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Abstract: The heartbeat is initiated by pacemaker cells residing in the sinoatrial node (SAN). SAN
cells generate spontaneous action potentials (APs), i.e., normal automaticity. The sympathetic nervous
system increases the heart rate commensurate with the cardiac output demand via stimulation of
SAN β-adrenergic receptors (βAR). While SAN cells reportedly represent a highly heterogeneous
cell population, the current dogma is that, in response to βAR stimulation, all cells increase their
spontaneous AP firing rate in a similar fashion. The aim of the present study was to investigate the
cell-to-cell variability in the responses of a large population of SAN cells. We measured the βAR
responses among 166 single SAN cells isolated from 33 guinea pig hearts. In contrast to the current
dogma, the SAN cell responses to βAR stimulation substantially varied. In each cell, changes in the
AP cycle length were highly correlated (R2 = 0.97) with the AP cycle length before βAR stimulation.
While, as expected, on average, the cells increased their pacemaker rate, greater responses were
observed in cells with slower basal rates, and vice versa: cells with higher basal rates showed smaller
responses, no responses, or even decreased their rate. Thus, βAR stimulation synchronized the
operation of the SAN cell population toward a higher average rate, rather than uniformly shifting the
rate in each cell, creating a new paradigm of βAR-driven fight-or-flight responses among individual
pacemaker cells.

Keywords: heart rate; automaticity; pacemaker; sinoatrial node cell; β-adrenergic receptors;
fight-or-flight response; synchronization

1. Introduction

Enzymatically isolated single sinoatrial node (SAN) cells have been extensively
utilized as a model in studies of the cellular mechanisms of cardiac pacemaker rate
regulation [1]. These studies have advanced our understanding of how the heart responds
to autonomic receptor stimulation: β-adrenergic receptor (βAR) stimulation increases the
spontaneous action potential (AP) firing rate in SAN cells, while the cholinergic receptor
stimulation decreases the rate.

Further, it is generally believed that βAR stimulation shifts the AP firing rate in a sim-
ilar fashion in all SAN cells via a small increase in the slope of diastolic depolarization [2].
This idea is based on electrophysiological measurements performed in a highly selected,
relatively small population of cells. These selected cells, previously believed to be “true”
pacemaker cells, contract spontaneously, and beat frequently and rhythmically after enzy-
matic isolation, mirroring the behavior of the whole SA node.

However, only 10−30% of isolated cells behaved in this way in the original paper
describing SAN cell isolation [3]. The isolation procedure has been refined and improved
over time, and, while the yield of spontaneously and rhythmically contracting cells has
increased, it has never approached 100%. In addition to cells firing frequent and rhythmic
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spontaneous APs, many isolated cells fire APs at slower, sometimes irregular rates, while
others remain silent and do not beat at all despite a normal appearance.

Traditional research focusing only on the frequently beating “true” SAN cells has
been justified on the basis of the operational paradigm that SAN tissue is driven by a
leading pacemaker cell (or cluster) that dictates the excitation rate and rhythm to all other
subservient cells [4,5]. The coordinated firing of individual cells within SAN tissue has also
been approached along the lines of mutual entrainment of individual cells toward a single
rate within a network of loosely coupled oscillators (dubbed the ‘democratic process’) [6,7].

As a result, historic SAN cell studies have deliberately selected only those cells that
are spontaneously beating after isolation, with rates and rhythms similar to that of intact
SAN tissue. All other cells remaining after enzymatic isolation were typically ignored. This
includes non-beating, irregular or infrequently beating cells, have been typically rejected
for study on the basis that they were “damaged” by the enzymatic isolation procedure, or
that they were subsidiary or not “true” pacemaker cells.

This “one rate/rhythm” paradigm of SAN cell operation, and the related criteria of
pacemaker cell vitality and authenticity, has recently been challenged. Using a novel high-
resolution imaging technique, Bychkov et al. [8] recorded Ca signals in individual cells
over the entire intact mouse SAN. They found that synchronized cardiac impulses emerged
from heterogeneous local Ca signals within and among cells of SAN tissue. The patterns
seen resembled complex processes of impulse generation within clusters of neurons in
neuronal networks.

Many cells within the HCN4-positive network (where pacemaker impulses first
emerge) in fact did not generate APs at all, or generated APs with rates and rhythms
different from those exiting the SAN to capture the atria. Another recent study [9] in
knock-in mice expressing cAMP-insensitive HCN4 channels showed that tonic and mu-
tual interaction (so-called ‘tonic entrainment’) between firing and non-firing cells slowed
down SAN pacemaking. cAMP increased the proportion of firing cells in this work,
and, in doing so, increased the rate of SAN automaticity and increased the resistance to
parasympathetic stimulation.

