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Abstract

Interleukin-1 (IL-1) is a large cytokine family closely related to innate immunity and inflammation. IL-1 proteins are key
players in signaling pathways such as apoptosis, TLR, MAPK, NLR and NF-kB. The IL-1 pathway is also associated with cancer,
and chronic inflammation increases the risk of tumor development via oncogenic mutations. Here we illustrate that the
structures of interfaces between proteins in this pathway bearing the mutations may reveal how. Proteins are frequently
regulated via their interactions, which can turn them ON or OFF. We show that oncogenic mutations are significantly at or
adjoining interface regions, and can abolish (or enhance) the protein-protein interaction, making the protein constitutively
active (or inactive, if it is a repressor). We combine known structures of protein-protein complexes and those that we have
predicted for the IL-1 pathway, and integrate them with literature information. In the reconstructed pathway there are 104
interactions between proteins whose three dimensional structures are experimentally identified; only 15 have
experimentally-determined structures of the interacting complexes. By predicting the protein-protein complexes
throughout the pathway via the PRISM algorithm, the structural coverage increases from 15% to 71%. In silico mutagenesis
and comparison of the predicted binding energies reveal the mechanisms of how oncogenic and single nucleotide
polymorphism (SNP) mutations can abrogate the interactions or increase the binding affinity of the mutant to the native
partner. Computational mapping of mutations on the interface of the predicted complexes may constitute a powerful
strategy to explain the mechanisms of activation/inhibition. It can also help explain how an oncogenic mutation or SNP
works.
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Introduction

Interleukin-1 (IL-1) is a large family of cytokines (small cell

signaling proteins) that mediate innate immune responses to

defend the host against pathogens. The IL-1 family has 11

member proteins (IL-1F1 to IL-1F11) and they are encoded by 11

distinct human and mouse genes [1–3]. The first discovered family

members, IL-1a (newly named IL-1F1) and IL-1b (IL-1F2), are

secreted by macrophages and epithelial cells in response to

pathogens and have strong proinflammatory properties leading to

fever (affecting hypothalamus) and activation of T cells and

macrophages.

IL-1 family members have been intensely studied (especially IL-

1a and IL-1b) unraveling their roles in a number of autoin-

flammatory diseases [4–6]. Signaling initiated by the IL-1

cytokines increases the expression of adhesion factors on

endothelial cells resulting in immune cells (such as phagocytes

and lymphocytes) migration to the site of infection. The

autoinflammatory disease is a class of chronic inflammation with

increased secretion of active IL-1b, thus blocking IL-1b is

therapeutically beneficial [7].

IL-1a and IL-1b can induce mRNA expression of hundreds of

genes, including themselves (a positive-feedback loop), and their

gene regulatory actions are conducted via a conserved signaling

pathway [8]. Signal propagation mainly depends on mitogen-

activated protein kinases (MAPKs), MAPK kinases (MKK/

MAP2Ks), MKK kinases (MKKK/MAP3K/MEKKs) and the

downstream proteins of MAPKs, finally leading to activation of

transcription factors that regulate the expression of host defense

proteins (Figure 1). The signal initiates by binding of IL-1a or IL-

1b ligands to type I receptor (IL-1R1) and propagates with the

help of the co-receptor IL-1 receptor accessory protein (IL-1RAP),

forming a trimeric complex [9]. In this trimeric complex, the Toll-

and IL-1R–like (TIR) domains on the cytoplasmic regions of IL-

1R1 and IL-1RAP receptors get close to each other resulting in the

recruitment of myeloid differentiation primary response gene 88

(MYD88), Toll-interacting protein (TOLLIP) [7] and IL-1

receptor-associated kinase 4 (IRAK4) [10,11]. A stable complex
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is formed between IL-1, IL-1R1, IL-1RAP, MYD88 and IRAK4

[10]. MYD88 binding triggers phosphorylation of IL-1 receptor-

associated kinases IRAK4, IRAK2 and IRAK1, leading to the

recruitment and oligomerization of tumor necrosis factor-associ-

ated factor 6 (TRAF6) [12–14]. TRAF6 and phosphorylated

IRAK1 and IRAK2 dissociate and migrate to the membrane to

associate with TGF-b-activated kinase 1 (TAK1) and TAK1-

binding proteins TAB1 and TAB2 [7]. The TAK1-TAB1-TAB2-

TRAF6 complex migrates back to the cytosol, where TRAF6 is

ubiquitinated and TAK1 is phosphorylated [7]. From this point,

the signal can propagate via two main paths: IKK – IkB – NF-kB

and/or MKK – MAPK/JNK/ERK (Figure 2). In the first path,

phosphorylated TAK1 activates the inhibitor of nuclear factor

kappa-B kinase subunit beta (IKKb) and activated IKKb phos-

phorylates the nuclear factor kappa-B inhibitor (IkB) which gets

degraded so that nuclear factor kappa-B kinase (NF-kB) is released

and migrates to the nucleus [7]. TAK1 can also activate mitogen-

activated kinases (MAPK) p38, c-Jun N-terminal kinases (JNK) and

extracellular signal-regulated kinases (ERK) by interacting with

MAP kinase kinase (MKK) proteins. Downstream in this path, are

transcription factors such as c-Jun, c-Fos, c-Myc and ATF2.

MAP kinase signaling pathways, which are conserved among

eukaryotes, mediate cellular events triggered by extracellular

signals such as cytokine binding [15] and they are essential for IL-1

signaling (Figures 1 and 2). This pathway builds upon a triple

kinase cascade consisting of a MAP kinase kinase kinase (MKKK/

MEKK), a MAP kinase kinase (MKK/MEK) and a MAP kinase

(MAPK) and these kinases sequentially phosphorylate and activate

each other [15]. The JNK and p38 MAP kinases, called stress

activated MAP kinases, have roles in tumor suppression and can

be both directly phosphorylated and activated by MKK4, which is

also a tumor suppressor [16–18]. The successive activation

mechanism takes place as follows: MEKK interacts with inactive

MKK and phosphorylates it; the complex dissociates, releasing the

free and active MKK, which is ready to interact with inactive JNK

to activate it [15]. Activation of JNK leads to disruption of the

MKK-JNK interaction, freeing the active JNK to phosphorylate

its downstream targets. There are several mechanisms through

which stress activated MAP kinases regulate tumor suppression,

including promoting apoptosis (p53, Bax, Bim/Bmf), inhibiting

proteins that inhibit apoptosis (Bcl2, Bcl-XL, 14-3-3, Mcl-1),

inhibiting tumor development (TGF-b1) and tumor growth

(CDC25, CyclinD1/CDK4) [16]. Somatic mutations were iden-

tified in the JNK pathway via large-scale sequencing analyses of

human tumor cells [19,20], and JNK3 encoding gene (MAPK10)

has been speculated to be a putative tumor suppressor gene as

almost half of the brain tumors that were examined included

mutations [21]. ERK1 and ERK2, the other members of MAPK

family, are also upregulated in tumors [22].

Recently, inflammation has been related to cancer [23–25].

Cancers are mostly due to somatic mutations and environmental

factors, and chronic inflammation is implicated by most of these

risk factors [26]. Chronic inflammation, due to autoimmune

diseases or infections, causes tumor development via several

mechanisms, including oncogenic mutation induction [26].

Oncogenic mutations and single nucleotide polymorphisms (SNPs)

are key players in inflammation-related cancers and it is crucial to

map the mutations/SNPs on the corresponding 3D structures of

the proteins to gain insight into how they affect protein function

[27,28]. SNPs that cause diseases, if not in the core of the protein,

are frequently located in protein-protein interface regions rather

than elsewhere on the surface [26,28]. Structural knowledge can

clarify the conformational and functional impact of the mutation/

SNP on the protein [27–29]. The effect of a functional mutation

can be expressed by a change in the specificity of the interactions

between a mutated protein and its partners [30]. Quantitatively, a

mutation changes the binding free energies of the mutant’s

interactions with its partners with respect to the free energies of its

interactions in the native form [30]. The functional impact of the

mutation on the specificity differs. The mutation can destabilize

the protein and/or its interaction, leading to ‘loss-of-function’; or

can lead to a change in the specificity of protein-partner

interactions, resulting in a ‘gain-of-function’, or can gain new

binding partners and hence a new biological function, i.e. result in

a ‘switch-of-function’ [30].

