrease

intraspecific competition when heterogeneous individuals explore their environment in dif-

ferent ways. Among bat species, wing shape correlates with flight maneuverability and habi-

tat use, with species that possess broader wings typically foraging in more cluttered

habitats. However, few studies have investigated the role of morphological variation in bats

for niche partitioning at the individual level. To determine the relationship between wing

shape and diet, we studied a population of the insectivorous bat species Pteronotus mesoa-

mericanus in the dry forest of Costa Rica. Individual diet was resolved using DNA metabar-

coding, and bat wing shape was assessed using geometric morphometric analysis. Inter-

individual variation in wing shape showed a significant relationship with both dietary dissimi-

larity based on Bray-Curtis estimates, and nestedness derived from an ecological network.

Individual bats with broader and more rounded wings were found to feed on a greater diver-

sity of arthropods (less nested) in comparison to individuals with triangular and pointed

wings (more nested). We conclude that individual variation in bat wing morphology can

impact foraging efficiency leading to the observed overall patterns of diet specialization and

differentiation within the population.

Introduction

Individuals within a population may show differences in behaviors and/or morphologies that

can influence the ways in which they explore, compete, and utilize food resources [1–6]. Such

variation may in turn, therefore, lead to niche differentiation and specialization due to individ-

uals having different food preferences, with a consequent expansion of the overall dietary

niche [6]. It follows that species that are considered to be generalist may in fact include
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individuals that are relatively specialized in their resource use [6–7]. More work is needed to

examine the potential ecological and evolutionary implications of such variation, including

consequences for trophic niche dynamics in natural populations [6, 8].

Inter-individual variation in a morphological trait may allow the exploration of different

micro-niches, so potentially reducing intraspecific competition [2, 4]. As a result, these indi-

viduals might be expected to show dissimilarity in diet due to individual feeding specializations

[9–10], a phenomenon observed across a wide range of invertebrate and vertebrate taxa and

different ecosystem [5, 11–12].

Wing shape in bats varies considerably among species, and correlates with differences in

flight mode and speed [13–14]. Variation in wing shape is associated with differences in habi-

tat use [14–15], with broad wings and rounded wing tips considered more adapted for slower

maneuverable flight, and thus a tendency to forage in cluttered environments such as dense

vegetation. Conversely, species characterized by narrower pointed wings are associated with

faster flight in open areas, and are less maneuverable [14]. These differences in habitat use

could have potential consequences for bat-arthropod interactions, as vegetation density is a

good estimator of prey availability for bats, with more cluttered habitats showing higher prey

abundance [16–17]. In addition to influencing habitat use, flight maneuverability might also

confer advantages in hunting, increasing the probability of successful prey capture [18–21]. To

date, most investigations of the variation in bat flight ability, diet and morphology have con-

sisted of comparisons between bat species [14–15] with little consideration given to the impact

of variation within populations. Nevertheless, intraspecific variation in wing morphology has

been detected in bats, such as the little brown bat (Myotis lucifugus; [16]) and the little yellow-

shouldered bat (Sturnira lilium; [22]). Similarly, P. parnellii [11] exhibits individual variation

in habitat use and diet [12].

Network approaches can provide useful insights into inter-individual variation in resource

use [23–24]. The existing studies that have examined networks composed of individuals within

a population have reported different levels of specialization [25–26], in which the diets of spe-

cialist individuals are nested within the diets of the generalists [7, 27]. Although it has been

shown for many species that individual variation in diet is linked with differences in morpho-

logical traits [9–10], to understand how trait variation between individuals may explain their

position in ecological networks can be relevant to shed light on variation in network structure

and individual specialization in natural populations. Such interaction networks perform best

when the nodes (taxa) are assigned at the lowest taxonomic level possible, and, as a result,

DNA barcoding and metabarcoding have been increasingly advocated as important methods

for building ecological networks [28–29]. DNA-based approaches are typically based on

molecular operational taxonomic units (MOTUs) [30], which represent clusters of sequences

with a minimum similarity threshold. This method does not assign nodes in the network to

the species level of resolution [31] but applies a uniform threshold to all nodes in a network

making comparisons more standardized [32].

