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Abstract

Tumor heterogeneity results in differential response to therapy due to the existence of plastic tumor cells, called
cancer stem cells (CSCs), which exhibit the property of resistance to therapy, invasion and metastasis. These cells
have a distinct, signaling network active at every stage of progression. It is difficult to envisage that the CSCs will
have a unique set of signaling pathways regulating every stage of disease progression. Rather, it would be easier to
believe that a single pivotal pathway having significant contribution at every stage, which can further turn on a
battery of signaling mechanisms specific to that stage, would be instrumental in regulating the signaling network,
enabling easy transition from one state to another. In this context, we discuss the role of RhoC which has
contributed to several phenotypes during tumor progression.
RhoC (Ras homolog gene family member C) has been widely reported to regulate actin organization. It has been
shown to impact the motility of cancer cells, resultantly affecting invasion and metastasis, and has contributed to
carcinoma progression of the breast, pancreas, lung, ovaries and cervix, among several others. The most interesting
finding has been its indispensable role in metastasis. Also, it has the ability to modulate various other phenotypes
like angiogenesis, motility, invasion, metastasis, and anoikis resistance. These observations suggest that RhoC
imparts the plasticity required by tumor cells to exhibit such diverse functions based on microenvironmental cues.
This was further confirmed by recent reports which show that it regulates cancer stem cells in breast, ovary and
head and neck cancers. Studies also suggest that the inhibition of RhoC results in abolition of advanced tumor
phenotypes.
Our review throws light on how RhoC, which is capable of modulating various phenotypes may be the apt core
signaling candidate regulating disease progression. Additionally, mice studies show that RhoC is not essential for
embryogenesis, giving scope for its development as a possible therapeutic target. This review thus stresses on the
need to understand the protein and its functioning in greater detail to enable its development as a stem cell
marker and a possible therapeutic target.

Keywords: RhoC, Cancer stem cells, Tumor phenotypes , Therapy resistance

Background
Despite major advances in molecular and diagnostic sci-
ences, and the emergence of personalized treatment,
challenges remain due to the non-availability of person-
alized medicine across all cancers and the ever-evolving
nature of this form of therapy. Therefore, the study and

exploration of signaling pathways has intensified in the
quest for novel therapeutic targets. The role of Notch,
Wnt, Tumor Growth Factor-beta (TGF-beta) and Nu-
clear Factor kappa-light-chain-enhancer of activated B
cells (NFκB) amongst several other signaling pathways,
has been well studied over the years and across several
tumors. Consequently, several candidates (like Epidermal
Growth Factor Receptor (EGFR) for lung cancer) have
been developed as molecular targets for personalized
medicine. Another signaling pathway that has been
shown to contribute extensively to tumor progression in
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several tumor types is the Ras homolog gene family
member C (RhoC) signaling pathway. RhoC belongs to
the Rho family of small Guanosine Triphosphatases
(GTPases) [1]. Rho GTPases are small signaling G-pro-
teins that regulate cytoskeletal organization and thus
affect multiple cellular functions, including cell motility,
polarity and division by switching between the Guano-
sine Triphosphate (GTP) and Guanosine Diphosphate
(GDP) bound states, as shown in Fig. 1 [2–5]. This
switch in states is tightly regulated by RhoGAPs (Rho
GTPase Activating Proteins), RhoGEFs (Rho Guanine Ex-
change Factors) and RhoGDIs (Rho Guanine Dissociation
Inhibitors) [6]. RhoGAPs support the intrinsic GTPase
activity of RhoGTPases, converting them from the GTP-
bound state to GDP-bound, thereby leading to their
deactivation [7]. RhoGEFs on the other hand help main-
taining RhoGTPases in the active state by facilitating their
switch from the GDP-bound form to the GTP-bound
form [8]. The third regulator protein, the RhoGDIs,
stabilize the RhoGTPases in the GDP form, consequently
playing an important role in determining localization of
the protein [9]. Active forms of the protein, GTP-bound,
regulate the actin cytoskeleton, cell cycle, membrane traf-
ficking and transcription [10]. Significantly, the activity of
each RhoGTPase is governed by regulators specific to
each of them, with reports suggesting that the activity of
RhoC in particular is regulated by GEFs like p190RhoGEF,
ARHGEF10, ARHGEF12 and GAPs like p190RhoGAP,