We recently examined non-firing, silent cells—“dormant cells”—isolated from guinea
pig and human hearts [10–12]. Many dormant cells can be reversibly “awakened” to fire
normal, spontaneous rhythmic APs by βAR stimulation. The transition to spontaneous
AP firing occurs via the emergence and coupling of rhythmic intracellular Ca oscillations
(known as the Ca clock [13,14]). These rhythmic local Ca releases (LCRs) interact with the
membrane oscillator (known as the membrane clock) to drive the diastolic depolarization
and trigger high-amplitude APs.

During the transition to AP firing, both clock functions undergo specific changes
including: (i) increased cAMP-mediated If activation; (ii) increased cAMP-mediated phos-
phorylation of phospholamban, which increases ICaL density and accelerates Ca pumping;
and (iii) increased spatiotemporal LCR synchronization, which yields a larger diastolic
LCR ensemble signal and an earlier increase in diastolic Na/Ca exchanger current [12]. All
these changes result in effective AP ignition required for Ca and membrane clock coupling
during diastolic depolarization [15].

While cAMP-dependent phosphorylation is a key regulator of clock coupling [16], how
different degrees of phosphorylation translate into clock coupling and cell behavior (e.g.,
dormancy, rhythmicity, and dysrhythmic firing, along with the effects on autonomic recep-
tor modulation, etc.) will depend on the expression level of clock proteins in individual
cells. This cannot be assumed to be the same from cell to cell. Indeed, immunocytochemical
labeling of the L-type Ca channels, Na/Ca exchanger, Ca release channels (RyR2), and Ca
pump (SERCA2) varies widely in SAN cells [17].

SAN cells also exhibit a substantial degree of cell-to-cell variability in functional
expression of ICaL, If, and IK [18,19]. For example, cell-to-cell variations in ICaL or If densities
can be as much as an order of magnitude. LCR characteristics also vary substantially
between cells, with the LCR period highly correlating with the AP cycle length [20].We
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know from many years of observation that enzymatically isolated SAN cells have a wide
spectrum of basal beating rates (from high beating rates all the way to dormancy), and that
this could be due to natural diversity rather than damage during isolation procedure.

The aim of the current study was, for the first time, to document the range of responses
of all spontaneously beating isolated SAN cells to βAR stimulation, regardless of their
basal beating rate. We hypothesized that there would be a wide variety of responses to
βAR stimulation in heterogenous isolated SAN cells and that this would be related to the
basal beating rate pre-βAR stimulation.

We demonstrate that SAN cell responses to βAR stimulation do indeed differ fun-
damentally from the dogma that all cells increase their rate in a similar fashion. Most
cells did increase their rate, but some were insensitive to stimulation, and others even
paradoxically decreased their rates. Overall, during βAR stimulation, the spectrum of
rates among individual cells substantially narrowed and became synchronized around a
higher average.

2. Materials and Methods
2.1. Single Cell Preparation

SAN cells were isolated from 33 male guinea pigs in accordance with NIH guidelines
for the care and use of animals, protocol 034-LCS-2019 [10]. Hartley guinea pigs (Charles
River Laboratories, Wilmington, MA, USA) weighing 500–650 g were anesthetized with
sodium pentobarbital (50−90 mg/kg). The heart was removed quickly and placed in
solution containing (in mM): 130 NaCl, 24 NaHCO3, 1.2 NaH2PO4, 1.0 MgCl2, 1.8 CaCl2,
4.0 KCl, and 5.6 glucose equilibrated with 95% O2/5% CO2 (pH 7.4 at 35 ◦C). The SA node
region was cut into small strips (~1.0 mm wide) perpendicular to the crista terminalis and
excised. The final SA node preparation consisted of SA node strips attached to the small
portion of crista terminalis.

The SA node preparation was washed twice in Ca-free solution containing (in mM):
140 NaCl, 5.4 KCl, 0.5 MgCl2, 0.33 NaH2PO4, 5 HEPES, and 5.5 glucose, (pH = 6.9) and
incubated on a shaker at 35 ◦C for 30 min in the same solution with the addition of elastase
type IV (0.6 mg/mL of 5.7 units per mg; Sigma, Chemical Co. St. Louis, MO, USA),
collagenase type 2 (0.8 mg/mL of 250 units per mg; Worthington, NJ, USA), protease XIV
(0.12 mg/mL of ≥3.5 units per mg; Sigma, Chemical Co.), and 0.1% bovine serum albumin
(Sigma, Chemical Co.).

The SAN preparation was washed in modified Kraftbruhe (KB) solution, containing
(in mM): 70 potassium glutamate, 30 KCl, 10 KH2PO4, 1 MgCl2, 20 taurine, 10 glucose,
0.3 EGTA, and 10 HEPES (titrated to pH 7.4 with KOH), and kept at 4 ◦C for 1 h in KB
solution containing 50 mg/mL polyvinylpyrrolidone (Sigma, Chemical Co.). Finally, the
cells were dispersed from the SA node preparation by gentle pipetting in the KB solution
and stored at 4 ◦C for 8 h for subsequent use in our experiments.

