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Abstract

Rationale: The incidence and sites of mucus accumulation and
molecular regulation of mucin gene expression in coronavirus
(COVID-19) lung disease have not been reported.

Objectives: To characterize the incidence of mucus
accumulation and the mechanisms mediating mucin
hypersecretion in COVID-19 lung disease.

Methods: Airway mucus and mucins were evaluated in
COVID-19 autopsy lungs by Alcian blue and periodic acid–Schiff
staining, immunohistochemical staining, RNA in situ
hybridization, and spatial transcriptional profiling. Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected
human bronchial epithelial (HBE) cultures were used to
investigate mechanisms of SARS-CoV-2–induced mucin
expression and synthesis and test candidate countermeasures.

Measurements and Main Results: MUC5B and variably
MUC5AC RNA concentrations were increased throughout all
airway regions of COVID-19 autopsy lungs, notably in the
subacute/chronic disease phase after SARS-CoV-2 clearance. In
the distal lung, MUC5B-dominated mucus plugging was observed

in 90% of subjects with COVID-19 in both morphologically
identified bronchioles and microcysts, and MUC5B accumulated
in damaged alveolar spaces. SARS-CoV-2–infected HBE cultures
exhibited peak titers 3 days after inoculation, whereas induction
of MUC5B/MUC5AC peaked 7–14 days after inoculation.
SARS-CoV-2 infection of HBE cultures induced expression of
epidermal growth factor receptor (EGFR) ligands and
inflammatory cytokines (e.g., IL-1a/b) associated with mucin
gene regulation. Inhibiting EGFR/IL-1R pathways or
administration of dexamethasone reduced SARS-CoV-2–induced
mucin expression.

Conclusions: SARS-CoV-2 infection is associated with a high
prevalence of distal airspace mucus accumulation and increased
MUC5B expression in COVID-19 autopsy lungs. HBE culture
studies identified roles for EGFR and IL-1R signaling in mucin
gene regulation after SARS-CoV-2 infection. These data suggest
that time-sensitive mucolytic agents, specific pathway inhibitors,
or corticosteroid administration may be therapeutic for
COVID-19 lung disease.
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The secreted airway mucins provide broad
protective roles against viral infections via
mechanical clearance and decoy receptor
activities (1–9). However, excessive mucin
secretion can produce airway mucus
obstruction after viral infection, deranging
ventilation and serving as the nidus for
secondary bacterial infections (10–12).

Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) generated
the coronavirus disease (COVID-19)
global pandemic (13). The severity of
COVID-19 principally reflects its pulmonary
manifestations, including alveolar
pneumonias and the acute respiratory
distress syndrome (14, 15). Multiple clinical
studies have reported increased mucus
production in severe COVID-19 lung
disease, including 1) increasedMUC1 and
MUC5AC concentrations in tracheal
aspirates (16, 17), 2) repeated endotracheal
tube obstruction caused by viscous mucus
(18, 19), and 3) persistent mucus production
during subacute to chronic clinical phases
(20, 21). However, data describing the
severity of airway mucus accumulation and/
or alveolar mucus accumulation, sites of
mucin hypersecretion, and the molecular
pathways responsible for upregulation of
mucin expression after SARS-CoV-2
infection are lacking.

In this study, we hypothesized that a
combination of inflammatory and
reparative/dysreparative responses to
SARS-CoV-2 infection produces robust
mucus accumulation in COVID-19 autopsy
lungs. Accordingly, we investigated the sites
of mucus accumulation, mucin gene
expression patterns, andmucin gene
regulatory pathways in a large collection of

COVID-19 autopsy lungs using
immunocytochemical, RNA in situ
hybridization (RNA-ISH), and spatial
transcriptomic approaches. SARS-CoV-2
human bronchial epithelial (HBE) infection
models quantitated the kinetics, magnitude,
andmechanisms of mucin hypersecretion
and searched for countermeasures. Some of
the results of these studies have been
reported previously in the form of an
abstract (22).

Methods

COVID-19 Autopsy and Control Lungs
A diagram describing COVID-19 autopsy
specimen sources and allocations to specific
studies is shown in Figure 1 (details outlined
in Table E1 in the online supplement).
Descriptions of the methods for each study
are available in the online supplement.

Results

COVID-19 Autopsy Tracheobronchial
Proximal Airway Epithelia Exhibit
Mucin Hyperproduction
Twenty-one COVID-19 autopsy lungs
were suitable for proximal airway studies
(Figure 2). Intraepithelial Alcian blue and
periodic acid–Schiff (AB-PAS) staining was
increased in COVID-19 proximal airways as
compared with controls (Figures 2A and 2B).
RNA-ISHmolecular studies, performed in a
subset of lungs with available tissues (n=7),
demonstrated increasedMUC5B expression
compared with controlsMUC5AC
expression followed a similar pattern but was

not significantly different (Figures 2C and 2D).
Of the seven proximal airways studied
molecularly, SARS-CoV-2 viral RNA was
detected by RNA-ISH in the epithelium of
one acute (,20 d from symptom onset to
death) and no chronic (.20 d from
symptoms to death) COVID-19 autopsy
lungs (Figure 2E).