DLC1 to name a few [11–14]. Although the Rho isoforms
have more than 90% sequence homology with each other
and are known to regulate actin organization, several stud-
ies have proven that they have vastly distinct functions
[15]. For example, RhoA and RhoC localize in the cyto-
plasm while RhoB localizes to the endosomal membrane
[16]. In mouse embryonic fibroblasts, RhoA is dispensable
for actomyosin regulation; however, it is important for mi-
tosis [17, 18]. RhoC, too, has been shown to be respon-
sible for cytoskeletal reorganization and cellular motility.
Nevertheless, RhoA and RhoC have distinct roles in inva-
sion, as they act through different targets [19]. In the con-
text of viral infections, the process of cell contraction
through the viral protein F11, is seen to be dependent on
ROCK signaling via activation by RhoC and not RhoA.
Additionally, this effect is seen to be abrogated by recruit-
ment of Pak6 to the cellular membrane by another
RhoGTPase, RhoD [20]. An interesting study by Hakem et
al. showed that RhoC is dispensable for embryogenesis
but is essential for metastasis [21]. While RhoC has an im-
portant contribution to metastasis, RhoB has been re-
ported, using mice models, to be a tumor suppressor [22].
A study in colorectal cancer indicated a strong correlation
of both RhoA and RhoC in metastasis and invasion [23],
whereas other studies in breast and colon cancer have
suggested that RhoA often inhibits cell invasion, while
RhoC, on the other hand, enhances cell invasion [24, 25].
In 1989, Chardin and colleagues showed that RhoC affects

Fig. 1 Cycling of Ras homolog gene family member C (RhoC) between active and inactive forms: The switching of RhoC between the inactive
GDP-bound form to the active GTP-bound form is regulated by Guanine Nucleotide Exchange Factors (GEFs), GTPase Activating Proteins (GAPs)
and Guanine Dissociation Inhibitors (GDIs). Binding to GTP changes the conformation of the molecule, thus allowing the binding of various
downstream effectors of RhoC like Diaphanous Related Formin (mDia) and Rho Associated Coiled-Coil Containing Protein Kinase (ROCK), thereby
facilitating various downstream signaling pathways
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actin microfilaments in Vero cells [26]. Following this re-
port, there have been incessant efforts to understand the
role of this molecule in both physiological and patho-
physiological conditions. Here, we provide a comprehen-
sive account of the work done on this molecule in the
context of cancer progression and resistance to therapy,
followed by an outline of the work that remains to be per-
formed to enable better understanding of the working of
this protein within the cell.