The cells measured in this study most likely correspond to sinus node pacemaker cells
rather than atrial cells because of the following:

• We accurately dissected the SA node to avoid (or minimize) contamination with atrial
myocytes. The location of guinea pig SA nodes in relation to the whole heart during
our isolation procedure is shown in Figure S1.

• We measured SA node cells that had a classical spindle-shaped morphology (Figure S2).
• We deliberately avoided cells with a typical atrial cell morphology (i.e., blocky and

rectangular in shape).
• We described the electrophysiological properties of these cells in our recent study [12].

The cells used in the present study have similar properties because they were from the
same isolations (from the same guinea pig hearts). The maximum diastolic potential
was on average −58.5 mV. This is clearly different from SA node-residing atrial cells
that have a stable resting membrane potential between −70 and −80 mV [21].
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2.2. Two-Dimensional (2D) Ca Imaging of Single Cells

The Ca dynamics within isolated single SAN cells were measured by 2D imaging of
fluorescence emitted by the Ca indicator Fluo-4 (Invitrogen) using a Hamamatsu C9100-12
CCD camera, with an 8.192 mm square sensor of 512 × 512 pixels resolution), as previously
described [22]. The sampling rate of 100 frames/sec was chosen for our imaging because it
satisfactorily reports both the AP cycle length and spatiotemporal resolution of LCRs [22].

The camera was mounted on a Zeiss Axiovert 100 inverted microscope (Carl Zeiss,
Inc., Germany) with a ×63 oil immersion lens and a fluorescence excitation light source
CoolLED pE-300-W (CoolLED Ltd. Andover, UK). Fluo-4 fluorescence excitation (blue
light, 470/40 nm) and emission light collection (green light, 525/50 nm) were performed
using the Zeiss filter set 38 HE. The cells were loaded with 5 mM Fluo-4AM (Sigma-Aldrich,
St. Louis, MO, USA) for 20 min at room temperature. The physiological (bathing) solution
contained (in mM): 140 NaCl; 5.4 KCl; 2 MgCl2; 5 HEPES; and 1.8 CaCl2; at pH 7.3 (adjusted
with NaOH). Data acquisition was performed using SimplePCI (Hamamatsu Corporation,
Japan) at a physiological temperature of 35 ± 0.1 ◦C.

2.3. Detection and Analysis of the Whole Ensemble of AP-Induced Cytosolic Ca Transients and
LCRs in 2D Ca Imaging

AP-induced Ca transients were observed as sharp, whole-cell wide (i.e., within the
entire cell perimeter) transient rises of Fluo-4 fluorescence. We considered the time periods
between these high amplitude signals as a satisfactory measure of AP cycle length (further
referred as cycle length) as we previously reported in simultaneous recordings of Ca and
membrane potential [23]. The time series of whole-cell Fluo-4 fluorescence (within the cell
perimeter) were measured from 2D video recordings using HCImageLive image analysis
software (v.3, ×64, Hamamatsu Co., Hamamatsu City, Japan). Then, fluorescence peaks
(i.e., AP-induced Ca transients) and their respective cycle lengths were determined by our
custom-made program (Victor Maltsev).

LCRs were observed as local Ca signals scattered within the cell perimeter. They
were detected and analyzed by program “XYT Event Detector” [24] (its C++ code is freely
available on the NIH website https://www.nia.nih.gov/research/labs/xyt-event-detector
(accessed on 17 August 2021).

In short, the program detects LCR birth/death events by a differential, frame-to-frame
sensitivity algorithm applied to each pixel (cell location) in a series of images generated
by the camera. An LCR is detected when its signal changes sufficiently quickly within a
sufficiently large area. The LCR “dies” when its amplitude decays substantially or when it
merges into a rising AP-induced Ca transient. LCRs were isolated from noise by applying
a series of spatial filters that set the minimum pixel size and the brightness threshold for
LCRs.

Cells with mechanical contractile movements were affixed by tracking points along
the midline of the moving cell by using a computer program “SANC Analysis” described
in [24]. The algorithm uses these points as a coordinate system for affine transform,
producing a transformed image series that are stationary. The program is available as a free
ImageJ plugin on the website http://scepticalphysiologist.com/code/code.html (accessed
on 17 August 2021) created and maintained by Dr. Sean Parsons.