Two recent studies used structural pathways for mapping

mutations on protein-protein interfaces, one on smaller scale

Figure 1. IL-1 signaling pathway diagram. In this simplified
diagram of the IL-1 signaling pathway, the signal initiates by the
recognition of cytokines by IL-1 receptors and propagates via multiple
sub-pathways involving family homologs or alternate pathways to
activate transcription factors downstream.
doi:10.1371/journal.pcbi.1003470.g001

Author Summary

Structural pathways are important because they provide
insight into signaling mechanisms; help understand the
mechanism of disease-related mutations; and help in drug
discovery. While extremely useful, common pathway
diagrams lacking structural data are unable to provide
mechanistic insight to explain oncogenic mutations or
SNPs. Here we focus on the construction of the IL-1
structural pathway and map oncogenic mutations and
SNPs to complexes in this pathway. Our results indicate
that computational modeling of protein-protein interac-
tions on a large scale can provide accurate, structural
atom-level detail of signaling pathways in the human cell
and help delineate the mechanism through which a
mutation leads to disease. We show that the mutations
either thwart the interactions, activating the proteins even
in their absence or stabilize them, leading to the same
uncontrolled outcome. Computational mapping of muta-
tions on the interface of the predicted complexes may
constitute an effective strategy to explain the mechanisms
of mutations- constitutive activation or deactivation.

The Structural IL-1 Signaling Pathway and Cancer
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pathways [27] and the other on large scale [28]. Mosca et al. [27]

mapped mutations onto proteins as an application of their useful

computational modeling technique with the data limited to the

Kyoto Encyclopedia of Genes and Genomes (KEGG) complement

cascade pathway and the interactions of complement component 3

(C3) and complement factor H (CFH) which it includes. In a

pioneering work, Wang et al. [28] explored genotype-phenotype

relationships on a large scale. They systematically examined

thousands of mutations and mapped them onto interaction

interfaces and experimentally validating their predictions for the

MLH1-PMS2, WASP-CDC42 and TP63–TP73 interactions.

These and other studies emphasized the need for computational

methods for large-scale interactome studies [31,32]. We propose a

method similar to ones used in the works of Mosca et al. [27] and

Wang et al. [28], while introducing the advantage of in silico

mutagenesis to observe the effects of mutations on protein-protein

interactions on a large scale.

Here, we construct the IL-1 signaling pathway by combining

the related pathways and information from the literature [8,33–

35] (Figure 2). We observe that there are approximately 100

interactions between proteins that have experimentally identified

3D structures. However, only 15 of the interactions have structures

of protein-protein complexes (Figures 3A and S1) in the Protein

Data Bank (PDB, http://www.rcsb.org/pdb/) [36]. The structural

coverage of the pathway is under 20z%. Our major aim is to

expand the structural apoptosis pathway [37], and map oncogenic

mutations and SNPs to reveal their mechanism.

Results/Discussion

Reconstruction and structural analysis of IL-1 pathway
We are able to increase the structural coverage from 15% up to

71% by predicting the protein-protein complexes throughout the

pathway using the PRISM algorithm [38–40], such that the

Figure 2. IL-1 signaling pathway reconstructed by combining related pathways and information from the literature. This detailed
map of IL-1 signaling presents the protein-protein interactions and the resulting cellular events. The colored nodes represent proteins having
experimentally identified 3D structures and the white nodes are the proteins without 3D structures. The edges represent protein-protein interactions
(straight/dashed arrows relate to available/unavailable 3D structures of proteins) or associations leading to cellular events such as cell cycle or gene
expression (dashed arrows beginning with circular heads).
doi:10.1371/journal.pcbi.1003470.g002

The Structural IL-1 Signaling Pathway and Cancer
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Figure 3. Structures of protein-protein complexes mapped to the IL-1 signaling pathway. A. Overall distribution of experimental and
predicted complexes on the pathway. Dark blue interactions represent the experimentally determined complex structures in the PDB, red
interactions represent the predicted complexes with predicted binding energies lower than 210 energy units and yellow interactions represent the
interactions for which neither experimental nor computational data exists. B. Predicted structures (Template PDB code+Target PDB codes+Energy
value): IL1a-IL1R1 (1itbAB 2l5x 4depB 271.92); IL1a-IL1RAP (1itbAB 2l5x 4depC 249.25); IL1R1-MYD88 (1gylAB IL1R1 (model) 2z5v 223.8); IL1R1-
TOLLIP (1oh0AB IL1R1 (model) 1wgl 218.85); IL1RAP-MYD88 (1p65AB IL1RAP (model) 2z5v 231.72); MYD88-TOLLIP (1yrlAC 3mopA 1wgl 211.04);
MYD88-TRAF6 (1vjlAB 2js7 1lb6 237.01); TRAF6-IRF7 (1g8tAB 2o61 3hct 225.83). The blue color represents the proteins that precede its partners in
the information flow.
doi:10.1371/journal.pcbi.1003470.g003

The Structural IL-1 Signaling Pathway and Cancer
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number of predicted structures of protein-protein complexes that

have binding energies lower than 210 energy units is 74 out of

104 interactions (Figure 3). The predicted structures of complexes

are also compared with the 15 available PDB structures of the

complexes in the pathway. Except for three where the proteins

interact with peptides, all PDB structures could be successfully

reproduced via the predictions (Table S1).

Mapping and analysis of SNPs and oncogenic mutations
in the IL-1 pathway

A large scale analysis of the distribution of oncogenic mutations

and SNPs in the predicted and experimental structures of protein-

protein complexes in the IL-1 pathway indicated that both

oncogenic mutations and SNPs correspond significantly to

interface regions and their ‘nearby’ residues (Tables 1–4 and

Table S2) with p-values 0.00013 and 0.0009, respectively. Nearby

residues are defined as the residues that are at most 6 Å away from

interface residues in three dimensional space. Along similar lines,

David et al. showed that SNPs, if not in the protein core, are more

likely to occur at the protein-protein interfaces rather than the

remaining surface [41].