RhoC in tumor phenotypes and molecular pathways
The role of RhoC in carcinoma progression has been ex-
tensively clarified by several research groups over the
years. The first report, which suggested that RhoC con-
tributed to progression of cancer, was by Suwa et al. in
the year 1998. This group investigated changes in the ex-
pression levels of the Rho family of genes—RhoA, B and
C in pancreatic ductal carcinoma. It was discovered that
the expression of the RhoC gene was significantly higher
in metastatic tumors than in primary tumors, whereas
RhoA and RhoB did not show significant changes in ex-
pression under these conditions. Also, increased RhoC
expression significantly correlated with poor prognosis
of patients, unlike RhoA and RhoB, which showed no
such correlation [27]. Following this study, several other
groups reported the role of RhoC in numerous other
cancers, including those of the breasts, skin, ovaries,
liver and head and neck, among several others [28–33].
The increased expression of RhoC is therefore positively
correlated to poor prognosis. However, activation of the
molecule is necessary to enable its downstream effects.
MyoGEF, a molecule responsible for activation of RhoA
and RhoC was found to regulate both polarity and inva-
sive phenotypes of MDA-MB-231 (an invasive breast
cancer cell line) [34]. On the contrary, p190RhoGAP
which converts GTP-bound Rho to the inactive GDP-
bound form, is associated with reduced proliferation, mi-
gration and invasion in breast and pancreatic cancer
models, thus acting as the antithesis of MyoGEF in this
context [35, 36]. The role of RhoC as a transforming
oncogene was postulated by van Golen et al. This group
demonstrated that the stable transfectants of human
mammary epithelial cells over-expressing RhoC not only
gained tumorigenic properties but were also highly inva-
sive [32]. In the year 2013, Xie et al. showed that stable
transfection of the RhoC expression vector into a normal
hepatocyte cell line, imparted tumor phenotypes like
proliferation, anchorage-independent growth, migration,
invasion, increased expression of matrix metallopro-
teases like MMP2 and MMP9, and elevated levels of
Vascular Endothelial Growth Factor (VEGF), further
cementing RhoC’s role as an oncogene [37]. Addition-
ally, RhoC was found to have a positive association with
dedifferentiation and the phosphorylated form of

p70s6k, a protein well known for its role in promoting
survival and proliferation, thus making it a probable
marker for carcinogenesis and the progression of ovarian
epithelial carcinoma [38].
MicroRNAs (miRNAs), which have diverse cellular func-

tions, have been shown to regulate RhoC expression. Chen
X et al., showed in 2015 that increased miR-93-5P (specific
to RhoC) resulted in decreased tumorigenesis and the pro-
gression of epithelial ovarian carcinoma [39]. Another
microRNA, miR-10b, inhibits the translation of homeobox
D10. This process leads to increased RhoC expression,
resulting in increased invasion and metastasis of breast can-
cer [40]. The tumorigenesis and progression of ovarian epi-
thelial carcinoma was also seen to be inhibited by miR
106b, which binds to the 3′ UTR of RhoC [41]. Long non-
coding RNA (lncRNA) TDRG1 increases RhoC expression,
consequently leading to tumorigenesis in the ovarian epi-
thelial carcinoma model via miR-93 [42]. Similarly, over-ex-
pression of lncRNA ABHD11-AS1 correlates with the
progression of epithelial ovarian carcinoma by regulating
RhoC [43]. Signaling pathways regulated by RhoC are also
involved in regulating the expression of certain lncRNAs.
The expression of HOTAIR, an lncRNA known to be a
negative prognostic marker, is under the influence of
RhoC-ROCK signaling in breast cancer cells [44]. On the
other hand, the proliferation, invasion and metastasis of
gastric cancer was blocked by miR-493, which was proven
to directly target RhoC [45]. Likewise, miR-372 over-ex-
pression led to G1 arrest and apoptosis, along with a sup-
pression of tumor growth and the metastasis of
endometrial carcinoma via inhibition of RhoC [46].
The switch from a locally confined tumor to an invasive,

metastatic form is the most damaging alteration in a tumor;
allowing it to disseminate, eventually leading to a poor
prognosis. Epithelial to mesenchymal transition (EMT) is a
prerequisite to metastasis [47–51]. Interestingly, DNA array
analysis of metastatic melanoma cells revealed that RhoC
was important for metastasis [52]. RhoGTPases are also
known to regulate the activity of myocardin-related tran-
scription factors MRTFA/B, which are upstream of genes
necessary for metastasis [53]. Inhibition of MRTF using a
pharmacological inhibitor CCG-203971, led to decreased
lung metastases in mice injected with the highly invasive,
RhoC overexpressing melanoma cell line SK-Mel-147
[54].Bellovin et al. showed that Ets-1 increases RhoC ex-
pression in LIM1863 colon cancer cells, resulting in in-
creased EMT and cell migration [24]. Interestingly, Zhou X
et al., demonstrated that HIF (Hypoxia Inducible Factor), a
protein known to be associated with abnormal growth and
invasion, acts via trasncriptionally altering the RhoC-
ROCK1 pathway in the pancreatic cancer model [55]. RhoC
also regulates EMT in cervical cancer, wherein the inhib-
ition of Notch1 and RhoC resulted in the abolition of actin
stress fiber formation and fibronectin expression, the two
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important changes associated with EMT [56]. The Rho
proteins regulate cytoskeletal organization, and true to its
nature, RhoC has been shown to regulate actin
organization in tumors resulting in enhanced migration,
invasion and metastasis [21, 24, 57–60]. Significantly,
using stable benign breast epithelial cell lines with indu-
cible RhoA and RhoC expression, Sarah Lang et al. have
shown, that RhoC and not RhoA, is indispensable for in-
vasion [61].
The close association between TGF-β1 and RhoC has