Here we apply network approaches to examine the relationship between wing morphology

and diet in the insectivorous bat Pteronotus mesoamericanus in the dry forest of Costa Rica.

This species was previously classified as a subspecies of P. parnellii, but has since been elevated

to species-level based on genetic and morphological evidence [11]. As with P. parnellii, it

appears to forage over cluttered and non-cluttered habitats, and has potential for individual

variation. Our objective was to explore resource use patterns at the individual-level, as deter-

mined by the DNA metabarcoding of prey remains within guano pellets of known bats, and

relating these dietary data to wing morphological parameters. By characterizing the diets of

bats within a network framework, we tested the hypothesis that variation in network position

of individual predators (diet specialization and differentiation) is related to differences in
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individual wing shape. More specifically, we made the following predictions: 1) individuals

with rounded wings and thus more maneuverable flight will be able to exploit a wider range of

prey items. Therefore, they would have a more generalist diet with a higher number of food

items (prey MOTUs) and be associated with less nested positions in the network. On the other

hand, individuals with more pointed wings and less maneuverable flight will explore a nar-

rower range of MOTUs (i.e, narrow niche widths), and thus, would have a more specialist diet

and higher nested positions in the network; 2) wing shape is a good predictor of individual dif-

ferentiation in niche use. Variation in wing shape among individuals will be associated with

increasing diet dissimilarity, due to the exploration of different resources that reflect differ-

ences in hunting efficiencies and the possible exploration of different habitats.

Materials and methods

Study area

The study was conducted in dry forests of Costa Rica, located at Sector Santa Rosa (10˚46.7´N,

85˚39.8´W) in the Área de Conservación Guanacaste (ACG), which is composed of primary

and secondary forests in different stages of regeneration [33]. It experiences large variations in

precipitation due to its extreme seasonal climate [34–35], with a dry season (December to

May) when there is virtually no rain, and a wet season, with an annual precipitation of 900 to

2,400 mm [33, 36]. During our study there was a strong El Niño (2015) when the park experi-

enced an unusually low annual rainfall of only ~600 mm.

Bat sampling, diet and network analysis

We sampled bats during the wet season (Jul—Aug) of 2015. We captured bats using four to six

mist nets (6 m– 12 m x 2 m) opened from 18h–22h along trails and near watercourses in three

locations of similar habitats within a 2 km range of distance from the main camp site. Bat tis-

sue was sampled by wing membrane biopsies as part of a different simultaneous study and

thus we were able to assess whether individuals were recaptured by the presence of a hole or

scar. Each bat was held in a cloth bag for a maximum of two hours to collect faecal samples

and each sample was stored in 70% ethanol and frozen (-20˚C). Faecal samples only reveal the

composition of diet over a short period of time before they were collected since gut retention

times in insectivorous bats are generally less than 90 minutes [37]. Each individual was identi-

fied to species following Reid [38]. All bats were captured and handled according to the recom-

mendations of the American Society of Mammalogists [39]. Research was performed under

permit R-07-2015-OT-CONAGEBIO and R-08-2015-OT-CONAGEBIO, from the Ministry of

Environment and Telecommunications (MINAET) and Comisión Nacional para la Gestión de

la Biodiversidad (CONAGEBIO).

DNA extraction, PCR amplification and sequencing

We extracted DNA from faecal samples using the QIAamp Stool Mini Kit (Qiagen, UK) fol-

lowing manufacturer’s instructions with the modifications suggested by [40] and [41]. Ampli-

fication, gel electrophoresis and amplicon size selection, clean up and sequencing were all

performed at the Biodiversity Institute of Ontario, University of Guelph (Canada). PCR Prim-

ers based on the COI primers ZBJ-ArtF1c and ZBJ-ArtR2c were used to amplify prey DNA

[40]; these primers were modified using the dual adaptor system for the Ion Torrent [41]. Each