2.4. Evaluation of βAR Stimulation Effect

βARs were stimulated by 1 µM isoproterenol in SAN cells during continuous perfu-
sion of the entire bath with physiological solution. In each cell, Ca signals were recorded
two times: before βAR stimulation (designated as the control or basal state) and during
stimulation approximately 5 min after isoproterenol application onset. To avoid photo-
damage, each recording was limited to 30 s. The respective cycle lengths were measured
from each recording (as described above), and each measured cell was represented by two
numbers: the average cycle lengths in the control and in the presence of βAR stimulation.

https://www.nia.nih.gov/research/labs/xyt-event-detector
http://scepticalphysiologist.com/code/code.html
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We also evaluated the effect of βAR stimulation on LCR characteristics, namely: the
LCR period, time from AP-induced Ca transient peak to the onset of an LCR (ms); LCR
duration, time from LCR onset to its “death” or merging to the transient (ms); LCR area,
the cell area that was covered by a given LCR during its life span including expansion and
propagation (µm2) (reflecting parameter “LCR spatial size” reported in confocal line-scan
images [20]); and maximum LCR size, the area of the largest LCR in each cycle (µm2).

2.5. Statistics

The data are presented as the mean ± SEM. The statistical significance of the effects
of βAR stimulation on cycle length and LCR characteristics was evaluated by paired
t-test (n = 166, in each cell before and during stimulation) using Data Analysis Add-In of
Microsoft Excel program, version 2106.

3. Results
3.1. Cycle Length Changes

On average, SAN cells significantly decreased their spontaneous cycle length in re-
sponse to βAR stimulation. A statistical evaluation of the responses is provided in Table 1.

Table 1. The effect of βAR stimulation on cycle length measured in a population of 166 SAN cells
that generated spontaneous AP-induced Ca transients; SEM, standard error of mean; SD, standard
deviation, CV% = 100 × SD/Mean, coefficient of variation.

Parameter Before Stimulation βAR Stimulation

Mean cycle length, ms 921.8 1 507.3 1

SEM, ms 66.5 13.1
SD, ms 856.4 169.1
CV% 92.9 33.3

1 Statistically significant with p < 0.001 via paired t-test, two tail.

The responses varied substantially from cell to cell and can be categorized into three
types: (i) Most cells, 121 of 166 (72.9%), showed the “classical” response of cycle length
reduction, i.e., their rate increased; (ii) a smaller fraction of cells, 12 of 166 (7.2%) showed
almost no change in the cycle length (the cycle length remained within 3% of the baseline);
and (iii) the remainder, 33 of 166 (19.9%) showed the “unexpected” or “paradoxical”
response of cycle length increase (AP firing rates decreased).

Examples of each category are shown in Figure 1 and respective Videos S1–S6 (each
response category is represented by two video recordings: before βAR stimulation and
during stimulation. Another way to categorize cell responses is to exclude the “no change”
category and formally divide all cells based on the sign of the cycle length change. In
this case, we report 38 cells of 166 (i.e., 22.9%) that responded with cycle length increase
(Table S1). The pool of cells with the unusual response is notable.
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Figure 1. Examples of three types of βAR stimulation effects on AP-induced Ca transient cycle length (CL): (A,B): decrease;
(C,D): no change; and (E,F): increase. All traces have the same 3 s duration for clear visual comparison. See also the
Videos S1–S6 of cell Ca dynamics in control and in the presence of βAR stimulation.

We noticed that the classical response (positive in terms of AP rate increase) was typi-
cally observed in SAN cells with larger basal cycle lengths. Contrastingly, the paradoxical
response (cycle length increase) was mainly observed in cells with short baseline cycle
lengths, i.e., in cells with higher basal beating rates. The largest cycle length shortenings
were observed in cells operating at extremely long cycle lengths (Figure 2, Videos S7 and
S8), i.e., in SAN cells bordering on the dormant state [10–12].
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Figure 2. An example of the βAR stimulation effect in cells with extremely long AP-induced Ca transient cycle length (CL).
(A): at the base line, i.e., an “almost dormant cell”. (B): βAR stimulation. Both traces have the same 5.5 s duration for a clear
visual comparison. See also Videos S7 and S8 of cell Ca dynamics in the control and in the presence of βAR stimulation.

We illustrated and statistically evaluated this result by plotting the cycle length change
vs. initial cycle length before βAR stimulation for each cell tested (Figure 3). The relation-
ship was closely described by a linear function with R2 = 0.961. The fitted line crossed the
x axis at a cycle length of 491 ms (“no change” cycle length), providing an approximate
border between negative and positive responses that was also close to the average cycle
length (507 ms) in the presence of βAR stimulation.

Figure 3. Strong correlation of the initial cycle length (basal state) with a change in the cycle length in the presence of βAR
stimulation. Negative numbers on the Y axis represent cycle length decrease, i.e., rate increase.
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This suggests synchronization (or grouping) of the responses around this no-change
cycle length value. Such synchronization is also evidenced by a substantially smaller
standard deviation of cycle lengths in βAR stimulated cells. Synchronization is also
suggested by the substantially smaller coefficient of variation (CV) (33% vs. 93%, Table 1)
of cycle length in the presence of βAR stimulation.