Distal Airway Mucus Accumulation
and Mucin Gene Expression in
COVID-19 Lungs
We initially investigated COVID-19 airway
mucus accumulation within all distal airway
structures (i.e., bronchioles and clustered
microcyst structures) (see Figures 3A and 3B,
Supplementary Methods, and Figures E5 and
E6). Bronchioles were defined as single
airways with a diameter,2 mm, an absence
of cartilage and submucosal glands, and the
presence of airway smooth muscle and an
adjacent blood vessel (23). Microcysts were
defined by criteria developed from idiopathic
pulmonary fibrosis (IPF) pathologic criteria,
including clustered structures,,1 mm size,
in areas adjacent to parenchymal damage/
fibrosis (24–27).

We have previously reported that
normal lungs exhibit 1) little mucus
accumulation, 2) MUC5AC expression
limited to large airways, and 3) MUC5B
expression in proximal and preterminal
bronchioles but not terminal bronchioles or
alveoli (23). Of the 15 COVID-19 lungs
suitable for distal lung studies, 14 (93%)
exhibited mucus accumulation in distal
airway structures, a percentage significantly
greater than normal controls (Figure 3C, i).
Importantly, in the COVID-19 lungs with
mucus accumulation,.50% of the observed
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airway structures/lung exhibited mucus
accumulation (Figure 3C, ii). Airway mucus
accumulation was associated with increased
epithelial MUC5B but not MUC5AC
expression (Figure 3C, iii, iv). Notably, in
regions with preserved bronchiolar

structures, extension of MUC5B expression
from preterminal into terminal/respiratory
bronchioles was noted in COVID-19 but not
normal airways (Figure E2). Increased
XBP1Swas also detected in distal airway
epithelia, consistent with increased mucin
synthesis and/or a role for XBP1S as a
selective regulator of MUC5B expression in
this region (Figure 3C, v) (28).

Sites of Mucin Hypersecretion/Mucus
Accumulation in the Distal Lung
Mucus accumulation in bronchioles and
microcysts likely reflects overlapping but
different pathophysiologies and effects on
pulmonary function. Therefore, detailed
morphologic analyses were performed to
assign the sites of mucus accumulation to
pre-/terminal bronchiolar versus microcyst
structures (Figure 4 and Supplementary
Methods). Such analyses were difficult
because of the degree of epithelial damage/
repair and the paucity of molecular markers
to distinguish the two structures.

The distributions of bronchioles and
microcysts defined morphologically by
hematoxylin and eosin staining in the study
cohorts as a function of disease stage are
shown in Figures 4A–4C. Bronchioles only
were identified in control lungs. Bronchioles
were identified at similar frequencies within
acute (five of seven) and chronic (five of
eight) COVID-19 autopsy lungs. Microcyst
clusters were identified in 9 of 15 COVID-19
autopsy lungs (Figure 4C), whereas no
control lungs exhibited microcysts. As
predicted from the hypothesis that
microcysts emerge in response to
parenchymal injury in the chronic
COVID-19 phase, microcysts were more
common in the chronic (seven of eight) than
the acute (two of seven) phase COVID-19
lungs. Numbers of bronchioles counted in
this study included 31 from 5 controls
(median of 6 per lung) and 95 from the 10
COVID-19 lungs (median of 6.5 per lung) in
which bronchioles could be identified. Eight
hundred seventy-five individual microcyst
structures were counted in the 9 microcyst-
containing COVID-19 autopsy lungs/
specimen (median of 90 per lung).

Mucus accumulation in bronchioles and
microcysts was quantitated by AB-PAS
staining. The fraction of autopsy lungs with
mucus obstruction of morphologically
identified bronchioles was greater in
COVID-19 than control lungs (Figure 4D).
The magnitude of the mucoobstructive
bronchiolar burden per lung was also high

in COVID-19 autopsy lungs, with an
average of�50% of bronchioles within
each COVID-19 lung exhibiting mucus
obstruction (Figure 4E). Parallel analyses
compared mucus accumulation in
microcysts. All COVID-19 lungs that
exhibited microcysts had concomitant
mucus accumulation (Figure 4F). In
COVID-19 lungs with microcysts,�60% of
individual microcyst structures exhibited
mucus accumulation (Figure 4G). Finally, a
similar pattern of raised MUC5B expression,
but not MUC5AC expression, as measured
by RNA-ISH, was observed in both
bronchiolar andmicrocyst structures
(Figures 4H and 4I). These data suggest that
the prevalence, severity, andMUC5B
molecular basis of mucus accumulation is
broadly similar in bronchioles and
microcysts after SARS-CoV-2 infection.