20μL PCR reaction contained 10μL of Qiagen multiplex PCR (Qiagen, CA) master mix, 6μL of

water, 1μL of each 10μM primer and 2μL of DNA. PCR amplification was as follows: 95˚C, 15

min; 50 cycles of 95˚C, 30 s; 52˚C, 30 s; 72˚C, 30 s and 72˚C, 10 min. Amplicons were
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visualized on a 2% agarose 96-well precast E-gel (Invitrogen, Life Technologies). Size selection

was performed using a PCRClean DX kit (Aline Biosciences). The product was eluted in

water, and the concentration measured using a Qubit 2.0 spectrophotometer and the Qubit

dsDNA HS Assay Kit (Invitrogen, Life Technologies). The products were normalized to 1ng

/μL prior to final library dilution. Sequencing was performed on the Ion Torrent (Life Tech-

nologies) sequencing platform as per [41] using a 316 chip and following the manufacturers’

guidelines but with a 2x dilution.

Data analysis

We processed sequences using the Galaxy platform [42–44]. We de-multiplexed the samples

by forward and reverse MIDs (a maximum of two mismatches and two indels were allowed)

and removed primer, MID and adapter sequences (http://hannonlab.cshl.edu/fastx_toolkit).

We filtered out all sequences shorter than 147 bp or longer than 167 bp (target amplicon length

was 157bp) and collapsed them into unique haplotypes and then excluded singleton sequences

from further analyses (http://hannonlab.cshl.edu/fastx_toolkit). We clustered sequences into

molecular operational taxonomic units (MOTUs) and picked representative sequence of each

MOTU for analysis with the QIIME pick_otu and uclust methods (http://qiime.sourceforge.

net/, [45]). For the present study MOTUs were clustered using a similarity threshold of 92%.

This is a more conservative approach for the generation of the numbers of MOTUs [32]. We

repeated the analyses at 94 and 96% MOTU thresholds to confirm that the obtained results

were not dependent on bioinformatics choices. These additional analyses can be seen in S1

File.

We used a single representative sequence per MOTU for order-level identification using

BLAST analyses and a database of>600,000 reference DNA barcodes extracted from Gen-

Bank. We used MEGAN version 5.6.3. [46] to screen out unidentified sequences and those not

resolved to level of taxonomic order with the LCA parameters: Min score = 150.1, Max

expected = 0.01, Top percent = 10.0, Min support = 1, LCA percent = 10.0, Min complex-

ity = 0.2. We looked for chimeric sequences from each reference sequence using UCHIME as

implemented in MOTHUR [47], and for contaminants by looking for similar BLAST matches

to nontarget taxa (e.g. bacteria) in MEGAN (with the same parameters as above). The identi-

fied MOTUs were used for network analysis. We then generated datasets at 94% and 96%

MOTU thresholds to repeat analyses and confirm that outcomes were not dependent on bioin-

formatics choices (see below and S1 File).

Geometric morphometric analysis

We performed geometric morphometric analyses from information collected from bat wing

photos of P. mesoamericanus adults. To photograph specimens, the left wing of each individual

was extended against a grid with 1 cm marking guides and photographed with a digital camera

(Canon EOS DIGITAL REBEL T1i—Canon EF-S 18–55 lens), which was mounted on a tripod

at a fixed height (80 cm). For the standardization of wing position, we have considered the

fifth finger parallel to the body of the animal and the largest possible stretching of major (digits

IV and V) and medius (digits III and IV) dactylopatagium membranes (Fig 1). Additionally,

we considered the maximum angulation between the humerus and the radius/ulna (Fig 1).

The arm extension of bats is related to the stretch capacity of the propatagium membrane.

Therefore, if there was any resistance in the extension of the bat’s arm, to avoid injury, we have

considered this as the maximum angulation between humerus and radius/ulna. For each indi-

vidual, we extended and photographed its wings three different times for further evaluation of

the standardization of the method. Wing images were only taken from adult males and non-
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pregnant females in order to avoid biases in the wing shape of juveniles and sub-adults due to

the incomplete development of their wings, and to avoid stress to pregnant females since their

diet may vary due to their physical condition. For the evaluation of the wing shape of P. mesoa-
mericanus, we selected 14 anatomical landmarks with the support of the software TpsDig v.1.4

[48]. Anatomical landmarks were used as a way to sample homologous portions of the wing,

and were represented only by tissues joints (phalanges, cartilage and wing membrane; Fig 1).