been reported in several tumors. RhoC, known to play
an important role in rearrangement of the cytoskeleton,
has been implicated in EMT, invasion and metastasis of
lung adenocarcinoma cells when induced by TGF-β1.
Moreover, the down-regulation of RhoC using shRNA
abolished TGF-β1-mediated EMT induction [62]. Simi-
larly, in ovarian epithelial carcinoma cells, RhoC has
been shown to mediate EMT that is stimulated by TGF-
β1 and VEGF [63]. A similar study performed on the
cervical carcinoma model demonstrated that RhoC is
necessary for TGF-β1 driven EMT [64]. Notably, it has
been postulated that tumor cells disseminate either as
single cells or move collectively. Using intravital im-
aging, Giampieri and group showed that TGF-β switches
breast cancer cells from cohesive to single cell motility,
which is essential for intravasation, by transcriptionally
reprograming tumor cells, thereby leading to alteration
in the expression of several genes, including RhoC [65].
In cervical cancer, Notch1 has been proven to regulate

RhoC leading to changes in migration and invasion [56].
Similarly, stromal cell-derived factor-1 (SDF-1) was seen
to modulate Jurkat cell migration through the RhoC-
ROS pathway [66]. Using the SUM-149 Inflammatory
Breast Cancer (IBC) cell line, Joglekar et al., have re-
ported that caveolin-1 regulates RhoC-mediated invasion
by activation of Akt-1 [67]. In the colon cancer model,
HOXD10 and RhoC were shown to negatively correlate
with each other in both patient specimens and cell lines.
Further analysis revealed that increased HOXD10 led to
suppression of the MAPK and AKT pathways known to
regulate RhoC [68]. The interaction of FMNL-3 with
RhoC was seen to lead to increased MMP2, MMP9 and
VEGF, consequently leading to increased invasion in
colon cancer cell lines [69]. The knockdown of RhoC in
cholangiocellular carcinoma cells on the other hand, re-
sulted in the suppression of invasion and migration [70].
On similar lines, YMO1, a protein belonging to the Yurt
and mosaic family, was seen to reduce the invasion and
metastatic ability of hepatocellular carcinoma cells, by
targeting RhoC [71].
There are several pathways, which are regulated by

RhoC, that contribute to carcinoma progression and
maintenance. RhoC alters the Mitogen Activated Protein
Kinase (MAPK) and Phosphoinositide 3 kinase/AKT