Oncogenic mutations in the interfaces of MKK4 with
JNK2 and JNK3

Three oncogenic mutations and a SNP are observed either

directly on the predicted interfaces of MKK4 with JNK2 and

JNK3 (the SNP is a computational hot spot residue in the MKK4-

JNK3 interaction) or as nearby residues (Figure 4). In Figure 4A,

the predicted MKK4-JNK2 interaction has a binding energy of

212.29 energy units. Analysis of interface residues of the predicted

complex reveals that MKK4 Ser251 and JNK2 Gly268 corre-

spond to the interface region. These residues are important

because the p.Ser251Asn mutation is involved in metastatic

melanoma and p.Gly268Ala is a SNP. Figure 4B shows the

predicted complex of MKK4-JNK3. On MKK4, Arg154 is

mapped to the interface as a computational hot spot residue and

its mutation to Tryptophan (p.Arg154Trp) is involved in colorectal

adenocarcinoma. Moreover, Gln142 is a nearby residue of the

interface and the MKK4 p.Gln142Leu mutation is involved in

lung squamous cell carcinoma. Although it is known that MKK4

interacts with MAPKs (JNK1/2/3 and p38a/b) through its

MAPK-docking site (D-site) [42], here we identify a complemen-

tary binding interface between MKK4 and JNK2/3. The D-site is

located at the N-termini of MKK4 (residues 37–52), but the N-

termini is missing in all of the 3D structures (PDB codes: 3aln, 3alo

and 3vut; including residues between 80 and 399) and hence could

not be included in our predictions. However, we modeled a

complementary interface, which is not at the D-site but in the

kinase catalytic domain. This model can be explained by the

finding that although the D-site facilitates the activation of

MAPKs through MKK-MAPK signaling, the specificity is also

affected by allosteric cooperativity among other binding motifs in

the kinase catalytic domains [43]. The mutations involve

important residues in the critical domains of MKK4 such as

Ser251 in the activation loop and Gln142 in the aC-helix. Gln142

was also proposed by another study [30] to be in the interface of

the MKK4-human kinase STK4 interaction and the p.Gln142Leu

mutation is speculated to switch-off native partners, gathering non-

native interaction partners instead. Also, the MKK4 protein has a

large interface for the dimer formed in the experimentally

identified crystal structure (PDB code: 3alnAB) which includes

Gln142. Similar to the dimer in the PDB, in our predictions both

MKK4 and JNK3 interact with each other through their kinase

domains, forming a large interface area including Gln142 as a

nearby residue. Similarly, a putative interface of MKK-MAPK

interaction was found to overlap with the ERK2 dimerization

interface [44]. Wilsbacher et al. also listed the important regions on

the MAPK for MKK-MAPK binding; one of them is the tip of the

C helix [44], which is in accordance with our model as Gln142 in

the aC-helix of MKK4 is one of the mutants and found to be

important in MKK4-JNK3 interaction. In short, the predicted

interaction does not show a simple recognition (D-site) binding but

rather involves a specificity binding model.

The mechanisms of the MKK4 mutations
In order to better understand the mechanism through which the

mutations may relate to cancer, these residues are mutated

computationally and the resulting predicted binding energies of

the complexes are compared (Table 5). After individual energy

minimization of the target structures and re-running PRISM on

the energetically minimized wild type and mutant targets, we

observe models of protein-protein complexes with slightly different

interface residues and conformations for the minimum energy

solutions. The comparisons are based on these reference

interactions. For the MKK4-JNK3 interaction, results are also

obtained using a different template (1p4oAB) than the original

(2ab0AB). None of the complexes predicted using the original

template is favorable due to the predicted positive binding energy

values after the minimization and we are unable to assess

mutations based on unfavorable reference interaction. However,

predictions of the MKK4-JNK3 interaction based on the 1p4oAB

template clearly show the effect of p.Gln142Leu and p.Arg154Trp

mutations as the wild type complex is still favorable after the

minimization (212.66 energy units, Table 5 and Figure 5A). The

mutation of Arg154 to Tryptophan abolishes the interaction as the

predicted binding energy becomes positive (12.84 energy units),

implying that the interaction is not favorable anymore (Figure 5B).

We can explain this change in terms of the specificity as an effect

of a loss-of-function type mutation, as MKK4 cannot phosphor-

ylate and activate JNK3 and its tumor-suppression function is lost.

On the other hand, Gln142 is a nearby residue and its mutation to

Leucine causes a dramatic decrease in the predicted binding

energy (241.14 energy units) with respect to the newly predicted

reference MKK4-JNK3 interaction (212.66 energy units) (Table 5

and Figure 5C). We observed that the interaction not only still

takes place after the mutation occurs but also it is predicted to have

a tighter binding.

The contribution of this change to cancer development can be

interpreted in two ways: a stronger complex between MKK4 and

JNK3 takes place and the interaction, previously transient, gets so

strong that it becomes obligate and cannot dissociate so that the

activated JNK3 cannot activate its downstream targets, resulting in

tumor in predisposed persons; or the essentially constitutively

active MKK4 phosphorylates the JNK3 targets and the elevated,

unregulated JNK activation leads to tumors as shown previously

[45]. A similar case was also previously shown for EGFR, the

activation loop of which could not switch to the inactive

conformation due to a mutation. Hashimoto et al. showed that

single cancer mutations in kinase domains destabilized inactive

states [46]. Moreover, our structural analysis explains the

experimental data in the study of Ahn et al. [18], who performed

site-directed mutagenesis using human MAP2K4 (MKK4) cDNA in

order to create somatic mutants which are subjected to a mutant

JNK1 as a substrate and concluded that p.Arg154Trp is one of the

loss-of-function mutations whereas p.Gln142Leu is a gain-of-

function mutation which results in a highly active MKK4 similar

to a synthetic constitutively active mutant.

The Structural IL-1 Signaling Pathway and Cancer
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Table 1. The distribution of oncogenic mutations and SNPs on PDB structures of target proteins in IL-1 pathway.

Protein PDB Code COSMIC
COSMIC
Surface LS-SNP

LS-SNP
Surface

Total
Residues

Surface
Residues

ATF2, CREB 1t2kD 1 0 1 1 61 61

ATF2, CREB 4h36B 0 0 0 0 8 8

c-Fos, FOS 1fosE 4 4 2 2 60 60

c-Jun, JUN 1jnmA, 1fosF 4 4 1 1 57 57

c-Myc, MYC 1nkpA 8 7 0 0 88 81

ELK1 1duxC 7 5 0 0 88 61

ERK1, MAPK3 2zoqA 14 10 11 9 351 209

ERK2,MAPK2 1wzyA, 3teiA, 4fv4A, 4fv7A, 1tvoA, 4fv0A, 2y9qA 26 17 3 3 365 199

histone H3.3 4hgaB 0 0 6 6 93 85

HSP27 3q9qA 2 1 9 9 79 67

NFKBIA 1nfiE, 1iknD 0 0 8 6 215 142

NFKBIB 1oy3D 0 0 0 0 220 130

IKBKA, CHUK, IKBKB 3brtA, 3brvA 0 0 8 8 39 39

IKBKG 3brvB, 3brtB 0 0 1 1 62 61

IL1A 2l5xA 6 3 11 8 151 102

IL1R1 4depB 18 13 29 21 296 216

IL1RAP 4depC 16 13 14 9 288 201

IRAK2 3mopK 3 1 11 5 93 65

IRAK4 3mopG 2 2 7 5 107 76

IRF7 2o61A 0 0 0 0 498 351

JNK1, MAPK8 3o17A, 1ukhA, 3eljA 30 18 8 7 366 213

JNK2, MAPK9 3e7oA, 3npcA 30 18 9 8 357 211

JNK3 3fv8A, 2zduA, 2r9sA, 4h36 2 1 8 4 356 203

MAPKAPK2 2jboA, 2onlC 22 16 13 11 317 211

MAPK14 1kv1A, 2bajA, 3odyX, 3queA, 1w82A, 2y8oA, 2onlA 0 0 30 24 351 211

MAPK11 3gc9A, 3gp0A, 3gc8A 0 0 26 21 347 213

MEKK3, MAP3K3 2pphA, 2jrhA, 2c60A 6 4 3 3 93 76

MKK1, MAP2K1 2p55A 31 17 6 6 289 181

MKK2, MAP2K2 1s9iA 17 12 12 10 303 182

MKK4, MAP2K4 3aloA, 3alnA, 3vutA 56 40 6 4 289 190

MKK6, MAP2K6 3vn9A, 3fmeA 25 19 7 6 291 174

MKK6, MAP2K6 2y8oB 0 0 0 0 8 8

MKK7, MAP2K7 2dylA 29 22 6 3 272 172

MNK1, MKNK1 2hw6A 0 0 16 10 242 145

MNK1, MKNK1 2y9qB 0 0 0 0 17 17

MNK2, MKNK2 2ac3A 0 0 9 7 277 191

MSK1, RPS6KA5 3kn5A, 3kn6A 23 12 14 10 282 174

MSK1, RPS6KA5 1vzoA 20 14 15 12 324 188

MYD88 2js7A, 2z5vA 22 14 0 0 160 106

MYD88 3mopA 7 7 0 0 105 74

NF-kBp105 3gutB 0 0 9 7 312 198

NFKB1 1svcP, 1nfiB 0 0 8 6 311 198

NFKB3, RELA 1nfiA, 3gutA 0 0 12 11 295 208

NIK, MAP3K14 4g3dA, 4dn5A 14 7 5 4 331 194

TAB1 2j4oA 25 18 21 16 355 207

TAK1 2yiyA, 2evaA 21 15 8 4 295 181

TOLLIP 1wglA 3 3 5 3 59 51

TRAF6 1lb4A, 1lb5A, 1lb6A, 12 11 3 2 155 112

The Structural IL-1 Signaling Pathway and Cancer
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Oncogenic mutations on the interactions of MKK7 with
JNK3