To quantify potential error related to the standardization method used to extend the bat

wings before obtaining the images, we checked the repeatability of anatomical landmarks mea-

surements in 20 individuals (eleven males and nine females) using the three photos taken from

each of them. For this, we used the intraclass correlation coefficient from an analysis of vari-

ance on the x and y coordinates of each anatomical landmark. From this analysis we were able

to verify the error in locating the anatomical landmark position and the differences between

individuals. We confirmed that all landmark locations were highly repeatable [49] across sam-

ples, with intraclass correlation coefficients ranging from 0.95 to 0.99 (experimental error

between 0.02 and 0.020 pixels; variance between 0.12 and 0.83 pixels). Thus, we assumed that

the method adopted to extend the wings was standardized throughout the study. Mean varia-

tion in measurements for any one individual was 81.2 pixels while mean variation between

individuals was 791.0 pixels.

After obtaining the 14 landmarks for each analyzed individual, we obtained the wing shape

variables (partial warps and uniform components) from the superimposition of anatomical

landmarks (Procrustes algorithm) using the software TpsRelW v.1.62 [50]. This method

Fig 1. Photograph showing the method by which the bat wing was stretched in order to record the following anatomical landmarks. 1) Tissue

junction between the wing and the hind foot; 2) Articulation between the humerus and radius/ulna; 3) Tissue junction between the propatagium

membrane and digit I; 4) Center of the carpus; 5) Articulation between metacarpus and proximal phalange of digit V; 6) Articulation between proximal

and distal phalanges of digit V; 7) Tissue junction between distal phalange of digit V and propatagium membrane; 8) Articulation between metacarpus

and proximal phalange of digit IV; 9) Articulation junction between proximal and distal phalanges IV; 10) Tissue junction between distal phalange of

digit IV and dactylopatagium major membrane; 11) Articulation between metacarpus and proximal phalange of digit III; 12) Articulation between

proximal and intermediate phalanges of digit III; 13) Articulation between intermediate and distal phalanges of digit III; 14) Tissue junction between

distal phalange of digit III and dactylopatagium medius membrane.

https://doi.org/10.1371/journal.pone.0232601.g001
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involves the centralization and minimization of distances between anatomical landmarks and

the standardization of anatomical landmarks configuration from the Centroid Size (CS) [51–

52]. The CS is a multivariate measurement of size of the structure analyzed, which is is

obtained by the square root of the sum of the square distance of each anatomical landmark to

the mass center of each configuration (centroid) [51].

Network analysis

In order to assess how specialized each individual bat was with respect to diet, we compiled the

observed interactions into a presence (assigned as 1) and absence (assigned as 0) matrix with

each cell value representing the interactions between each individual pair (individual bat and

insect MOTU). Differences in individual niche use (interaction specialization) were assessed

in the network using values of nestedness. In this case, nestedness is a measure of the level to

which the interactions are specialized or generalized [53]. To quantify nestedness values for

each individual, we used the function nestedrank with the binmatnest algorithm from the

Bipartite R package [54] which can specifically accommodate unweighted data matrices. Nes-

tedrank rearranges the network of interactions according to its maximal possible nestedness

and then quantifies the level of specialization of a given node (individual bat) through its rank

in the matrix [55]. Nestedness values range from 0 to 1, and individuals with high values indi-

cate that they are more specialized.