Spatial Transcriptomic Studies of
Distal/Terminal Bronchioles in
COVID-19 Lungs
Spatial transcriptomic studies compared
three COVID-19 lungs with four normal
controls with goals of 1) molecular
characterization of morphologically defined
bronchioles versus microcysts (Figures 3
and 4) and 2) gaining insight into mucin
synthesis/cell metabolic features associated
with COVID-19–associated airway
mucoobstruction. Regions of interest (ROIs)
in two COVID-19 lungs (one acute, one
chronic) were focused on morphologically
defined distal bronchioles and on
morphologically defined microcysts in the
third chronic lung (see Supplementary
Methods and Figure E3A). COVID-19 ROIs
as a group were transcriptionally distinct
from control ROIs, as evidenced by principal
component analysis plots (Figure E3B).
Trends for suppression of the distal airway
markers SFTPB and SCGB3A2were noted
in COVID-19 distal airway structures
(Figure E3C). Alveolar epithelial genes (e.g.,
SFTPC) were not detected in the sampled
ROIs (Figure E3C). Notably, among the
three studied COVID-19 lungs, the one with
morphologically defined microcysts
(UNC#3) contained epithelial cells with
expression of aberrant basaloid gene features
(Figure E3D) (29), suggesting the addition of
an IPF-like pathophysiology to a postviral
mucoregulatory epithelial dysfunction (i.e.,
bronchiolization of “microcysts”), which
may resemble the features observed during
lung repair after influenza or parainfluenza
virus infection in mice (30–33). Spatial

At a Glance Commentary

Scientific Knowledge on the
Subject: Mucus clearance is a
fundamental innate defense
mechanism of the lung. Airway
mucus exhibits a protective role
against viral acquisition, but
excessive mucus secretion and
accumulation in response to viral
infections can produce airway mucus
obstruction. Despite reports of
excessive mucus in coronavirus
disease (COVID-19) clinical settings,
comprehensive characterizations of
the regulation of mucin secretion
and sites of mucus accumulation in
COVID-19 lungs have not
been reported.

What This Study Adds to the
Field: MUC5B-dominated mucin
hypersecretion was observed
throughout airway, but not alveolar,
epithelia in COVID-19 autopsy lungs.
Mucus accumulation was prevalent in
the distal lung bronchioles,
bronchiolized microcysts, and
damaged alveolar regions. Severe acute
respiratory syndrome coronavirus 2
(SARS-CoV-2)–infected human
bronchial epithelial cell cultures
exhibited maximal SARS-CoV-2 titers
at Day 3 after inoculation, whereas the
induction of MUC5B and MUC5AC
RNA/protein peaked at Days 7–14
after inoculation. Inhibiting epidermal
growth factor receptors, abrogation of
IL-1 receptor activation, or
dexamethasone administration reduced
human bronchial epithelial cell mucin
gene induction after SARS-CoV-2
infection. Mucolytic agents, epidermal
growth factor receptor/IL-1 receptor
antagonists, and/or corticosteroids
may be beneficial at targeted intervals
for the treatment of the airway
mucoobstructive component of
COVID-19 lung disease.
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transcriptomic analyses of grouped
COVID-19 bronchioles provided
confirmatory evidence for upregulation of
mucin-associated pathways, coupled to
upregulated host defense response and
remodeling pathways, whereas cilium
assembly pathways were downregulated
(Figure E4).

Alveolar MUC5B Accumulation
Immunofluorescence costaining of MUC5B
with a pan-airway marker, SOX2, and an
alveolar type II (ATII) cell marker, LAMP3,
detected MUC5B protein in damaged
COVID-19 lung alveolar spaces contiguous
with bronchioles andmicrocysts (Figures E5
and E6).MUC5BmRNA expression was
routinely observed in distal bronchioles and
microcysts but rarely observed inMUC5B
protein-containing alveoli lined by ATII cells
(Figures E5 and E6).

Pathways Mediating Increased Mucin
Secretion in COVID-19 Airways
The pattern of predominant upregulation of
MUC5B in airway epithelia in COVID-19
lungs (Figures 3, 4, E2, E5, and E6) suggested
that pathways associated with
mucoobstructive diseases, not MUC5AC-
dominated T2-inflammatory pathways,
mediate mucin hypersecretion in COVID-19
lung disease (10, 34, 35). Ligands associated
with mucin overproduction in muco-
obstructive diseases (e.g., epidermal growth
factor receptor [EGFR] ligands;AREG
[amphiregulin], IL1B, and IL6) were detected
by RNA-ISH in inflammatory cells located
within mucus plugs and airway epithelia in

COVID-19 lungs (Figure 5A). Immuno-
fluorescence colocalization studies
demonstrated that these ligands were
coexpressed most frequently with
macrophage (CD68) and/or neutrophil
markers (myeloperoxidase) predominately in
intraluminal and submucosal regions
(Figures 5B and 5C).

Bacterial Infection
To investigate the association between
mucus accumulation and secondary
bacterial infection, COVID-19 autopsy
lungs were studied with bacterial 16S
RNA-ISH probes. Of the 12 lungs studied,
8 (67%) exhibited positive bacterial 16S
rRNA signals in mucus plugs (n = 2),
peribronchial areas (n = 4), and alveolar
regions (n = 3) (Figure E7). Thus, a
significant fraction of COVID-19 lungs
exhibited 16S RNA signals that were
bronchiolocentric and likely associated
with accumulated mucus.