In the second case study, the analysis of the predicted MKK7-

JNK3 complex reveals the effect of the p.Arg178Cys and

p.Arg178His mutations in MKK7. Similarly, the individual targets

are energetically minimized, in silico mutations are performed, and

PRISM is re-run to obtain new values of predicted binding

energies (Table 5). When the values are compared to that of the

new reference MKK7-JNK3 interaction (211.66 energy units), a

jump in both mutant cases (Table 5) and a significant change in

the conformations are observed, making the energies positive so

that these interactions cannot take place anymore. Thus, the

mutation of Arg178 to Cys and His are both inferred as loss-of-

function mutations abrogating the interaction with the JNK3

partner. Since MKK7 is a tumor suppressor, the inhibition

mechanism of the MKK7-JNK3 interaction could presumably

lead to tumor progression due to the loss-of-function of MKK7.

The interactions of IL-1 receptors IL1R1 and IL1RAP
Finally, we concentrate on two IL-1 pathway specific interac-

tions, namely the interactions of IL-1 with receptors IL1R1 and

IL1RAP. After mapping the oncogenic mutations and SNPs onto

the interfaces of these receptors, we observe that the predicted

structure for IL-1a-IL1R1 interaction is important due to

containing 11 SNPs and 5 mutations on its interface and nearby

residues (see the last row of Table 2). Comparison of the predicted

binding interface to experimentally reported interactions reveals

common residues, confirming the predicted complex structure of

IL-1a-IL1R1. In the work of Labriolatompkins et al. [47], using

oligonucleotide-directed mutagenesis, they determined seven

important residues on the binding site of human IL-1a for

IL1R1 binding. When we mapped these residues on the PDB

structures and compared them to the interface of the predicted

wild type IL-1a-IL1R1 interaction (with 271.92 units of predicted

binding energy), we observed that 4/7 residues (Arg16, Ile18,

Ile68, Trp113) are in common and the remaining three residues

(Asp64, Asp65, Lys100) are nearby residues of the interface.

After confirming that the predicted structure is in accordance

with related data in the literature, the binding energies of the

mutants are compared to the energetically minimized reference

interaction (219.5 energy units). Being a ligand-receptor interac-

tion, this complex has a large interface containing 75 residues in

addition to 104 nearby residues. Intuitively, we expect to observe

insignificant effects of SNPs or single point mutations on the

interaction. The results are in parallel with our expectation and

there are no significant changes in the predicted binding energies

for the interactions with mutant proteins. However, we notice an

exception for the p.Ile68Asn SNP on IL-1a ligand (Table 5). This

SNP is observed to be very important for binding as it blocks the

interaction of the mutant ligand not only with the wild type

receptor but also with most of the mutant receptors (Table 5). This

observation may be supported by the information that Ile68 is

both a computational hot spot residue and experimentally

determined as critical in binding [47]. Thus, importantly, this

SNP may affect the innate immune system and inflammatory

response as this interaction is critical for the initiation of IL-1

signaling, with the only alternative pathway being the IL1B(IL-

1b)-IL1R1 interaction. However, interestingly this is not always

the case. A ligand bearing the p.Ile68Asn substitution (a

computational hot spot) appears to interact with a p.Ile276Thr

mutant receptor (a nearby residue of the interface) with the energy

of 240.64, suggesting that this mutation on the receptor is in fact

useful for canceling out the effect of the SNP on the ligand

(Figure 6). Although these two residues are not in contact in three

dimensional space (with a distance of 16.1 Å between them), the

change in the binding energy is significant implying that the

difference stems from slight conformational changes. This

observation reveals that compensatory changes do not necessarily

involve residues in contact. The p.Ile276Thr mutation on IL1R1 is

important: according to the COSMIC database [48,49] it is

related to endometrioid carcinoma and IL1R1 expression was

found to be increased in active endometriotic lesions [50]. This

fact supports our finding that IL-1a-IL1R1 interaction is still

favorable between this mutant receptor and IL-1a with the

p.Ile68Asn SNP, and emphasizes the usefulness of our strategy.

To conclude, in the absence of experimental data identifying the

location of the mutations and SNPs on the protein structures, we are

able to computationally clarify the mechanism of inhibition/acti-

vation by mapping these mutations on the interface of the predicted

MKK4-JNK3, MKK7-JNK3 and IL-1a-IL1R1 complexes; and

our account is corroborated by available experimental data.

Conclusions
Here, we reconstructed the IL-1 signaling pathway by

combining related pathways and information in the literature,

expanding the previously constructed structural apoptosis path-

way. By predicting protein-protein complexes throughout the

pathway using the PRISM algorithm, the structural coverage of

the pathway increased up to 71%. The distributions of oncogenic

mutations and SNPs in the predicted structures of protein-protein

complexes indicated that they significantly correspond to interface

and adjoining residues, and more importantly, in some cases to

computational hot spot residues. While oncogenic mutation and

SNP data are reported for single proteins, by mapping them onto

interfaces we are able to determine the critical binding partners,

interactions with whom are affected by the mutations. Addition-

ally, in silico mutagenesis of the corresponding residues and

comparison of the change in the binding energies between the wild

type and mutant shed light on the mechanism of cancer

Table 1. Cont.

Protein PDB Code COSMIC
COSMIC
Surface LS-SNP

LS-SNP
Surface

Total
Residues

Surface
Residues

TRAF6 3hcsA, 3hctA, 2eciA 13 11 9 7 157 119

IL1B 4depA 16 12 4 2 151 100

IL1R1 (model) - 0 0 0 0 157 106

IL1RAP (model) - 0 0 0 0 145 96

TOTAL 535 371 394 302 10988 7181

doi:10.1371/journal.pcbi.1003470.t001
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development, inflammation and other potential diseases. The IL-

1a-IL1R1 interaction bearing the p.Ile68Asn and p.Ile276Thr

mutations provides one remarkable example in inflammatory

response and cancer.

Materials and Methods

The reconstructed IL-1 signaling pathway (Figure 2) is used as

the target pathway for predicting protein-protein interactions.

There are 54 nodes (proteins) and 129 edges (interactions) between

them (Tables S3 and S4). Four nodes (IRAK1, MEKK1, MKK3

and TAB3) are excluded as they do not have experimentally

identified 3D structures. 104 edges link the remaining target

proteins (50 nodes), and only 15 of these have structures of protein-

protein complexes in the PDB (Figures 3A and S1, Tables S1, S3

and S4). Model structures are used for the TIR domains of IL1R1

and IL1RAP receptors as they are the key receptors initiating the

signaling pathway and only the structures of their extracellular

Table 2. The distribution of oncogenic mutations and SNPs on structures of interacting protein-protein complexes in IL-1
pathway.