Statistical analysis

Wing morphology. To identify significant changes in wing morphology between individ-

uals, we performed a Principal Component Analysis (PCA) using the wing shape variables

(i.e., partial warps and uniform components). For further analyses, we obtained two new vari-

ables (PC1 and PC2) that summarized most of the variation (>60%, see Results for more

details) of the wing shape. To visually evaluate the variation in wing shape across individuals

within these two axes, we used the software TpsRelW v.1.62. For evaluating any sexual dimor-

phism in the wing shape, we performed a Hotelling T2 test using the PC1 and PC2. For this

analysis, we considered each sex as an independent variable and the scores of each individual

obtained in the PCs as dependent variables. Additionally, to investigate any size-related bias in

the wing shape of P. mesoamericanus (i.e., allometry), we performed simple regressions using

individual scores of each PC as dependent variables and the centroid size of each individual as

an independent variable.

Relationship between wing morphology and diet. To quantify the similarity of the diet

among individuals, we generated a new matrix containing the different food items pooled by

arthropod order, based on the presence absence matrix described above (see network analysis

section). For example, if individual bat 1 had consumed 8 MOTU assigned to Coleoptera, this

individual was assigned a Coleoptera frequency of 8. Then we performed a Principal Coordi-

nate Analyses (PCoA) using the Bray-Curtis dissimilarity index in the vegan package [56] in R

[57]. To test for the relationship between variation in wing shape and individual specialization

in diet, we performed a multiple regression between the individual scores obtained in the first

two principal components (summarized wing shape as independent variables) and the values

of individual nestedness (dependent variable). Similarly, to assess how much of the difference

between individual diet (diet dissimilarity) could be related to differences in wing shape, we

performed a multiple regression between the first two axis of the PCA (PC1 and PC2) (inde-

pendent variables) and the first axis of the PCoA (dependent variable). For this analysis, we

selected only the first axis of the PCoA because it represented a relatively high percentage

(about 61%) of the total variance of the individuals’ diet (see S1 File for more details).
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We ran all statistical analysis using the R statistical language and environment [57].

Results

Diet description and network analysis

We analysed the diet of 20 individuals of P. mesoamericanus for which we were able to obtain

data on wing morphology, spanning a time range of 20 days to limit the effect of temporal vari-

ation in prey. Their diet was composed of nine arthropod orders, with Lepidoptera recorded

as the most diverse order with 152 MOTUs, followed by Diptera with 16 MOTUs, and Hyme-

noptera and Blattodea with four MOTUs each (Fig 2). Individuals consumed from three to 36

MOTUs (mean±standard deviation; 19.6±9.0) of one to five orders (2.5±1.2), with Lepidoptera

recorded as the most prevalent order present in the diet of all individuals (See S1 File for a

description of the diet). Values of nestedness from the ecological network showed extreme var-

iation ranging from 0.00 (indicating an extreme generalist diet composed of a large number of

arthropod MOTUs) to 0.95 (indicating an extreme specialist diet composed only of few arthro-

pod MOTUs). However, on average individuals had an intermediate level of diet specialization

(nestedness, 0.47±0.30) (See S1 File for additional information).

Wing morphology

The analysis of the landmarks using the program TpsRelw generated 24 shape variables. The

first axis of the PCA (PC1) using these variables explained 34.2% of the total wing shape

Fig 2. Antagonistic network of individuals of the bat species Pteronotus mesoamericanus and the prey items present on their diets. Links in the

network representing species diets were revealed using DNA metabarcoding (gene COI). The width of the top bars represent the number of feeding

items present in the diet of an individual while the width of the bottom bars represents the number of individuals that consumed that prey item.

https://doi.org/10.1371/journal.pone.0232601.g002
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variance. The main modifications on the wing shape included the displacement of the land-

marks 2–13 towards the upper left side of the wing when considering positive score values of

the PCA. This component can be interpreted as morphological changes in shape related with

wing bulging, especially considering the landmarks 3 and 4 (first digit and the carpus) and 11–

14 (third digit). Additionally, this component was also related to changes on plagiopatagium

width (wing space between the body and fifth finger) due to the displacement of the landmarks