Serine Threonine Kinase (PI3K/AKT) pathways to regu-
late invasion [72, 73]. Interestingly, while RhoC is an im-
portant player in the motility of inflammatory breast
cancer (IBC) and melanoma, it does not contribute to
motility in prostate cancer cell lines, such as PC-3. How-
ever, RhoC does regulate the invasion of PC-3 [74].
RhoC has also been shown to activate the Protein-Tyro-
sine Kinase 2 (PYK2) pathway in prostate cancer, conse-
quently leading to metastasis in prostate cancer [75].
Immunohistochemical analysis of RhoC expression in
this study showed a significant correlation between both
lymph node and distant metastases and the activation of
Matrix Metalloprotease 2 (MMP2) and Matrix Metallo-
protease 9 (MMP9). Further, antibody array analysis
showed that RhoC activated several kinases, including
MAPK, Focal Adhesion Kinase (FAK), AKT and PYK2.
RhoC also regulates Formin-like 3 (FMNL3) mediated
cell migration and invasion as it is involved in polarized
migration [19]. In another study, RhoC has been shown
to stimulate alpha5 integrin expression and the Src-
dependent activation of p130 Crk-associated substrate/
Ras-Related C3 Botulinum Toxin Substrate 1 (Cas/Rac1)
signaling [76]. RhoC also controls cofilin activity to
modulate actin organization, resultantly affecting inva-
sion and invadopodia formation [12, 77]. Table 1 sum-
marizes the pathways in which RhoC has been
implicated. These and several more studies elucidate the
mechanisms of RhoC-mediated regulation of cancer
phenotypes.
Not only does RhoC regulate tumor growth, EMT, mi-

gration, invasion, and metastasis, it also regulates angio-
genesis in tumors. Vasculogenesis and angiogenesis are
controlled by angiogenic factors, such as VEGF-A [78].
In the physiological context, RhoC stimulates the prolif-
eration of human umbilical vein endothelial cells
(HUVECs) by stabilizing beta-catenin, which in turn en-
hances cyclin D1 expression. Cyclin-D1 subsequently
drives cell-cycle progression [79]. Apart from prolifera-
tion, RhoC also regulates various angiogenic features like
pseudopod formation and migration ability in HUVECs

Table 1 The various signaling pathways in cancer via which
RhoC operates

Signaling Pathways in Cancer Reference

Notch1 Srivastava S et al., 2010 [40]

TGF-β1 He X et al., 2015 [48]

PI3K-Akt Ruth MC et al., 2006 [53]

Pyk2 Iiizumi M et al., 2008 [56]

Cas/Rac1 Arpaia E et al., 2011 [57]

VEGF Hoeppner LH et al., 2015 [60]

MMP9 Zhao Y et al., 2010 [61]

EGFR Tumur et al., 2015 [62]
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and MVECs (myeloma vascular endothelial cells) via
ROCK and MAPK signaling [80]. RhoC has been shown
to regulate angiogenesis in breast cancer [73, 81], where
it modulates the expression of VEGF, fibroblast growth
factor-basic (bFGF), interleukin-6 and interleukin-8,
which are important in angiogenesis [81]. Similarly,
RhoC may promote VEGF expression in oesophageal
squamous cell carcinoma, thus regulating angiogenesis
[82]. In cervical cancer, conditioned media from SiHa
cells stably over-expressing the RhoC gene resulted in
increased in vitro tube formation by HUVEC cells. Add-
itionally, immunohistochemical analysis of clinical speci-
mens revealed that RhoC and VEGF were expressed in
the same areas of tumor sections [56]. Cancers promote
the development of an alternate vascular system (known
as vasculogenic mimicry) to support its growth and pro-
liferation. RhoC and its effector ROCK2 have been
shown to play important roles in this context by activa-
tion of the ERK and MMP pathways in the hepatocellu-
lar carcinoma model [83]. The importance of RhoC to
carcinoma progression was exemplified by Hakem et al.
Using a mouse model, they showed that RhoC was dis-
pensable for post-natal development, however it’s deple-
tion reduced metastasis [21]. The disseminated tumor
cells survived in blood vessels until they relocated to a
distant site and formed metastases. The ability to survive
in these conditions is an important attribute of meta-
static tumor cells. We have earlier published that RhoC
is also involved in anoikis resistance [56], which may aid
the cells to survive for prolonged durations in suspen-
sion in blood. As summarized in Fig. 2, RhoC therefore
plays an important role at various stages of tumor
progression.
Intriguingly, while RhoC has been highly implicated in

several aspects of carcinoma progression, there is no re-
port of a mutation associated with this gene [84]. Ana-
lysis of the COSMIC database suggests that mutations of
RhoC in cancer are very rare. Only 60 unique samples
out of 47,923 showed mutations. In total, there were
only 17 missense mutations, 7 silent mutations and 1 de-
letion mutation included in the database. Interestingly,
these mutations are scattered across the protein do-
mains, indicating that they are unlikely to be driver mu-
tations and are most likely passenger mutations.