Interacting
Protein Pairs

COSMIC on
Interface

COSMIC on
Nearby

LS-SNP on
Interface

LS-SNP on
Nearby

Interacting
Protein Pairs

COSMIC on
Interface

COSMIC on
Nearby

LS-SNP on
Interface

LS-SNP on
Nearby

1nfiE 1nfiA 0 0 1 1 1ukh 1fosF 3 3 0 0

2pph 1lb6 2 0 0 1 2o61 3hct 2 2 0 0

4h36A 4h36B 0 0 0 1 3o17 3alo 2 4 0 1

2yiy 2yiy 0 0 0 0 2dyl 3npc 3 3 0 1

3aln 3gc8 2 1 0 0 3brvB 1nfiE 0 0 2 2

1mod 1wgl 0 0 2 0 1oy3 1ikn 0 0 0 2

3mopC 3mopG 1 1 1 1 4hga 3kn6 0 2 1 1

1t2k 4fv7 0 0 0 0 1lb4 4g3d 3 0 2 0

3hcs 2j4o 1 4 3 1 2eva 2dyl 3 1 0 1

1nfiE 1nfiD 0 0 2 0 2hw6 3gc8 0 0 2 0

4depA 4depC 3 1 0 0 1wzy 1fos 2 2 1 0

4depB 4depC 1 0 0 3 2ac3 4fv0 0 1 0 1

2jrh 3fme 1 1 1 0 2mod 2z5v 2 1 0 0

3kn5 1tvo 2 2 1 0 3vut 3e7o 6 3 1 1

2y8oB 2y8oA 0 0 1 0 1ukh 1t2k 3 1 0 0

1s9i 4fv7 0 1 0 1 2y9qA 2y9qB 3 1 0 0

1svc 1oy3 0 0 1 0 3brtA 3brtB 0 0 3 2

1jnm 3npc 2 2 1 2 3vn9 3gp0 2 1 2 4

3mopK 3mopG 1 0 2 3 2zoq 1vzo 1 0 1 0

3hcs 3mopK 2 2 3 2 2pph 3vut 7 2 0 1

1dux 2baj 0 0 2 1 1w82 3aln 3 8 1 1

3elj 1dux 3 3 1 0 3fv8 2dyl 1 4 2 1

3tei 1nkp 1 5 0 0 3mopG 1lb5 0 5 1 1

1fosEG 1ukh 3 3 0 1 1nfiAC 3brtB 0 0 0 2

3gutB 1nfiB 0 0 0 0 2js7 1lb6 2 3 1 0

3gutB 3gutA 0 0 2 0 1t2k 3gp0 0 0 0 1

1t2k 3kn5 0 0 2 2 3aln 3fv8 2 3 1 0

2p55 4fv4 5 2 0 0 2eva 4dn5 3 5 0 1

1nfiAC 1oy3 0 0 3 1 2jbo 3gc9 2 0 1 2

3ody 2hw6 0 0 0 2 1fosE 1fosF 3 3 1 2

3mop 1wgl 3 1 0 3 3que 1t2k 0 0 2 1

1nfiB 1nfiA 0 0 2 0 2l5x 4depC 1 2 4 1

2jbo 3q9q 2 2 2 7 1mod 2z5v 3 1 0 0

3kn5 1kv1 3 1 3 1 3alo 2yiy 7 3 1 0

3gc9 1vzo 1 0 2 2 2eva 3vn9 3 4 0 1

1fosF 2r9s 0 1 0 0 2onlA 2onlC 3 1 2 3

2zdu 1fosE 1 1 1 0 4depA 4depB 3 5 5 6

2eva 2eci 1 3 0 0 2l5x 4depB 3 2 4 8

2c60 2dyl 4 2 1 1

doi:10.1371/journal.pcbi.1003470.t002
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domains have been deposited in the PDB. The theoretical model

structures are obtained from ModBase which is a database of

comparative protein structure models [51].

Protein-protein interaction prediction algorithm – PRISM
The 3D structures of protein-protein complexes in the

reconstructed IL-1 signaling pathway are predicted by using the

PRISM (PRotein Interactions by Structural Matching) [38–40]

tool (Figure 7). PRISM is a large-scale protein-protein interaction

prediction, modeling and structure assembly tool [40] that pre-

viously was successfully applied to several pathways [37,52–54].

Two input sets, the template and the target sets, are required by the

PRISM algorithm to obtain protein-protein interaction predictions

(Figure 7). The structurally nonredundant (nonhomologous) unique

interface dataset described by Tuncbag et al. [55] is used as the

template set in this work. The dataset was generated by

hierarchical clustering of 49512 two-chain interfaces (extracted

from all of the available PDB complexes in the version of

February 2006) into 8205 clusters. In this work, one represen-

tative interface for each of the clusters is combined into the

template set. However, the number decreases from 8205 to

7922 due to the update in the PDB (since 2006) and replace-

ment of previous structures with the better ones under different

PDB codes. PRISM is a prediction algorithm based on three-

dimensional protein structures and therefore it can only be

applied to target proteins with known (experimental or high

quality modeled) structures. The target set may contain a

minimum of two proteins and the number of proteins in the set

can increase up to any desired number, that is, all the proteins

in a given pathway. Here, the target set is composed of IL-1

related PDB chains, the interactions and complex structures of

which we want to predict. We focused on every single one of

these and applied the prediction algorithm for each of the

binary interactions (104 edges) between the targets that have 3D

structures (50 nodes) (Table S3). However, for one interaction

there might be more than two structures in the target set as

each of the proteins may have more than one experimentally

identified structure. We included all available PDB codes for the

target proteins in each run to have a complete picture of

possible protein-protein complexes.

The prediction algorithm has four main steps: target surface

extraction, structural alignment of the template interface and the

targets, transformation of the targets onto the template and

eliminating collisions, and flexible refinement of the resulting

complexes (Figure 7). Firstly, the surface residues of target chains

are extracted via the Naccess program [56] which calculates the

accessible surface area of residues. The criterion for a residue to be

accepted as a surface residue is that its relative surface accessibility

should be greater than 5%. In the second step, the structural

comparison of the template interface chains with the target chain

surfaces are carried out using the MultiProt structural alignment

tool [57] based on some filters. For example, if the template chain

has less than or equal to 50 residues, then 50% of the template

residues should match the target surface residues; if larger than 50,

a 30% match of template to target residues is required. In

addition, at least one ‘hot spot’ residue on the template interface

should match one of the hot spots on the target surface. In the

third step, the resulting set of target surfaces from the previous set

are transformed onto the corresponding template interfaces to

form a complex so that these two targets are potential partners

interacting with each other through an interface similar to the

template interface architecture. Following transformation, PRISM

eliminates the residues of the target chains that collide with each

other. Finally, the FiberDock algorithm [58,59] is used to refine

the interactions allowing some flexibility, to resolve steric clashes of

side chains, to compute the global energy of the complex and to

rank the solutions based on the calculated binding energies. The

calculated binding score is correlated with the experimental

binding free energy and taken as the approximation of the binding

free energy function [58,60]. We accept a threshold of 210 energy

units for a favorable interaction [54]. The detection of computa-

tional hot spot residues that are used in the analyses is done by

using HotRegion Server [61].

Computational analysis of the SNPs and mutations on
the structures of the protein-protein complexes

Once all possible structures of protein-protein complexes in the

IL-1 signaling pathway are predicted, the analysis of the interfaces

Table 4. t-test for SNPs mapped onto the interface region
including the nearby residues.

SNPs on interface
region+nearby
residues/total interface
size with nearby residues

SNPs on
noninterface
region/total
noninterface size

Mean 0.026 0.047

Variance 0.001 0.002

Observations 77 77

Pooled Variance 0.001

Hypothesized
Mean Difference

0

df 152

t Stat 23.932

P(T, = t) one-tail 0.00006

t Critical one-tail 1.655

P(T, = t) two-tail 0.00013

t Critical two-tail 1.976

doi:10.1371/journal.pcbi.1003470.t004

Table 3. t-test for COSMIC mutations mapped onto the
interface region including the nearby residues.