SARS-CoV-2–infected HBE Cultures
and Mucin–Gene Regulation
SARS-CoV-2 titers in HBE cultures peaked
at Day 3 after inoculation, followed by
virus suppression or elimination by Day 14
(Figure 6A). Bulk RNA-sequencing of
SARS-CoV-2–infected and mock-infected
HBEs revealed that both MUC5B and
MUC5AC gene expression were
upregulated after SARS-CoV-2 infection
and peaked in the subacute (Day 7) to
chronic phase (Day 14) (Figure 6B). These
findings were paralleled by upregulation of
genes associated with increased mucin

gene transcription, including SPDEF
(Figure E8A) (35–39). In contrast, RNAs
coding for other host defense proteins
secreted by club cells, including SCGB1A1
and SLPI, were decreased or unchanged
over this SARS-CoV-2 postinfection
interval (Figure E8B).

Histologic studies demonstrated that
AB-PAS–positive HBE cells were more
frequent in SARS-CoV-2–infected versus
mock cultures after SARS-CoV-2 infection
at Days 3 and 14 (Figures 6C and 6D).
Immunohistochemical studies of
SARS-CoV-2–infected HBEs confirmed
upregulation of MUC5B expression in
AB-PAS–positive mucous cells at Day 14
(Figures 6C and 6E). MUC5AC protein was
scarcely detected at baseline and was not
significantly induced after SARS-CoV-2
infection compared with controls
(Figures 6C and 6E).

We next searched the HBE bulk RNA-
sequencing data for genes activated by
SARS-CoV-2 infection that may be
associated within an upregulation of
MUC5B. IFNs (e.g., IFNB1, IFNL1, and
IFNL2) are mucin regulatory candidates and
were induced by SARS-CoV-2 (Figures 6F
and E8C) (40, 41). However, the temporal
patterns of expression of IFNs and IFN-
stimulated genes were the inverse of mucin
induction (i.e., IFNs and IFN-stimulated
genes peaked at Days 1–3 and waned by
Day 14) (42) (Figures 6F, E8C, and E8D).
Evidence of upregulation of the IFN-induced
IDO1 andAHR genes implicated in mucin
transcriptional regulation followed the same
kinetics (Figure E8E) (42, 43). Furthermore,

Covid-19-related autopsy lungs available for investigation (N = 61)
• NIH (N = 44), Cornell  (N = 13), UNC (N = 4)

Sufficient proximal airway (N = 21)
(Figures 2 and E2)

• AB-PAS staining (N = 21)
• RNA-ISH (N = 7)

Sufficient distal airway (N = 15)
(Figures 3 and E3)

• AB-PAS staining (N = 15)
• RNA-ISH/IHC (N = 14)

Additional analyses
(Figures 4–5, E5–E10) 

• Alveolar MUC5B RNA-ISH/IHC (N = 8: Chronic-phase)
• Bacterial 16S rRNA (N = 13)
• Spatial transcriptomics (N = 3)

Proximal airway Distal airway 

Figure 1. A diagram showing acquisition, exclusion, and allocation of coronavirus disease (COVID-19) autopsy specimens. AB-PAS=Alcian
blue and periodic acid–Schiff; IHC= immunohistochemistry; NIH = National Institutes of Health; RNA-ISH=RNA in situ hybridization;
UNC=University of North Carolina.
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Figure 2. Goblet cell metaplasia and mucin gene expression in coronavirus disease (COVID-19) and control autopsy proximal airways.
(A) Representative images from control (CTRL) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) autopsy (COVID-19)
tracheobronchial specimens stained with hematoxylin and eosin (H&E) and Alcian blue and periodic acid–Schiff (AB-PAS) and probed by RNA
in situ hybridization (RNA-ISH) for MUC5B and MUC5AC. (B) Morphometric quantification of AB-PAS staining signals in the tracheobronchial
airways of control (n=11) and COVID-19 autopsy specimens (n=21). Triangles correspond to the same specimens shown in C and D. (C, D)
RNA-ISH for (C) MUC5B and (D) MUC5AC signals in the tracheobronchial airways of control (n=11) and COVID-19 autopsy specimens (n=7).
Histogram bars and error bars represent mean6SEM. NS=not significant; *P, 0.05; ****P,0.0001; Mann-Whitney U test. (E) Representative
images from tracheas from acute and subacute/chronic COVID-19 autopsy lungs probed for SARS-CoV-2 RNA-ISH. One of five acute COVID-19
lungs (,20 d onset from symptoms to death) was SARS-CoV-2 RNA-ISH positive, whereas neither of two chronic (.20 d onset from symptoms
to death) COVID-19 lungs was positive. Scale bars, 20 mm.
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Figure 3. MUC5B and MUC5AC RNA and protein expression in distal pulmonary regions of coronavirus disease (COVID-19) and control
autopsy lungs. (A) Representative low-power images of control (CTRL) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–
infected (COVID-19) acute (3 d) and chronic (31 d) autopsy lung sections stained with Alcian blue and periodic acid–Schiff (AB-PAS).
(B) Magnified images of boxed regions of each tissue section shown in A stained with hematoxylin and eosin (H&E) and AB-PAS;
immunofluorescence staining for MUC5B and MUC5AC protein; and probed for MUC5B, MUC5AC, and XBP1S by RNA in situ hybridization
(RNA-ISH). The control and acute COVID-19 airway structures were morphologically identified as bronchioles, whereas the structure in the
chronic COVID-19 lung specimen was identified as a microcyst. Black arrows indicate the regions magnified in each inset. Scale bars, 5 mm
(A); 100 mm (B). (C, i) Numbers of control versus COVID-19 autopsy subject lungs with mucus-obstructed airways. **P,0.01; Fisher’s exact test.
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evidence of canonical cytochrome gene
regulation by AHRwas not detected
(Figure E8F) (44). In contrast, EGFR ligand
gene expression (e.g., AREG andHBEGF)
was persistently elevated after SARS-CoV-2
infection (Figure 6G) (45). Despite the
absence of inflammatory cells in our in vitro
model, expression of both IL1A and IL1B
was also persistently upregulated after
SARS-CoV-2 infection (Figure 6H). Note,
IL-6 is produced after IL-1a/b exposure in
HBE cells (35, 44, 46, 47). Consistent with
IL-1a/b induction, IL-6 expression was
upregulated with SARS-CoV-2 infection,
suggesting that IL-6 may also be a regulator
of mucin gene expression (Figure 6H) (47).
Accordingly, further characterizations of
EGFR, IL-1a/b, and IL-6 causal relationships
to mucin gene transcription in SARS-CoV-
2–infected HBE cells were performed.