RhoC in Cancer stem cells
The phenotypic and functional heterogeneity observed
among cells within the same tumor represents one of
the greatest challenges in cancer therapeutics and has
caused confounding clinical outcomes, as it results in
heterogeneous therapy response. The plasticity of tumor
cells enables them to adapt and survive at different
stages of tumor progression in a dynamically changing
microenvironment, beginning from the site of tumor

initiation and ending at a distant metastatic site. Such
plastic tumor cells exhibit several stem-like characteris-
tics, such as self-renewal, high drug efflux capacity and
better DNA repair, and are thus termed cancer stem
cells (CSCs) [85, 86].
Tumor formation is broadly believed to adhere to the

stochastic/clonal evolution model or the hierarchical/
classical CSC model [87]. The clonal evolution model at-
tributes cancer initiation to genetic abnormalities within
a normal cell. According to the clonal evolution theory,
these aberrations lead to a heterogenous tumor pool
consisting of multiple clones, each of them being equally
proficient at giving rise to a tumor. The classical CSC
model on the other hand, entrusts tumor induction cap-
ability solely to the CSC population. This theory believes
that a cancer stem cell gives rise to transit amplifying
cells, which further give rise to the differentiated tumor
bulk. Recent findings have led scientists to believe that
this model is not unidirectional, but is in fact highly dy-
namic and plastic, allowing for interconversion of these
states via differentiation and dedifferentiation resulting
in a complex, heterogenous tumor [87]. An outline of
these models has been illustrated in Fig. 3. Several re-
ports cumulatively suggest that RhoC regulates numer-
ous steps of tumor progression, including proliferation
[56, 88, 89], EMT [62, 63], invasion [61, 90, 91], intrava-
sation [56, 92], extravasation [92], anoikis resistance
[56], angiogenesis [56, 92] and metastasis [58, 61, 93].
Resultantly, it is apt to believe that RhoC may be in-
volved in regulating or maintaining tumor plasticity,
which endows adaptability at every stage of tumor pro-
gression. Plasticity is known to be an inherent feature of
stem cells and in line with this, recent research has
shown that RhoC is involved in maintenance of the
stemness phenotype.
An important finding by Rosenthal et al. indicates a

strong correlation between RhoC and ALDH, a breast
cancer stem cell (BCSC) marker [93]. Using the ag-
gressive BCSC cell line SUM149, Rosenthal et al.
show that cells with active ALDH (ALDH+) have
higher levels of RhoC than those with inactive ALDH
(ALDH−). Tumorigenicity studies utilizing a limiting
number of 50 cells in mice resulted in no induction
of tumors in mice injected with ALDH+/shRhoC
cells, whereas 5 out of 9 mice with ALDH+/scram-
bled cells formed tumors. Moreover, incidences of
lung metastases were found to be around five times
higher in mice injected with ALDH+/scrambled cells
compared to those injected with ALDH+/shRhoC
cells, indicating the stem-like property of cells con-
taining RhoC. Finally, a tissue microarray of breast
cancer samples from 136 patients indicated a high
correlation between RhoC and ALDH1, further sup-
porting RhoC’s association with ALDH.
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The role of RhoC in CSC maintenance has also been il-
lustrated in head and neck squamous cell carcinoma
(HNSCC) by Islam et al. [94]. Using UM-SCC-1 and UM-
SCC-47 cell lines, they show that the siRNA mediated in-
hibition of RhoC led to decreased expression of ALDH,
CD44, Oct3/4, Sox2, and Nanog, in addition to a dimin-
ished formation of tumorspheres. Further, Islam et al. deter-
mine that tumorspheres have increased levels of RhoC and
genes associated with stemness compared to cells grown as
monolayers, whereas the inhibition of RhoC leads to a re-
duction in the expression of stemness genes, which points