COSMIC mutations on
interface region+nearby
residues/total interface
size with nearby residues

COSMIC mutations
on noninterface
region/total
noninterface size

Mean 0.039 0.061

Variance 0.001 0.002

Observations 77 77

Pooled Variance 0.002

Hypothesized
Mean Difference

0

df 152

t Stat 23.397

P(T, = t) one-tail 0.0004

t Critical one-tail 1.655

P(T, = t) two-tail 0.0009

t Critical two-tail 1.976

doi:10.1371/journal.pcbi.1003470.t003
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in terms of SNP and mutation distribution is done. In addition to

mapping the available SNPs and mutations onto predicted

complexes and checking whether they correspond to the interface,

in silico mutagenesis is also performed to observe the change in the

predicted binding energy of the wild type and mutant complexes.

The list of SNPs and mutations related to the target proteins is

obtained from LS-SNP/PDB which is a web tool for genome-wide

annotations of human non-synonymous SNPs mapped to Protein

Data Bank structures [62] and COSMIC (Catalogue of Somatic

Mutations in Cancer) database [48,49], respectively. Based on the

list, 394 SNPs and 535 oncogenic mutations are mapped onto the

target PDB structures of the proteins in IL-1 pathway and these

numbers decrease to 371 and 302, respectively when only the

SNPs and mutations on the PDB surfaces are considered (Table 1).

Then, these SNPs and mutations are mapped onto the interface

residues and their nearby residues of both predicted and

Figure 4. SNPs/mutations mapped on the predicted complexes of MKK4 with JNK2 and JNK3. A. MKK4 (mitogen-activated kinase kinase
4) - JNK2 (c-Jun N-terminal kinase 2) complex: Ser251 (p.Ser251Asn mutation - metastatic melanoma) on MKK4 and Gly268 (p.Gly268Ala SNP) on JNK2
are on the interface B. MKK4-JNK3 complex: Gln142 residue (p.Gln142Leu mutation - lung carcinoma) is a nearby residue of the interface and Arg154
residue (p.Arg154Trp mutation - colorectal adenocarcinoma) is on the interface as a computational hot spot residue. Orange and blue balls: interface
residue atoms on MKK and JNK, respectively; yellow and cyan balls: hot spot residue atoms on MKK and JNK, respectively; red and purple balls:
interface* and nearby residue atoms related to SNP and mutations on MKK and JNK, respectively.
doi:10.1371/journal.pcbi.1003470.g004

Figure 5. The effects of p.Arg154Trp and p.Gln142Leu mutations on the predicted structure of the MKK4-JNK3 complex. A. The
predicted structure of the wild-type MKK4-JNK3 complex with predicted binding energy of 212.66 energy units. B. The predicted structure of
the mutant MKK4-JNK3 complex (Arg154Trp) with predicted binding energy of 212.84 energy units aligned with the wild-type complex. C. The
predicted structure of the mutant MKK4-JNK3 complex (Gln142Leu) with predicted binding energy of 241.14 energy units aligned with the wild-type
complex. Yellow/purple/green and pink balls: residue atoms on MKK4 and JNK3, respectively; red balls: mutated residue atoms.
doi:10.1371/journal.pcbi.1003470.g005
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experimental interactions in the IL-1 pathway (Table 2). The

statistical significance of these mappings are calculated by applying

t-test to the following two sets: the ratio of mutations and SNPs

mapped on interface and nearby residues to total interface size

including nearby residues versus the ratio of mutations and SNPs

on a noninterface surface region to total noninterface surface

region (Tables 3 and 4). These ratios are calculated for each of the

77 interactions listed in Table 2. Note that the surface residues of

target chains are extracted via Naccess program [56] as described

in the previous subsection.

To understand the effect of oncogenic mutations and SNPs,

those predicted to be at the interface (or nearby residues) are

mutated in case studies using the FoldX plugin [63] for the

YASARA molecular viewer [64]. There are two steps for

computationally mutating the residues: energy minimization and

residue change. The ‘‘RepairPDB’’ module of YASARA is used

for energy minimization both before and after the residue change

and the ‘‘BuildModel’’ module is used for mutation. For setting the

FoldX options, default values are used except temperature, which

is taken the same as the experimental temperature of the PDB

Table 5. The effect of mutations on the MKK4-JNK3, MKK7-JNK3 and IL1A(IL-1a)-IL1R1 interactions.