Inhibition of EGFR Blocks Mucin Gene
Induction by SARS-CoV-2 Infection
Block of EGFR pathways with either an
EGFR tyrosine kinase inhibitor (gefitinib) or
an EGFRmonoclonal antibody (cetuximab)
resulted in significant reduction of mucin
gene expression in virus-infected cultures
without effects on SARS-CoV-2 infectivity at
Days 3 to 7 after inoculation (Figure 7).
EGFR block was also associated with
decreased expression of EGFR ligands
(HBEGF, AREG) and inflammatory
cytokines (CXCL8, IL6) but not other
epithelial host defense (SGCB1A1, SLPI,
MX2) or structural genes (FOXJ1,DNAH5)
(Figures 7 and E9). The block of EGFR-
mediated mucin gene transcription by an
extracellular EGFRmonoclonal antibody
(cetuximab) suggests EGFR was activated by
extracellular SARS-CoV-2–induced release
of EGFR ligands (e.g., AREG or HB-EGF
[heparin-binding EGF-like growth factor]).

IL-1R Ablation or IL-1R Inhibition
Reduces Mucin Gene Induction after
SARS-CoV-2 Infection
The SARS-CoV-2–induced increased RNA
expression ofMUC5B andMUC5AC genes
was suppressed in IL1R1 CRISPR-knockout
(CRISPR-KO) cultures (Figure 8A).

Consistent with RNA data, histologic
hematoxylin and eosin, AB-PAS, and whole-
mount staining revealed that mucin
production was inhibited in SARS-CoV-
2–infected CRISPR-KO as compared with
CRISPR negative control cells (Figures 8B,
8C, and E10A) (48). Note, the likely more
sensitive whole-mount immunofluorescence
staining technique detectedMUC5AC as
well as MUC5B protein induction after
SARS-CoV-2 infection. However, the effects
of IL-1R deletion were complex with respect
to mucin induction. Most important, IL1R1-
KO cells were less infectable than negative
control cells, and infectivity was related to
MUC5B andMUC5AC expression (Figures
8D and 8E). Associated with decreased
infectivity, SARS-CoV-2–induced expression
of mucoregulatory pathway ligands (e.g.,
AREG,HBEGF, and IL6) was also reduced in
SARS-CoV-2–infected IL1R1-KO cells
(Figure 8A). IL-1R block by an IL-1R
antagonist, anakinra, though less active
than IL1R1KO, exhibited similar trends
(Figure E10D), despite the strong effect of
anakinra on IL-1b–mediated mucins and
inflammatory pathways (Figure E10E).

IL-6 Receptor Block
IL-6 administration minimally affected
mucin secretion in HBE cells as compared
with IL-1b as previously reported (35, 47)
(Figure E11A). The IL-6R antagonist
(tocilizumab) treatment did not modify
mucin or related gene expression patterns
after SARS-CoV-2 infection (Figure E11B).

Dexamethasone Inhibits Mucin
Induction after SARS-CoV-2 Infection
Dexamethasone administration between
Days 3 and 14 after SARS-CoV-2 inoculation
significantly reducedMUC5B andMUC5AC
RNA and protein expression at 14 days after
inoculation (Figures 9A and 9B).
Dexamethasone also reduced expression of
SCGB1A1 but, as expected, increased
expression of epithelial sodium channel
(ENaC) subunit genes (49). Similar gene
regulatory responses to dexamethasone were
observed in mock cultures (Figure E12).