5–7. The second axis (PC2) explained 26.7% of the total wing shape. This component is related

to the displacement of the landmarks 2–14 towards the bottom right side of the wing when

considering positive score values of the PCA. The PC2 axis be interpreted as an overall elonga-

tion of the wing. Both components together represented more than 60% of the total wing

shape variance. Even though each component represented a different variation on wing shape,

low PC scores from both components generally suggested more triangular and pointed wings

while higher scores were associated with more rounded wings. We found no differences in the

wing shape between males and females (Hotelling T2
2,17 = 0.62; P = 0.25). Moreover, we found

no association between the wing shape and the centroid size indicating no allometric effects

considering both PC1 (r2 = 0.18; F1,18 = 4.02; P = 0.06) and PC2 (r2 < 0.01; F1,18 = 0.01;

P = 0.76).

Relationship between wing morphology and diet

The multiple regression analysis demonstrated a significant relationship between wing mor-

phology (PC1 and PC2) and individual values of nestedness from the ecological network

(global adjusted r2 = 0.60; F2,17 = 15.51; P< 0.01) (Figs 3 and 4; Table 1) showing that individ-

uals with pointed wings had a more specialized diet. The analysis between the PCs and diet

similarity (first axis of PCoA) also showed a significant association (global adjusted r2 = 0.40;

F1,18 = 7.39; P = 0.005) (Figs 3 and 4) (see S1 File for details), revealing that individuals with

similar wing shape also possess similar diets. However, these associations were significant only

for PC1 (Table 1). All observations were consistent across MOTU thresholds (see S1 File).

Discussion

Different individuals within a population can differ in the way that they use resources [58–59],

leading to diversification in niche use and a reduction in intraspecific competition through the

exploitation of different parts of the environment by individuals [3]. Niche diversification is

more likely to happen when the population is formed by individuals with different ecological

requirements, where each individual uses a subset of the niche of the whole population [58].

One of the main factors that account for differences in individual niche use is phenotypic vari-

ation, which can influence foraging behavior, resource preferences, physiological require-

ments, and even social status and dominance [60].

In our study, we combined metabarcoding, network analyses and measurements of wing

shape to assess the relationship between individual morphological variation and resource use

in a population of Pteronotus mesoamericanus. In line with our hypothesis, we found that indi-

viduals with more rounded wings were associated with greater numbers of MOTUs in their

diets, consistent with more generalist diets, than were individuals with more pointed wings.

Consistent with this observation, we also found that individuals with more similar wing shapes

also shared more similar diets. We observed no differences in the wing shape between males

and females, indicating that our findings could not be explained by any sexual dimorphism in

wing morphology.

Many previous studies of dietary niche have estimated the degree of specialization as the

proportion of food items consumed by an individual in relation to total available in the
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Fig 3. Similarity (PCoA) between wing shape and individual diet of Pteronotus mesoamericanus, considering

nestedness and similarity (PCoA). The wing shape representations below the x-axis indicated the extrapolated

twofold values of the lowest (left inset) and highest (right inset) PC1 scores. Low scores represent wings with a more

triangular shape while high scores represent a more rounded wing. The value in parenthesis indicates the proportion of

the total wing shape variance; r2 and P-values are indicated according to the partial correlation obtained in the multiple

regression analysis (global adjusted r2 = 0.60 for nestedness and global adjusted r2 = 0.40 for PCoA; see results for more

details).

https://doi.org/10.1371/journal.pone.0232601.g003
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Fig 4. Similarity (PCoA) between wing shape and individual diet of Pteronotus mesoamericanus, considering

nestedness and similarity (PCoA). The wing shape representations below the x-axis indicate the extrapolated values

twofold of the lowest (left inset) and highest (right inset) PC2 scores. Low scores represent wings with a more

triangular shape while high scores represent a more rounded wing. The value in parenthesis indicates the proportion of

the total wing shape variance; r2 and P-values are indicated according to the partial correlation obtained in the multiple

regression analysis (global adjusted r2 = 0.60 for nestedness and global adjusted r2 = 0.40 for PCoA; see results for more

details).