Interacting Proteins Template Interface Energy

JNK3 (3fv8A)-wt MKK4 (3alnA)-wt 1p4oAB 212.66*

JNK3 (3fv8A)-wt MKK4 (3alnA)-p.Arg154Trp 1p4oAB 12.84

JNK3 (3fv8A)-wt MKK4 (3alnA)-p.Gln142Leu 1p4oAB 241.14

Interacting Proteins Template Interface Energy

JNK3 (3fv8A)-wt MKK7 (2dylA)-wt 1ftaAC 211.66*

JNK3 (3fv8A)-wt MKK7 (2dylA)-p.Arg178Cys 1ftaAC 31.03

JNK3 (3fv8A)-wt MKK7 (2dylA)-p.Arg178His 1ftaAC 45.40

Interacting Proteins Template Interface Energy

IL1A (2l5xA)-wt IL1R1(4depB)-wt 1itbAB 219.5*

IL1A (2l5xA)-p.Asp26Asn (SNP) IL1R1(4depB)-wt 1itbAB 227.71

IL1A (2l5xA)-p.Asn29Ser (SNP) IL1R1(4depB)-wt 1itbAB 233.67

IL1A (2l5xA)-p.Arg34Gln (SNP) IL1R1(4depB)-wt 1itbAB 231.87

IL1A (2l5xA)-p.Asp64His (SNP) IL1R1(4depB)-wt 1itbAB 224.46

IL1A (2l5xA)-p.Ile68Asn (SNP) IL1R1(4depB)-wt 1itbAB -

IL1A (2l5xA)-p.Ile154Arg (SNP) IL1R1(4depB)-wt 1itbAB 235.65

IL1A (2l5xA)-p.Gly117Ser (Mut) IL1R1(4depB)-wt 1itbAB 230.11

IL1A (2l5xA)-wt IL1R1(4depB)-p.Pro116Leu (SNP) 1itbAB 238.02

IL1A (2l5xA)-wt IL1R1(4depB)-p.Asn204Ser (SNP) 1itbAB 242.52

IL1A (2l5xA)-wt IL1R1(4depB)-p.Gln236Lys (SNP) 1itbAB 224.03

IL1A (2l5xA)-wt IL1R1(4depB)-p.Ser263Thr (SNP) 1itbAB 230.88

IL1A (2l5xA)-wt IL1R1(4depB)-p.Val264Glu (SNP) 1itbAB 221.89

IL1A (2l5xA)-wt IL1R1(4depB)-p.Ile303Val (SNP) 1itbAB 226.67

IL1A (2l5xA)-wt IL1R1(4depB)-p.Glu202Ala (Mut) 1itbAB 221.10

IL1A (2l5xA)-wt IL1R1(4depB)-p.Asp254Asn (Mut) 1itbAB 243.31

IL1A (2l5xA)-wt IL1R1(4depB)-p.Ile276Thr (Mut) 1itbAB 234.72

IL1A (2l5xA)-wt IL1R1(4depB)-p.Lys298Arg (Mut) 1itbAB 223.87

IL1A (2l5xA)-p.Ile68Asn (SNP) IL1R1(4depB)-p.Pro116Leu (SNP) 1itbAB 251.84

IL1A (2l5xA)-p.Ile68Asn (SNP) IL1R1(4depB)-p.Asn204Ser (SNP) 1itbAB 405.47

IL1A (2l5xA)-p.Ile68Asn (SNP) IL1R1(4depB)-p.Gln236Lys (SNP) 1itbAB -

IL1A (2l5xA)-p.Ile68Asn (SNP) IL1R1(4depB)-p.Ser263Thr (SNP) 1itbAB -

IL1A (2l5xA)-p.Ile68Asn (SNP) IL1R1(4depB)-p.Val264Glu (SNP) 1itbAB 23.37

IL1A (2l5xA)-p.Ile68Asn (SNP) IL1R1(4depB)-p.Ile303Val (SNP) 1itbAB 689.08

IL1A (2l5xA)-p.Ile68Asn (SNP) IL1R1(4depB)-p.Glu202Ala (Mut) 1itbAB 688.03

IL1A (2l5xA)-p.Ile68Asn (SNP) IL1R1(4depB)-p.Asp254Asn (Mut) 1itbAB 27.9

IL1A (2l5xA)-p.Ile68Asn (SNP) IL1R1(4depB)-p.Lys298Arg (Mut) 1itbAB 26.01

IL1A (2l5xA)-p.Ile68Asn (SNP) IL1R1(4depB)-p.Ile276Thr (Mut) 1itbAB 240.64

The wild type target structures are energetically minimized, related residues are mutated and PRISM is re-run to predict the protein-protein interactions.
*The new reference interactions for comparisons are the predicted interactions between energetically minimized wild type targets and for the three cases they are:
MKK4-JNK3 interaction predicted using 1p4oAB template with a predicted binding energy of 212.66 energy units; MKK7-JNK3 predicted using 1ftaAC template with a
predicted binding energy of 211.66 energy units; and IL1A-IL1R1 predicted using 1itbAB template with a predicted binding energy of 219.5 energy units.
doi:10.1371/journal.pcbi.1003470.t005
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Figure 6. SNPs/mutations mapped on the predicted complex of IL-1a with IL1R1. IL1A (Interleukin 1 alpha) – IL1R1 (Interleukin 1 type I
receptor) complex: Ile 68 (p.Ile68Asn SNP) is on the interface as a computational hot spot residue* and Ile276 (p.Ile276Thr mutation - endometrioid
carcinoma) is a nearby residue for the interface. Orange and blue balls: residue atoms related to the SNP and the mutation on IL1A and IL1R1, respectively.
doi:10.1371/journal.pcbi.1003470.g006

Figure 7. The PRISM algorithm flow. Two sets are given as the input: template and target. Four consecutive steps are executed to produce the
output set which is composed of the structures of protein-protein complexes predicted to have the lowest binding energies. In this figure, the
template set contains only one member for visualization simplicity, but it is important to note that the default template set of the algorithm is
composed of 7922 interface members.
doi:10.1371/journal.pcbi.1003470.g007
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structure. After obtaining the mutant structures, an energy

minimization process is performed for the second time and the

resulting structures are saved as PDB files and used as new targets

for re-running the interaction prediction algorithm PRISM. The

predicted binding energy values of the interactions are then

compared to the reference values (Table 5).

Supporting Information

Figure S1 Experimentally determined structures of protein-protein

complexes mapped to the IL-1 signaling pathway. The PDB codes

used in the figure are: IL1b-IL1R1-IL1RAP, 4dep; MYD88-IRAK2-

IRAK4, 3mop; IKKa/IKKb-IKKc, 3brt; MKK6-MAPKp38a,

2y8o; MAPKp38a-MAPKAPK2, 2onl; JNK3-ATF2, 4h36; ERK2-

Mnk1, 2y9q; c-Jun-c-Fos, 1fos; NF-kBp105-NF-kBp65, 3gut; NF-

kBp50-NF-kBp65-IkBa, 1nfi. The blue color represents the proteins

that precede its partners in the information flow.

(TIF)

Table S1 Verification of the predicted interactions.

(DOCX)

Table S2 The distribution of Mutations and SNPs on PDB

Structures with PDB structures.

(DOCX)

Table S3 Experimental and computational information for the

edges, linking proteins with 3D structures in PDB, in IL-1 network

(104).

(DOCX)

Table S4 Experimental information for the edges (25) linking

proteins, at least one of which does not have a 3D structure in

PDB.

(DOCX)

Acknowledgments

We thank Dr. H. Billur Engin, Alper Baspinar, Engin Cukuroglu, and

Guray Kuzu for the useful discussions. O. K. thanks Science Academy (of

Turkey). The content of this publication does not necessarily reflect the

views or policies of the Department of Health and Human Services, nor

does mention of trade names, commercial products, or organizations imply

endorsement by the U.S. Government.

Author Contributions

Conceived and designed the experiments: SEAO AG RN OK. Performed

the experiments: SEAO. Analyzed the data: SEAO. Wrote the paper:

SEAO AG RN OK.

References

1. Dunn E, Sims JE, Nicklin MJ, O’Neill LA (2001) Annotating genes with

potential roles in the immune system: six new members of the IL-1 family.

Trends Immunol 22: 533–536.

2. Pizarro TT, Cominelli F (2007) Cloning IL-1 and the birth of a new era in

cytokine biology. J Immunol 178: 5411–5412.

3. Sims JE, Nicklin MJ, Bazan JF, Barton JL, Busfield SJ, et al. (2001) A new

nomenclature for IL-1-family genes. Trends Immunol 22: 536–537.

4. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the

body. Annu Rev Immunol 27: 229–265.

5. Farasat S, Aksentijevich I, Toro JR (2008) Autoinflammatory diseases: clinical

and genetic advances. Arch Dermatol 144: 392–402.

6. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87: 2095–

2147.

7. Dinarello CA (2009) Immunological and inflammatory functions of the

interleukin-1 family. Annu Rev Immunol 27: 519–550.

8. Weber A, Wasiliew P, Kracht M (2010) Interleukin-1 (IL-1) pathway. Sci Signal

3: cm1.

9. Greenfeder SA, Nunes P, Kwee L, Labow M, Chizzonite RA, et al. (1995)

Molecular cloning and characterization of a second subunit of the interleukin 1

receptor complex. J Biol Chem 270: 13757–13765.

10. Brikos C, Wait R, Begum S, O’Neill LA, Saklatvala J (2007) Mass spectrometric

analysis of the endogenous type I interleukin-1 (IL-1) receptor signaling complex

formed after IL-1 binding identifies IL-1RAcP, MyD88, and IRAK-4 as the

stable components. Mol Cell Proteomics 6: 1551–1559.

11. Li S, Strelow A, Fontana EJ, Wesche H (2002) IRAK-4: a novel member of the

IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci U S A

99: 5567–5572.

12. Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, et al. (2008) Sequential

control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat

Immunol 9: 684–691.

13. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV (1996) TRAF6 is a signal

transducer for interleukin-1. Nature 383: 443–446.

14. Cao Z, Henzel WJ, Gao X (1996) IRAK: a kinase associated with the

interleukin-1 receptor. Science 271: 1128–1131.

15. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature

410: 37–40.

16. Whitmarsh AJ, Davis RJ (2007) Role of mitogen-activated protein kinase kinase

4 in cancer. Oncogene 26: 3172–3184.

17. Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK

pathways in cancer development. Nat Rev Cancer 9: 537–549.

18. Ahn YH, Yang Y, Gibbons DL, Creighton CJ, Yang F, et al. (2011) Map2k4

functions as a tumor suppressor in lung adenocarcinoma and inhibits tumor cell

invasion by decreasing peroxisome proliferator-activated receptor gamma2

expression. Mol Cell Biol 31: 4270–4285.

19. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, et al. (2007)

Patterns of somatic mutation in human cancer genomes. Nature 446: 153–158.

20. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, et al. (2008) Core signaling

pathways in human pancreatic cancers revealed by global genomic analyses.

Science 321: 1801–1806.

21. Yoshida S, Fukino K, Harada H, Nagai H, Imoto I, et al. (2001) The c-Jun

NH2-terminal kinase3 (JNK3) gene: genomic structure, chromosomal assign-

ment, and loss of expression in brain tumors. J Hum Genet 46: 182–187.

22. Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein

kinase cascade to treat cancer. Nat Rev Cancer 4: 937–947.

23. Karin M (2006) Nuclear factor-kappaB in cancer development and progression.

Nature 441: 431–436.

24. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related

inflammation. Nature 454: 436–444.

25. de Martel C, Franceschi S (2009) Infections and cancer: established associations

and new hypotheses. Crit Rev Oncol Hematol 70: 183–194.

26. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and

cancer. Cell 140: 883–899.

27. Mosca R, Ceol A, Aloy P (2013) Interactome3D: adding structural details to

protein networks. Nat Methods 10: 47–53.

28. Wang X, Wei X, Thijssen B, Das J, Lipkin SM, et al. (2012) Three-dimensional

reconstruction of protein networks provides insight into human genetic disease.

Nat Biotechnol 30: 159–164.

29. Chambers JC, Zhang W, Li Y, Sehmi J, Wass MN, et al. (2009) Genome-wide

association study identifies variants in TMPRSS6 associated with hemoglobin

levels. Nat Genet 41: 1170–1172.

30. Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein

mutations: application to cancer genomics. Nucleic Acids Res 39: e118.

31. Tyagi M, Hashimoto K, Shoemaker BA, Wuchty S, Panchenko AR (2012)

Large-scale mapping of human protein interactome using structural complexes.

EMBO Rep 13: 266–271.

32. Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, et al. (2012) Structure-based

prediction of protein-protein interactions on a genome-wide scale. Nature 490:

556–560.

33. Oda K, Kitano H (2006) A comprehensive map of the toll-like receptor signaling

network. Mol Syst Biol 2: 2006 0015.

34. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes.

Nucleic Acids Res 28: 27–30.

35. Krull M, Voss N, Choi C, Pistor S, Potapov A, et al. (2003) TRANSPATH: an

integrated database on signal transduction and a tool for array analysis. Nucleic

Acids Res 31: 97–100.

36. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, et al. (2002) The

Protein Data Bank. Acta Crystallogr D Biol Crystallogr 58: 899–907.

37. Acuner Ozbabacan SE, Keskin O, Nussinov R, Gursoy A (2012) Enriching the

human apoptosis pathway by predicting the structures of protein-protein

complexes. J Struct Biol 179: 338–46.

38. Aytuna AS, Gursoy A, Keskin O (2005) Prediction of protein-protein

interactions by combining structure and sequence conservation in protein

interfaces. Bioinformatics 21: 2850–2855.

39. Ogmen U, Keskin O, Aytuna AS, Nussinov R, Gursoy A (2005) PRISM: protein

interactions by structural matching. Nucleic Acids Res 33: W331–336.

40. Tuncbag N, Gursoy A, Nussinov R, Keskin O (2011) Predicting protein-protein

interactions on a proteome scale by matching evolutionary and structural

similarities at interfaces using PRISM. Nat Protoc 6: 1341–1354.

The Structural IL-1 Signaling Pathway and Cancer

PLOS Computational Biology | www.ploscompbiol.org 13 February 2014 | Volume 10 | Issue 2 | e1003470



41. David A, Razali R, Wass MN, Sternberg MJ (2012) Protein-protein interaction

sites are hot spots for disease-associated nonsynonymous SNPs. Hum Mutat 33:
359–363.

42. Ho DT, Bardwell AJ, Abdollahi M, Bardwell L (2003) A docking site in MKK4

mediates high affinity binding to JNK MAPKs and competes with similar
docking sites in JNK substrates. J Biol Chem 278: 32662–32672.

43. Garai A, Zeke A, Gogl G, Toro I, Fordos F, et al. (2012) Specificity of linear
motifs that bind to a common mitogen-activated protein kinase docking groove.

Sci Signal 5: ra74.

44. Wilsbacher JL, Goldsmith EJ, Cobb MH (1999) Phosphorylation of MAP
kinases by MAP/ERK involves multiple regions of MAP kinases. J Biol Chem

274: 16988–16994.
45. Antonyak MA, Kenyon LC, Godwin AK, James DC, Emlet DR, et al. (2002)

Elevated JNK activation contributes to the pathogenesis of human brain tumors.
Oncogene 21: 5038–5046.

46. Hashimoto K, Rogozin IB, Panchenko AR (2012) Oncogenic potential is related

to activating effect of cancer single and double somatic mutations in receptor
tyrosine kinases. Hum Mutat 33: 1566–1575.

47. Labriolatompkins E, Chandran C, Varnell TA, Madison VS, Ju G (1993)
Structure-Function Analysis of Human Il-1-Alpha - Identification of Residues

Required for Binding to the Human Type-I Il-1 Receptor. Protein Engineering

6: 535–539.
48. Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, et al. (2008) The

Catalogue of Somatic Mutations in Cancer (COSMIC). Curr Protoc Hum
Genet Chapter 10: Unit 10 11.

49. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2011) COSMIC:
mining complete cancer genomes in the Catalogue of Somatic Mutations in

Cancer. Nucleic Acids Res 39: D945–950.

50. Lawson C, Al-Akoum M, Maheux R, Akoum A (2007) Increased expression of
interleukin-1 receptor type 1 in active endometriotic lesions. Reproduction 133:

265–274.
51. Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger A,

et al. (2011) ModBase, a database of annotated comparative protein structure

models, and associated resources. Nucleic Acids Res 39: D465–474.

52. Kar G, Keskin O, Nussinov R, Gursoy A (2011) Human proteome-scale

structural modeling of E2–E3 interactions exploiting interface motifs. Journal of

proteome research 11: 1196–207.

53. Engin HB, Keskin O, Nussinov R, Gursoy A (2012) A strategy based on protein-

protein interface motifs may help in identifying drug off-targets. J Chem Inf

Model 52: 2273–2286.

54. Kuzu G, Gursoy A, Nussinov R, Keskin O (2013) Exploiting conformational

ensembles in modeling protein-protein interactions on the proteome scale.

Journal of proteome research 12: 2641–2653.

55. Tuncbag N, Gursoy A, Guney E, Nussinov R, Keskin O (2008) Architectures

and functional coverage of protein-protein interfaces. J Mol Biol 381: 785–802.

56. Hubbard SJ, Thornton JM (1993) ‘NACCESS’. Computer Program, Depart-

ment of Biochemistry and Molecular Biology, University College, London.

57. Shatsky M, Nussinov R, Wolfson HJ (2004) A method for simultaneous

alignment of multiple protein structures. Proteins 56: 143–156.

58. Mashiach E, Nussinov R, Wolfson HJ (2009) FiberDock: Flexible induced-fit

backbone refinement in molecular docking. Proteins 78: 1503–1519.

59. Mashiach E, Nussinov R, Wolfson HJ (2010) FiberDock: a web server for flexible

induced-fit backbone refinement in molecular docking. Nucleic Acids Res 38:

W457–461.

60. Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction

refinement in molecular docking. Proteins 69: 139–159.

61. Cukuroglu E, Gursoy A, Keskin O (2012) HotRegion: a database of predicted

hot spot clusters. Nucleic Acids Res 40: D829–833.

62. Ryan M, Diekhans M, Lien S, Liu Y, Karchin R (2009) LS-SNP/PDB:

annotated non-synonymous SNPs mapped to Protein Data Bank structures.

Bioinformatics 25: 1431–1432.

63. Van Durme J, Delgado J, Stricher F, Serrano L, Schymkowitz J, et al. (2011)

A graphical interface for the FoldX forcefield. Bioinformatics 27: 1711–1712.

64. Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of

comparative models with YASARA NOVA–a self-parameterizing force field.

Proteins 47: 393–402.

The Structural IL-1 Signaling Pathway and Cancer

PLOS Computational Biology | www.ploscompbiol.org 14 February 2014 | Volume 10 | Issue 2 | e1003470