Effect of Steroid Administration on
COVID-19 Autopsy Distal Lung Mucus
Accumulation/Mucin Expression
COVID-19 autopsy lungs were analyzed as a
function of steroid administration. Although
small in number, an interesting pattern
emerged: 1) AB-PAS quantitation revealed
no difference in the percentage of mucus-
obstructed airway luminal structures with
versus without steroid administration
(Figure 9C), but 2) trends for decreased
MUC5B andMUC5AC expression were
observed in steroid-treated versus
non–steroid-treated subjects (Figures 9D).

Discussion

The principal lower respiratory features of
severe phase COVID-19 include dry
cough, pneumonia, and hypoxemia.
Although there are case reports suggesting
airway mucus hypersecretion is also a
feature of COVID-19, there are no
comprehensive datasets describing the
time course and sites of mucus
hypersecretion/accumulation or
mechanisms that trigger mucin hyper-
secretion in COVID-19 lungs (20, 50, 51).

Studies of proximal airway epithelia in
COVID-19 autopsy lungs by RNA-ISH
detected SARS-CoV-2 viral RNA coding for
the spike protein in airway epithelia in acute
phase disease but not in subacute to chronic
phase disease (Figure 2E), consistent with
patterns from other COVID-19 autopsy
studies (52–54). Goblet cell metaplasia,
characterized byMUC5B-dominated and
more variable MUC5ACmucin expression,
was observed in chronic phase COVID-19
tracheobronchial samples, consistent with
previous reports of proximal airway mucin
induction (16, 42) and endotracheal tube
mucus obstruction (18, 19) in subjects with
COVID-19 with prolonged ICU stays.

An important observation made by this
study was the high prevalence (.90% of
subjects) (Figures 3C, i; 4D; and 4F) and
extensive fraction (�50% of airways affected
per subject) of mucus accumulation in distal
airway epithelium-lined structures in

Figure 3. (Continued ). n=5 for control and n=15 for COVID-19. (C, ii) Percentage of distal airways within each autopsy lung specimen
obstructed by mucus for control (n=5) and COVID-19 (n=15) lungs. Mann-Whitney U test. Total airway structures counted for control lungs=31
(median, 6 per lung) and for COVID-19 lungs=970 (median, 34 per lung). (C, iii–v) Morphometric quantification of RNA-ISH (C, iii) MUC5B,
(C, iv) MUC5AC, and (C, v) XBP1S expression in distal airway structures within control (n=5) and COVID-19 autopsy lungs (n=14 for MUC5B
and MUC5AC and n=7 for XBP1S). Histogram bars and error bars represent mean6SEM. Mann-Whitney U test. NS=not significant; *P,0.05;
***P,0.001. UNC=University of North Carolina.
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COVID-19 lungs (Figures 3C, ii; 4E; and
4G). However, the phenotype of distal airway
mucus accumulation in COVID-19 autopsy
lungs is complex and reflects multiple time-

and space-dependent pathophysiologies.
Preterminal and terminal bronchioles,
beginning with the acute phase of disease,
exhibited significant mucus accumulation/

obstruction (Figures 3 and 4). MUC5B was
the dominant mucin upregulated in
bronchiolar epithelia (Figures 3, 4, and E2).
Post–SARS-CoV-2 infection-induced
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epithelial and inflammatory cell signaling
pathways, including EGFR and cytokines
(IL-1a/b, IL-6, nuclear factor [NF]-kB),
likely mediate a significant component of the
upregulation of MUC5Bmucin transcription
in these structures (Figures 5–8). These data
suggest that bronchiolar mucus obstruction
could contribute to the hypoxia, pulmonary
inflammation, and secondary bacterial
infection characteristic of the COVID-19
syndrome. Notably, the peripheral location
of mucus plugging may explain why
productive sputum is not a classic feature of
COVID-19 (55). Our bronchiolar mucus
plugging data are consistent with a recent
computed tomography–based study of small
airway disease after SARS-CoV-2 infection
that revealed a high incidence of air trapping/
small airway disease in COVID-19
survivors (56).