The βAR stimulation associated cycle length synchronization is illustrated by compar-
ison of the respective histograms for cycle lengths in control and in the presence of βAR
stimulation (Figure 4). The cycle length distribution is spread widely in the basal state,
with many cells exhibiting long, and some extremely long, values. In the presence of βAR
stimulation, the distribution substantially narrowed, and almost all cells operated around
a common, higher (on average) rate.

Figure 4. βAR stimulation synchronized cell rates around a higher (on average) common rate, i.e.,
a shorter cycle length. Histograms show the cycle length distributions in 166 cells tested in the
present study. Bin size is 50 ms. (A): In the control. (B): In the presence of βAR stimulation. Inset:
overlapping histograms in panels A and B expressed in terms of the percentage of cells in each cycle
length bin illustrate a narrower, synchronized distribution of cycle lengths in stimulated cells (red)
relative to control (blue).
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We performed additional data analyses to ensure that our results were robust and
independent of the number of cells measured from each heart. Our measurements varied
from a minimum of 1 to a maximum of 19 cells/animal (see histogram in Figure S3).
We virtually divided the entire cell population approximately by half with substantially
different numbers of cells/animal: subgroup 1 had 82 cells with 1 to 7 (cells/animal), and
subgroup 2 had 84 cells with 8 to 19 (cells/animal).

Both subgroups had similar average cycle lengths in the basal state and during βAR
stimulation, similar fractions of cells with a cycle length increase, and similar results of
linear recreation analyses vs. each other and vs. all cells measured (Table S1, Figure S4).
Thus, the results of our study are robust and independent of the cells measured from each
isolation.

3.2. LCR Changes

Our previous studies have shown the crucial importance of LCRs for facilitating the
effect of βAR stimulation in AP firing SAN cells [25], and in dormant SAN cells [10–12]. We,
consequently, measured and compared changes in key LCR characteristics in contrasting
cells responding to βAR stimulation with a cycle length decrease vs. cycle length increase.
All key LCR characteristics in SAN cells responding with cycle length decrease changed
substantially (Figure 5) in line with the coupled-clock theory (see more in Discussion). In
contrast, LCR characteristics in cells exhibiting a cycle length increase showed no significant
change, except the LCR period, which increased (Figure 6).

Figure 5. All measured LCR characteristics substantially and significantly changed in cells with a cycle length decrease
(rate increase, i.e., the classic response). * p < 0.05, n = 4 cells.
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Figure 6. LCR characteristics did not change, except for in the LCR period, in cells responding with the cycle length increase
(rate decrease, i.e., a new response type). * p < 0.05, n = 5 cells.

4. Discussion
4.1. Result Summary

The present study, for the first time, examined the diverse effects of βAR stimulation in
a large number of isolated SAN pacemaker cells (n = 166). Previous studies have evaluated
the average effect of βAR stimulation in small populations of cells that were spontaneously
beating after isolation with a rate similar to that of the intact SAN. Recent findings in the
intact SAN as a whole [8,9] and in dormant isolated cells [10–12] inspired us to investigate
all SAN cells isolated from SAN tissue, to better appreciate their behavior and understand
their possible contributions to automaticity.

Our novel aim here was to examine βAR stimulation effects in a large population of
SAN cells generating spontaneous AP-induced Ca transients at any rate, including very
low rates, bordering on dormancy. We tested the hypothesis that the responses would
vary substantially among cells, and endeavored to find a general relationship of the rate
change during βAR stimulation among cells. We found that βAR stimulation responses
did markedly vary. Furthermore, the cycle length change in each cell was highly correlated
(R2 = 0.97) with the cycle length before stimulation.

While on average, the cycle length decreased, larger cycle length shortenings were
observed in cells with longer cycle lengths before stimulation. Vice versa, cells with a
shorter cycle length showed smaller responses or even paradoxical cycle length increases
(Figure 3). Thus, βAR stimulation critically synchronized the intrinsic operation of SAN
cells toward a higher average rate, differing fundamentally from the dogma of a uniform
shift in each cell [2].

4.2. Possible Mechanisms Underlying Different Cell Sensitivity to βAR Stimulation

The large spectrum of cell responses to βAR stimulation is likely linked to the ex-
tremely high heterogeneity of SAN cells with respect to their expression of key proteins
(including Ca cycling proteins [17,26]), and ion current densities [17–19]. Indeed, our
theoretical studies [27] employing wide ranging, multidimensional sensitivity analyses
tested hundreds of thousands of numerical models with different yet realistic parameters
of both Ca and membrane clocks.
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These analyses demonstrated substantial variation in the ranges of βAR stimulation
effect. A major conclusion (related to this study) was that the full physiological range of
rates can be achieved only in SAN cell models that incorporate a Ca clock. The membrane
and Ca clocks operate in synergy providing robust, flexible, and energy efficient spon-
taneous AP firing [13,27]. In mathematical terms, the Ca clock operates via a criticality
mechanism [28], employing phase-like transitions [29].