https://doi.org/10.1371/journal.pone.0232601.g004
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population [61–63]. However, in most DNA-based metabarcoding studies of environmental,

samples, including ones based on guano pellets, prey species (or MOTUs) can only be reliably

classified as either present or absent. Moreover, in our study, the difficulty of recapturing wild

bats for obtaining repeated measures also precluded the possibility of creating weighted matri-

ces to represent their diets. As a consequence, individual diets in our study are based on pres-

ence and absence of prey species recorded in the population as a whole, rather than on the

frequency of prey item abundances, and thus we were also unable to derive a number of net-

work metrics (e.g. H’). We therefore measure ‘specialization’ by assessing dietary niche

breadth using the relative number of links each individual makes with their prey after reorga-

nizing the matrix of interactions on a nested manner, such that an individual with fewer prey

links is ranked by the analysis as more specialized.

Variation in dietary niche breadth might relate not only to different flight capabilities, but

also to differences in habitat use that are unrelated to flight, and it is difficult to separate these

two possibilities. Bat species with pointed wings are better able to hunt high-flying insects that

are more common in open spaces, while bats with rounded wings are better able to hunt

insects in the understory [64]. In open spaces, densities of insects, and thus prey availability,

tend to be lower, leading to a narrower niche and more specialized diet [17–18]. Considering

within-population differences, habitat use related to wing morphology, or wing loading capac-

ity (defined as the total bat body mass divided by the area of its wing), have been reported for

at least two bat species. A study conducted with Myotis lucifugus, showed that wing loading

explained 20% of the variation in habitat use between individuals [17]. Moreover, for Miniop-
terus schreibersii, individuals captured in cluttered environments had shorter wingspans, and

lower aspect ratios (defined as wingspan2/wing area), than bats captured in open areas [65].

Even though some network metrics have unpredictable changes when ecological networks

are constructed with different MOTU thresholds [66], we have used the metrics of nestedness

and niche overlap that appear to be resilient to this effect, with only small changes imposed by

clustering parameters [32, 66], and the specific threshold used in our study is within the rec-

ommended range values (90%-95%) for MOTU determination using these molecular proto-

cols and primers [67]. Our additional analyses, which were run using the MOTU thresholds

94% and 96%, have also shown consistent significant relationships between bat wing shape

with diet dissimilarity and specialization (See S1 File). As such, we do not anticipate a strong

effect of clustering level on the analyses presented here.

P. mesoamericanus was originally included in P. parnellii and was only recently described as

a separate species in Central America, distinct from other Pteronotus lineages elsewhere in

Mexico, the Antilles and South America [12]. Thus, analyses of ecological variation in this

taxon are still lacking. Pteronotus parnellii has the wing shape of a generalist species with inter-

mediate values of wing loading and aspect ratio in relation to other Neotropical bat species,

which makes it possible to exploit different habitats, such as more open and cluttered spaces

[68]. Variation in the use of cluttered environments by P. parnellii is possibly related with

Table 1. Partial results for each dependent variable from the two multiple regressions investigating the relationship between wing morphology (PC1 and PC2) and

individual specialization (nestedness), and wing morphology and diet similarity (PCoA).

Analysis Axe Beta Partial correlation T17 P-value

Nestedness PC1 -0.683 -0.754 -4.730 <0.001

Nestedness PC2 -0.424 -0.581 -2.941 0.009

PCoA PC1 -0.578 -0.620 -3.259 0.005

PCoA PC2 -0.362 -0.443 -2.038 0.057

https://doi.org/10.1371/journal.pone.0232601.t001
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insect availability (mass and composition) [13], which might indicate that individual variation

in diet is habitat-linked for other species of the Pteronotus complex as well. However, until

now no study has linked this flexibility to morphological variation among individuals.

Our results suggest that inter-individual morphological variation may lead to different hab-

itat exploitation and different diets among individuals as a consequence. What is still unknown

is whether this habitat and resource use partitioning is fixed for each individual within the

population regardless prey availability, or whether individuals can exploit alternative niches

when food availability is low (e.g., dry season or during El Niño events). For example, in high

population densities and consequently low food resources availability, phenotypically different

individuals of the fish Gasterosteus aculeatus add different alternative prey, increasing individ-

ual variation [3].