towards RhoC’s possible role in CSC induction. Islam et al.
then demonstrate that RhoC leads to stemness induction in
head and neck cancer by activation of STAT3 via IL-6. In a
study by Sang et al., ovarian cancer stem cells (OCSCs)
were sorted using the CD117 marker from A2780-PM and
A2780-PTX-PM, two drug-resistant and invasive ovarian
cancer cell lines [90]. These OCSCs were found to have ele-
vated expressions of RhoC. The MTT (3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed
that cells inhibited for RhoC had decreased cell prolifera-
tion and drug resistance. Further, inhibition of RhoC by

Fig. 2 An illustration depicting the diverse roles of RhoC in various aspects of cancer progression: RhoC significantly contributes to cancer
initiation, proliferation, stemness maintenance, angiogenesis, invasion, intravasation, and metastasis across numerous tumor models, as shown
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RhoC-specific siRNA led to decreased expression of stem-
ness markers like CD133 and CD117, as observed by real-
time quantitative PCR, suggesting a possible role of RhoC

in the formation of OCSCs. It may be thus appropriate to
deduce that overexpression of RhoC results in enhanced
plasticity/stemness of cancer cells (Fig. 3).

Fig. 3 Tumor induction models and the possible role of RhoC: The clonal evolution theory postulates that genetic abnormalities lead to tumor
formation, with every clone of cells thus produced being equally capable of regenerating the tumor (a). On the contrary, the cancer stem cell
theory proposes the presence of a minute sub-population known as cancer stem cells (CSCs), which alone hold the potential for resurgence of
the various populations that constitute the tumor. This includes the differentiated tumor bulk, transit amplifying cells which are mildly pluripotent
and proliferative and an intermediate substantially pluripotent “plastic” state (b). These cellular states are highly dynamic with cells being capable
of constantly moving from one state to another. We propose that RhoC, with it’s involvement in multiple tumor phenotypes could play a pivotal
role in regulating this “switch” via it’s downstream effectors
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RhoC and resistance to Cancer therapy
Therapy resistance occurs when the tumor stops
responding to treatments, such as radiation, chemother-
apy and other forms of targeted therapy. Current ap-
proaches primarily kill treatment-sensitive cells, while
the therapy-resistant cells survive and expand over time
to cause recurrence. In order to ensure a complete cure,
it is important to eliminate all cancer cells, including the
therapy-resistant ones, which have now come to be
known as CSCs. Indeed, recent reports suggest a vast
number of molecular mechanisms that regulate and con-
tribute to resistance. RhoC has also been shown to con-
tribute to therapy resistance in some tumor models.
Interestingly, a seminal article by Mani et al., which re-
ported that EMT induces stemness in cancer cells,
opened up a new understanding of CSCs and their tar-
geting [95]. This study showed that transformed human
mammary epithelial cells that had undergone EMT
formed tumors much more efficiently and had stemness
properties. Therefore, this study opens up avenues to ex-
plore opportunities to target pathways that regulate
EMT and resultantly eliminate CSCs, the culprit for re-
currence and metastasis.
RhoC is one such protein whose role in EMT induc-

tion and regulation is well documented. It has been
demonstrated that RhoC along with LIM Domain Kinase
2 (LIMK2) is a direct target of p53 during chemotherapy
[96]. Kawata et al. demonstrated that RhoC may have a
role to play in endocrine therapy resistance, a significant
barrier to successful prostate cancer treatment [97]. Two
years later, the same group reported that RhoC was up-
regulated in breast cancer samples post chemotherapy
treatment, indicating increased RhoC levels in the che-
moresistant population. They also showed a correlation
between RhoC expression and reduced E-cadherin levels,
pointing towards a possible role for RhoC in EMT,
thereby leading to therapy resistance in breast cancer
[98]. Research from our laboratory (unpublished data)
shows that RhoC and its downstream effector, ROCK2
regulates the radioresistance in cervical cancer.
Several groups have reported that RhoC inhibitors