This is continuously but variably coupled to the membrane clock that generates
current/voltage oscillations via a limit- cycle mechanism [30]. The criticality mechanisms,
in turn, are governed by a power law and self-similarity across wide scales [31]. Nature
harnesses these universal and synergetic mechanisms to effectively execute the wide range
of autonomic modulation receptor stimulation [32] observed in species with substantially
different ‘normal’ heart rates [33].

The specific mechanism of the beating rate increase during βAR stimulation in our
study is also likely linked to the coupled-clock function. This is evidenced by respective
changes in LCR characteristics (Figure 5) including an increase in the average LCR area,
maximum LCR size and LCR duration. These all indicate a stronger interaction of LCRs
with the membrane clock and a larger total interaction area with the Na/Ca exchanger.
This LCR-linked mechanism is similar to what we reported for βAR stimulation in dormant
cells [10–12] (as discussed in the Introduction).

Some cells (mainly with a high basal rate) responded with rate slowing during βAR
stimulation (Figure 1E) with their LCR period significantly increasing (Figure 6). An
increase in LCR period is a common feature of SAN cells that decrease their firing rate (e.g.,
the LCR period increases in the presence of cholinergic receptor stimulation [34]). Thus, the
rate decrease could be LCR-dependent due to shift in the timing of LCR occurrences. Other
LCR characteristics in these cells (assessing strength of LCR signal) remained unchanged
(Figure 6). This indicates that the Ca clock (and its coupling to the membrane clock) is
tuned to operate differently in these cell populations.

This tuning can be linked to the specific settings of complex biochemical reactions (the
“biochemical engine” of the cardiac pacemaker). These determine, among other things,
the cAMP balance and protein phosphorylation driving the Ca clock and the coupled-
clock system [14]. The biochemical engine can be slowed down via appropriate “brakes”.
These include the wide spectrum of different adenylyl cyclases (e.g., Ca-inhibited types),
phosphatases, and phosphodiesterases, their operating regimes, and interplay including
local interactions, e.g., in microdomains [35,36]. Bradycardic mechanisms of the membrane
clock that may contribute to the rate slowing include Ca-activated K channels and Ca-
dependent inactivation of ICaL.

4.3. A Broader Interpretation of Our Results toward the Entire Range of Autonomic Modulation,
Including Dormant Cells

In the broader context, our finding that βAR stimulation synchronizes intrinsic cell
oscillations (i.e., spontaneous AP rates of cells in isolation) may be extended to the entire
range of SAN beating rates executed by autonomic modulation. This includes cholinergic
receptor stimulation, but with the opposite effect to desynchronize cell function. In the
present paper, in the basal state, the distribution of intrinsic rates is dispersed, but still has
a notable peak (Figure 4, top panel).

Cell synchronization within the cell population in the presence of βAR stimulation
transforms the distribution into a single narrow peak (Figure 4, bottom panel). Cell
desynchronization in the presence of cholinergic receptor stimulation would likely result
in the opposite effect, i.e., a more disperse (disordered) distribution than in the basal
state. Indeed, SAN cells isolated from rabbit hearts substantially decreased or increased
their AP cycle length standard deviation upon βAR or cholinergic receptor stimulation,
respectively [32].

If this hypothetical synchronization/desynchronization mechanism of cell population
redistribution is correct, one could expect that low-rate cells would become non-firing cells
in the presence of cholinergic stimulation (following the Fenske et al. hypothesis), whereas,
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in the presence of βAR stimulation, low-rate cells would become higher-rate cells (present
study, Figure 4) and non-firing/dormant cells would become firing cells [10–12].

Thus, our broader interpretation of autonomic modulation at the level of the SAN cell
population includes the redistribution of intrinsic cell functions within the entire spectrum
of rates, including in cells beating with a rate of zero, i.e., dormant cells. As such, we
hypothesize that dormant cells represent an indispensable part of the SAN cell spectrum.
This view is fundamentally different from the old-standing dogma of rate regulation via
“the pacemaker cell”, i.e., a hypothetical, average SAN cell executing the entire range of
autonomic modulation [37–41].

4.4. A Broader Interpretation of Our Results toward Synchronization Mechanisms of Cell
Signaling in Intact SAN: Cell Specialization and Local Control by Autonomic System

The findings of the present study are in line with the results of a preliminary study [42]
that cells isolated from different SAN regions exhibit not only different basal rates but
also different responses to βAR stimulation. Different cell responses to βAR stimulation,
in turn, suggests that some SAN cells are specialized to execute increases in heart rate.
Indeed, recent studies [43] discovered two competing right atrial pacemakers: one near the
superior vena cava and one near the inferior vena cava.