In parallel, a significant number of
mucus-plugged microcyst-like structures,

typically associated with damaged/fibrotic
regions, were observed predominantly in
chronic (.20 d) autopsy lungs (Figures 3,
4, E3, and E4). Microcyst-like structures
have been observed after severe viral
infection in mice, likely reflecting in part
bronchiolization of damaged alveolar
regions (30–33). Mucus accumulation with
increased MUC5B expression in terminal
bronchioles that do not normally express
MUC5B and “bronchiolized microcysts”
has also previously been reported in IPF (26,
29, 57, 58). Extensive molecular profiling of
these affected regions in IPF has revealed
complex and dynamic interrelationships
between terminal bronchiolar secretory
cells, termed “terminal airway-enriched
secretory cells” or “respiratory airway
secretory cells,” basal cells, and ATII/AT0
cells (59–63). Our molecular analyses of
cell types lining distal airspace structures in
SARS-CoV-2–infected lungs were limited

by virus- and/or inflammation-induced
suppression of defining distal bronchiolar
cell genes (e.g., SCGB3A2) (Figure E3C).
Nonetheless, global spatial transcriptomic
approaches suggested that morphologically
defined terminal bronchioles in COVID-19
specimens exhibited club cell–like gene
signatures, including NOTCH, suppressed
cilial genes, and upregulation of MUC5B
and mucin secretory pathways, whereas the
more distal microcyst-like structures were
lined by MUC5B-expressing secretory
epithelia but also with the basaloid-type
cells reported in distal IPF microcysts
(Figure E3D) (64, 65). This finding, plus the
association of microcysts with areas of
fibrosis, raises the possibility that IPF-like
pathophysiologies also contribute to the
increasedMUC5B expression andmucus
accumulation in the terminal respiratory
units of subjects with later-stage COVID-19.
Ultimately, elucidating the time and spatial
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Figure 6. (Continued ). areas normalized to basement membrane lengths at Days 3 and 14 after SARS-CoV-2 infection. (E) Fold changes (virus
vs. mock) of MUC5B- and MUC5AC-positive areas normalized to HBE epithelial areas at Days 3 and 14 after SARS-CoV-2 infection. (F) IFN-b
gene expression (expressed as transcripts/million [TPM]) in virus-infected versus mock cultures at Days 1, 3, 7, and 14 after inoculation. See
Figure E11C for other IFN genes. (G) Fold changes (virus vs. mock) in epidermal growth factor receptor (EGFR) ligands (AREG [amphiregulin]
and HBEGF) over time after infection. (H) Fold changes (virus vs. mock) in mucin-regulatory cytokine genes IL1A, IL1B, and IL-6. n=14
individual HBE donors. Histogram bars and error bars represent mean6SEM. One-sample Wilcoxon test (B, D, E, G, H) and Wilcoxon test (F).
NS=not significant; *P, 0.05; **P,0.01; ***P,0.001.
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Figure 9. Effect of dexamethasone treatment on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–infected human bronchial
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evolution of the multiple pathophysiologies
that may coalesce onmucin gene regulation/
mucus accumulation in pre-/terminal
bronchioles and alveolar ducts, and perhaps,
eventually, microcysts, in the COVID-19
syndrome may require, among other studies,
lineage-tracing studies in SARS-CoV-2–
infected animal models (66).

Similarly, the implications of MUC5B
accumulation in damaged alveoli of patients
with COVID-19 are not yet clear. Aberrant
MUC5B expression in alveolar regions has
been reported in IPF, especially in
association with a MUC5B promoter
polymorphism (26, 57). Our RNA-ISH and
immunohistochemical studies, however,
suggest that MUC5B protein accumulation
in alveoli of COVID-19 lungs did not reflect
ectopic MUC5B secretion by ATII cells
(Figures E5 and E6). It is possible that the
extension of MUC5B expression into the
terminal/respiratory bronchioles of patients
with COVID-19, where MUC5B is not
normally expressed, and/or microcysts
allowed retrograde transport of secreted
MUC5B protein into alveoli. Longitudinal
studies of post–COVID-19 subjects are
required to ascertain whether alveolar
mucin accumulation andMUC5B
polymorphisms relate to the incidence/
severity of long-term clinical pulmonary
outcomes.

Studies of inflammatory cells
recovered by BAL from patients with
COVID-19 lung disease and spatial
transcriptomic studies of COVID-19
autopsy lungs have described pulmonary
inflammatory cells as sources of
mucoregulatory ligands (64, 67, 68). Our
autopsy lung studies identified the
proximity of inflammatory cells
expressing AREG and IL-1b to airway
epithelia that may add to or, perhaps,
dominate intraepithelial mucin regulatory
responses in chronic phase COVID-19
lungs (Figures 5B and 5C). These
mucoregulatory ligands almost certainly
are involved in mucin regulation
throughout all airway regions but also
may be important in upregulation of
MUC5B in bronchiolized epithelial
microcysts (24–26, 57).

SARS-CoV-2–infected HBE cultures
investigated during acute (Days 1–3) and
subacute/chronic (Days 7–14) phases
provided insights into epithelium-
intrinsic mechanisms of SARS-CoV-
2–infected airway epithelial mucin gene
induction. MUC5B and MUC5AC RNA

and MUC5B protein concentrations
increased coincident with waning
infection/longer times after inoculation
(Figure 6) (65). This pattern is consistent
with our proximal airway COVID-19
autopsy data (Figure 2) and previous
reports describing acutely infected
COVID-19 patients with high viral loads
and low mucin gene expression as
compared to chronic COVID-19 patients
with no/low viral loads, increased mucin
gene expression, and persistent airway
mucus production (19, 69).