have a profound effect on carcinoma phenotypes in
vitro, using both cell lines and tumor biopsy-derived
cells. Wenandy et al. attempted to understand RhoC’s
clinical application and found that RhoC has a Human
Leukocyte Antigen-A3 (HLA-A3) restricted epitope,
which is recognized by cytotoxic T cells. Wenandy et al.
propose that RhoC may serve as a target for anti-cancer
immunotherapy [99]. Inhibitors of 3-hydroxy-3-methyl-
glutaryl-coenzyme A reductase (HMG-CoA reductase),
commonly known as statins, have been widely used to
understand the function of this molecule. The HMG-CoA
pathway produces geranylgeranyl pyrophosphate (GGPP)
and Farnesyl pyrophosphate (FPP) as intermediate

products, which are important for activation of RhoGT-
Pases [100]. Interestingly, the use of farnesyltransferase in-
hibitors (FTI) has been shown to have a profound effect
on tumor phenotype. Treatment of IBC cells with FTI
showed a reversal of RhoC-induced phenotypes like anoi-
kis resistance, motility, and invasion [73]. Collisson EA et
al. proposed statins as a primary prophylaxis for melan-
oma, demonstrating a reduction in RhoC activation upon
treatment with atorvastatin, consequently leading to in-
hibition of invasion and metastasis [100]. Another study
reported that a combinatorial use of atorvastatin and cele-
coxib, in vitro, resulted in an induction of cell cycle arrest
and apoptosis in colon cancer cells [101]. Atorvastatin-
mediated inhibition of RhoC also blocked metastasis in
head and neck cancer cells, in vitro [102]. Encouraging re-
ports indicate that use of the statin group of drugs reduces
incidence of esophageal cancer [103]. A study by Kaushal
et al. showed that antiRhoC siRNA led to decreased inva-
sion, motility, and migration of the breast cancer cell lines
SUM149 and MDA-MB-231, suggesting that RhoC is a
potential therapeutic target [104]. This group went on to
further design “smart” nanoparticles that delivered anti-
RhoC siRNA into breast cancer cells, thereby successfully
impeding migration and invasion [105].
Despite a series of convincing reports on RhoC’s role

in various tumor phenotypes, it has not been developed
further as a prognostic marker or therapeutic target.
There have been attempts to use inhibitors, such as ator-
vastatin, to understand its function, but further develop-
ment has not been reported. Considering its extensive
contribution to carcinomas and their progression, it is
important to initiate studies to define RhoC as a poten-
tial therapeutic target.

Conclusion
CSCs have the ability to evade therapy, repair and sur-
vive under stressful conditions, such as hypoxia. These
cells also have EMT properties, coupled with the ability
to invade and migrate. Resistance to therapy has also
been attributed to CSCs in several tumors. Given that
CSCs are an important subset of the tumor and can
elicit various tumor phenotypes, it is important to de-
velop targets against these cells for better cancer care.
The ideal target for such adaptive and plastic cells would
be a molecular pathway that is important for CSC main-
tenance and regulates several functional attributes of
these cells. The available literature suggests that RhoC
has a major contribution in CSC maintenance. The role
of RhoC in carcinoma progression has been well studied
and reported. This molecule has a central role in most
of the reported tumor phenotypes, with recent reports
pointing to its possible role in the stemness of cancer
cells. Given the evidence implicating RhoC in various as-
pects of tumor progression, this molecule seems to be
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an ideal druggable target. However, the three Rho
GTPases: RhoA, RhoB, and RhoC show an 85% amino
acid sequence identity, leaving little room for the devel-
opment of a specific inhibitor to RhoC alone [15].
Nevertheless, considering that the role of RhoC in tumor
progression is overwhelming, efforts must be steered to-
wards developing siRNA, antibodies, or small molecule-
based inhibitors of RhoC. It is, therefore, of prime
importance to thoroughly explore the application of this
molecule in cancer prognostication, in order to effi-
ciently tackle the disease.
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