These preferentially control fast and slow heart rates. Cholinergic receptor stimulation
causes some SAN cells to become silent, which contributes to a rate decrease as proposed
by Fenske et al. [9]. Still other areas may be unresponsive to acetylcholine [44]. Using small
tissue pieces dissected from rabbit SA node, Opthof et al. [45] found that SA node pieces
bordering the left atrium were quiescent when dissected, but became activated to fire APs
in the presence of adrenaline or acetylcholine.

Cell specialization to generate different rates and different sensitivity of cells to auto-
nomic stimulation within the cellular network of intact SAN can be interpreted to indicate
that the role of autonomic modulation is to redistribute signaling (i.e., local control) within
the cellular network. This is likely to amplify the contribution and deliver oscillations of a
particular rate generated by a specialized cell population toward the overall control of the
SAN output.

Such signal amplification within the intact SAN may be executed via stochastic res-
onance [46] and/or percolation phase transition [30]. Another potential amplification
mechanism is linked to dynamic changes in the SAN network itself, i.e., autonomic system-
guided local control of dynamic signal channeling. Indeed, during βAR stimulation, some
additional (multiple) signaling pathways may be created within the network, as more
non-firing/dormant cells become firing cells. On the other hand, those cells that initially
had faster intrinsic rates but slowed down in response to βAR stimulation (about 23%,
Table S1) may impede certain signal transduction (or propagation) pathways, preventing
reentries, and thus acting as a safety mechanism.

Thus, cells not only synchronize their intrinsic firing rates (present study), but also
their synchronized firing is more robustly, synchronously, and safely delivered to SAN
output within the tissue via dynamic signal channeling. In contrast, some signal paths to
SAN output may be blocked by temporary nonfiring/dormant cells during the cholinergic
response (in addition to the tonic entrainment mechanism of Fenske at al. [9]). These may
become available once more in the basal state firing. Such a specialized cell population-
based mechanism (autonomic system local control of signal channeling) is reflected by the
classic phenomenon, known as the shift of the dominant leading pacemaker site [47].

Interestingly, respiration arises from complex and dynamic neuronal interactions
within a diverse neural microcircuit, and pacemaker properties are not necessary for respi-
ratory rhythmogenesis [48]. Thus, regulation of cardiac automaticity can also theoretically
utilize such a neural microcircuit mechanism. How specifically, cell specialization and
different degrees of synchronization in intrinsic cell signaling would be guided/modulated
by the autonomic system (locally and over entire SAN) and translated into a higher or lower
rate of impulses emanating from the SAN remains unknown and merits further study.
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A problem with the interpretation of cell population data to the network level at this
moment is that the new paradigm of heterogeneous signaling (including subthreshold
signals, non-firing cells, and cells operating at various rates) has only recently been pro-
posed [8,9]. While it has been noted that cell signaling in the SAN network resembles
multiscale complex processes of impulse generation within clusters of neurons in neuronal
networks [8], establishing exact mechanisms of this complex signaling represents the fron-
tier of cardiac pacemaker research. Testing new ideas and establishing exact mechanisms
requires new theoretical modeling.

Multicellular numerical models of SAN function have been developed in 1 dimension
(as a linear chain of consecutive SAN cells) [49–54], in 2 dimensions [55–57], and even
in 3 dimensions [58]. Those models have provided new insights about the importance
of cell interactions; however, they have not tested the importance of dormant cells (with
their subthreshold signaling) [10–12], cells operating at low rates found in intact SAN [8],
and autonomic modulation. The cell population data presented here will be helpful for
future numerical studies of SAN tissue to decrease uncertainties in choosing cell model
parameters.

4.5. Importance of Beat-to-Beat Variability

While the present study was focused on the rate responses, another important aspect
of the function of SAN cells is their beat-to-beat variability that ultimately contributes to
heart rate variability. In addition to respective rate changes, βAR stimulation increases
the rhythmicity of AP firing (via cell firing synchronization), whereas cholinergic receptor
stimulation decreases the rhythmicity of spontaneous AP firing [32,59]. Furthermore, Ca
and membrane potential transitions during APs were found to be self-similar and to the
variability of AP firing intervals across the entire physiologic range during autonomic
receptor stimulation [32].

In fact, the rate and rhythm are intrinsically linked to each other at each and all scale
levels (single cells, tissue, and heart) [59]. The data from the present study provides a new
insight into this phenomenon. If the SAN rate and rhythm result from an integration of
signals from many or all cells, the network of cells with a narrower distribution of intrinsic
rates in the presence of βAR stimulation (Figure 4), would logically give less variability at
the output after the integration. Thus, future experimental studies of diverse populations
of SAN cells and respective theoretical approaches will be more enlightening if they include
both rate and rhythm considerations.