A series of in vitroHBE studies
suggested potential causal relationships
between candidate SARS-CoV-2–induced
mucoregulatory pathways and mucin
transcription. For example, two different
EGFR inhibitors produced significant
reductions of mucin gene expression after
SARS-CoV-2 infection (Figure 7). IL1R1KO
blunted viral replication, which hindered
discrimination between direct versus indirect
(e.g., inhibition of viral replication) effects on
observed reductions in mucin gene
transcription (Figure 8). The finding of
reduced viral replication with IL-1R block/
deletion is consistent with recent reports that
IL-1b increases HBE cell SARS-CoV-2
infectivity (70). Studies of IL-6 monoclonal
antibody–treated HBE cultures suggested
that IL-1a/b–dependent induction of IL-6
production was not a significant contributor
to mucin regulation (Figure E11). In sum,
these data suggest that HBEmucin gene
regulation in response to SARS-CoV-2
infection is mediated by multiple pathways,
including both EGFR and IL-1R pathways,
which may exhibit crosstalk with direct
SARS-CoV-2 activation of NF-kB (70–74).
Further studies are required to elucidate the
integrated epithelial regulation of
post–SARS-CoV-2 mucin regulatory
responses.

Finally, the potential inhibitory
effects of dexamethasone on mucin
transcription, a recommended therapy
for severely ill patients with COVID-19
requiring oxygen, ventilatory support,
and/or acute respiratory distress
syndrome, were studied (75–77).
Dexamethasone administration initiated
3 days after SARS-CoV-2 infection of
HBE cultures reduced MUC5B and
MUC5AC expression at both RNA and
protein levels 14 days after inoculation
(Figure 9). These data paralleled the
COVID-19 autopsy subgroup analysis
revealing trends for reducedMUC5B

andMUC5AC RNA expression in the
steroid- versus non–steroid-treated
patients (Figure 9). These observations
suggest that one mode of dexamethasone
effectiveness in the clinic reflects its
mucoinhibitory activity. Systematic
studies of COVID-19 mucus plugging
in dexamethasone-treated subjects,
complementing our in vitro
observations, will be required to
rigorously test this possibility in
clinical settings.

However, as with many therapeutic
agents, dexamethasone exhibited multiple
effects on RNA expression, some of
which may be adverse. For example,
dexamethasone reduced SCGB1A1
expression, suggesting dexamethasone may
impair mucosal immunity and/or alter
airway cell populations. Furthermore, the
observed dexamethasone induction of ENaC
subunit expression is well characterized and
may result in accelerated Na1/fluid
absorption, dehydration of bronchiolar
epithelial surfaces, and production of
hyperconcentrated, difficult-to-clear
mucus (78). The observations that the
dexamethasone-treated subgroup of our
COVID-19 autopsy cohort exhibited
AB-PAS–definedmucoobstruction similar to
the untreated subgroup, despite reduced
mucin gene expression, may be consistent
with a steroid-ENaC off-target effect (78, 79).

Limitations
Our study has limitations. For example,
.50% of the autopsy specimens
investigated exhibited extensive airway
epithelial detachment/sloughing, causing
exclusion from histologic/molecular
investigations (Figures 1 and E1). One
report indicated that tracheobronchial
obstruction observed in COVID-19 might
be caused by sloughed epithelium (18).
However, it was not possible to discern
whether the sloughing observed
histologically reflected virus-induced disease
or postmortem artifacts. Our morphometric
analyses were also limited by absence of
inflation procedures for COVID-19 lungs
and limited blocks/lung for analyses. The
limitations in defining terminal
bronchiolar/microcyst structures are
discussed above (Figure E3C). Finally, our
COVID-19 autopsy cohort included
specimens from patients early in the
pandemic, without steroid treatment, and
later specimens from patients treated with
steroid regimens that varied in dose, agent,
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and duration. Although this treatment
difference allowed some quantitative
comparisons, the variation in this
therapeutic agent and others remains a
limitation.

In summary, in vivo and in vitro
studies demonstrated that SARS-CoV-2
infection causes striking subacute to
chronic MUC5B-dominated distal airway
mucus accumulation via, in part, EGFR-
and IL-1R–dependent pathways. These
data suggest that direct-acting mucolytic
agents, and perhaps inhibitors of mucin
transcriptional regulatory pathways, may
be beneficial at targeted times in the
COVID-19 clinical course. The opposing
effects of dexamethasone administration

(i.e., reduced mucin gene expression)
raised ENaC expression in SARS-CoV-
2–infected HBE cultures, which suggests
the need to clarify the risk/benefit ratio of
this agent in treating the mucoobstructive
component of SARS-CoV-2–induced
lung disease. Finally, the mucus plugging
in the distal microcyst regions associated
with fibrosis may reflect a different time
domain/IPF-like pathophysiology (e.g.,
XBP1S dependent). The role of
antifibrotic agents in this disease
manifestation is under investigation in
mouse models and clinical trials (66). An
important challenge for therapy of all
phases of disease will be to identify
effective biomarkers of bronchiolar/distal

lung mucus to gauge therapeutic
effectiveness.�
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