While morphological features are fixed within an individual bat, echolocation can be highly

plastic and in some bat species individuals alter aspects of their echolocation signals with habi-

tat use [69]. Higher frequencies (short wavelengths) are better able to resolve smaller targets,

but are more prone to atmospheric attenuation and are more commonly associated with clut-

tered environments. In contrast, lower frequencies are associated with foraging in more open

areas [70]. However, bat species that possess high duty-cycle echolocation, such as some spe-

cies of the New World genus Pteronotus, are less flexible in their calls, and unable to adjust

their frequency [71]. If frequency use is less variable in Pteronotus mesoamericanus, as may be

the case in high-duty cycle bats, inter-individual morphological variation (as measured here)

may be much more important in determining individual variation in diet or habitat use.

Studies evaluating different animal groups [5, 28, 72, 73] in highly seasonal ecosystems in

the Neotropics have shown that individual variation and specialization are stronger during the

resource-rich season (wet season) during which individuals have the opportunity to specialize

on different resources [74], generating an overall expansion of the population trophic niche.

Optimal Diet Theory (ODT) proposes that resource specialization is dependent on the forager

density, prey availability, and variation on forager phenotypes, which act together to determine

how different individuals explore, compete, and specialize on their diets [7, 74]. Our study was

conducted during the wet season, when there is potentially also population recruitment by

reproduction. Under the ODT framework, our scenario with high resource availability, but

increased intraspecific competition, would have led to a moderate decrease in resource special-

ization that would weaken the signal of phenotypical variation on diet specialization and varia-

tion, which do not strongly support our findings [7, 74].

On the other hand, in the present study we evaluated individual variation in the wet season

during a strong El Niño, and it is likely that this climatic event promoted low abundances of

arthropods (D. Janzen, pers. comm.) due to the extreme low precipitation, which could have

led to individual ecological release [75]. 2015 was drier in comparison to the previous 31 years

in the park. Even though the dry forests of ACG have been suffering an insect decline across

the last decades [76], this extreme drought is likely to have decreased arthropod abundances

even more. This extremely low resource abundance could also have been one of the main fac-

tors that has driven individual specialization due to higher intraspecific competition and diet

differentiation in order to avoid competition and increase their survival. We suggest that lon-

ger term studies are needed to investigate individual feeding variation in P. mesoamericanus in

both dry and wet seasons, to understand the roles of food resources availability and diet spe-

cialization, as well as the consistency of the patterns found in the present study.

Even in the absence of El Niño, dry forests are highly seasonal and show a pronounced dif-

ference in habitat structure and insect abundance across seasons [38, 77–79]. Dry forest trees

show a seasonal loss of leaves and tree growth [80], which can dramatically change the land-

scape and forest structure. Variation in wing morphology within the population might enable
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different individuals to cope with foraging in different habitats (open versus cluttered) across

the whole year, including variation in forest structure and prey availability across seasons.

However, it is hard to predict how behaviorally flexible individuals with different wing shapes

can be during transitions between seasons. Changes in habitat structure and food availability

in a Neotropical seasonal dry forest has been linked with differential spatial and resource use

between individuals in a mammal species [81]. Thus, it is possible that both variables play a

role on how bats with different wing morphologies explore and specialize in their

environment.

Conclusions

Our results indicate that individual morphological variation in wing shape of the bat Pterono-
tus mesoamericanus explains individual variation in diet. Individuals with more triangular and

pointed wings were found to be more specialized, whereas individuals with more rounded

wings had a more generalist diet and similarly, measures of dietary dissimilarity were related

to dissimilarity in wing shape. The individual variation found in the present study may be due

to the capability of individuals to access slightly different habitats (open versus cluttered habi-

tats) with different prey availabilities (richness and abundance) and species composition. The

present study indicates that changes in wing morphology can play an important role as a

source of individual variation and feeding specialization within natural populations of bats.

However, other longer term studies are required to assess the consistency of the patterns that

we have observed.
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