4.6. Functional Benefits of Heterogeneity at Tissue Level

SAN cells exhibit extremely heterogeneous morphological, biophysical, and biochemi-
cal properties. Why? What are the benefits and importance of this heterogeneity among
cells within the SAN tissue? A comprehensive summary of thoughts in this regard was
presented about 20 years ago in a seminal review by Boyett et al. [47] that concluded:
“The heterogeneity is important for the dependable functioning of the SA node as the
pacemaker for the heart, because (i) via multiple mechanisms, it allows the SA node to
drive the surrounding atrial muscle without being suppressed electrotonically; (ii) via an
action potential duration gradient and a conduction block zone, it promotes antegrade
propagation of excitation from the SA node to the right atrium and prevents reentry of
excitation; and (iii) via pacemaker shift, it allows pacemaking to continue under diverse
pathophysiological circumstances.”

The functional importance of heterogeneity in cellular networks has been also demon-
strated in theoretical studies. For example, the presence of the Ca clock in addition to
the membrane clock protects the SAN from annihilation, associated with sinus node
arrest [54]. The network structure critically determines oscillation regularity [60] and ran-
dom parameter heterogeneity among oscillators can consistently rescue the system from
losing synchrony [61].
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Another possible advantage of cell specialization and heterogeneous signaling among
SAN cells is more efficient energy consumption. For example, cells specializing in impulse
conduction to the atria, building a “conduction block zone”, or generating a particular
rate, may not possess a “powerful” Ca clock, consuming a lot of energy for its cAMP/PKA
signaling [62], which is required for wide range rate regulation [27].

Furthermore, heterogeneous signaling in SAN tissue [8] implies that, during rest
periods, many cells may stay in reserve, firing APs at lower rates (and not necessarily
rhythmically), or even fall to dormancy, consuming much less energy. For example, in cats,
the primary pacemaker consists of at most 2000 cells, but appears to function normally
with less than 500 cells [63]. During the fight-or-flight response, however, we would expect
that all reserves are recruited and maximally synchronized to generate rhythmic frequent
impulses for the maximum blood supply for the sake of survival at any energy cost.

Yet another level of heterogeneity and complexity of cardiac pacemaker tissue is its
intense neuronal innervation network [64–66], dubbed the “little brain of the heart” [67].
This provides precise control of SAN pacemaker cell function (via possible local control
and guidance of heterogeneous signaling as discussed above). SAN pacemaker cells also
have interactions with non-excitable cells, such as telocytes [68,69] and fibroblasts [70] that
could also aid in local control of heterogeneous signaling. Fibroblasts provide obstacles,
ion current sinks, or shunts to impulse conduction depending on their orientation, density,
and coupling [51].

5. Conclusions

The response of isolated, spontaneously beating SAN cells to βAR stimulation is
diverse and, in addition to cells that increase their beating rates, includes cells that are
unaffected and some that paradoxically slow down. Individual cell responses depend on
the basal rate of beating, and overall there is a synchronization in beating rates in response
to βAR stimulation across the cell population. The effect is mitigated through the coupled
clock system; however, the effects on LCRs differ in cells depending on their response to
βAR stimulation. Understanding how markedly heterogenous populations of SAN cells
respond to autonomic stimulation and how this is integrated into the function and output
of the SAN at the tissue and organ level represents one critical frontier in SAN research
mandating intense future study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10082124/s1, Video S1: An example of classical type of βAR stimulation effects to decrease
the cycle length (i.e., to increase the cycling rate). This 3.67 s video shows a 2D recording of Ca
signals in the basal state before stimulation. See Figure 1A. Video S2: An example of classical type
βAR stimulation effects to decrease the cycle length (i.e., to increase the cycling rate). This 3.67 s
video shows a 2D recording of Ca signals of the same SA node cell as in Video S1 in the presence
of stimulation. See Figure 1B. Video S3: An example of the absence of a notable βAR stimulation
effect on the cycle length. This 3.5 s video shows a 2D recording of Ca signals in basal state before
stimulation. See Figure 1C. Video S4: An example of absence of notable βAR stimulation effect on
the cycle length. This 3.5 s video shows a 2D recording of Ca signals in the presence of stimulation.
See Figure 1D. Video S5: An example of unusual βAR stimulation effect to increase the cycle length
(i.e., decrease the cycling rate). This 3.67 s video shows a 2D recording of Ca signals in the basal
state before stimulation. See Figure 1E. Video S6: An example of unusual βAR stimulation effect to
increase the cycle length (i.e., decrease the cycling rate). This 3.67 s video shows a 2D recording of Ca
signals in the presence of stimulation. See Figure 1F. Video S7: An example of the βAR stimulation
effect to substantially decrease the cycle length in a cell with extremely long cycle length in the basal
state. This 5.96 s video shows a 2D recording of Ca signals in the basal state before stimulation. See
Figure 2A. Video S8: An example of the βAR stimulation effect to substantially decrease the cycle
length in a cell with an extremely long cycle length in the basal state. This 5.96 s video shows a 2D
recording of Ca signals in the presence of stimulation. See Figure 2B. Table S1: Statistical data and
results of linear regression analyses of AP cycle lengths.
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