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SUMMARY
Despite biomarker stratification, the anti-EGFR antibody cetuximab is only effective against a subgroup of
colorectal cancers (CRCs). This genomic and transcriptomic analysis of the cetuximab resistance landscape
in 35 RAS wild-type CRCs identified associations of NF1 and non-canonical RAS/RAF aberrations with
primary resistance and validated transcriptomic CRC subtypes as non-genetic predictors of benefit. Sixty-
four percent of biopsies with acquired resistance harbored no genetic resistance drivers. Most of these
had switched from a cetuximab-sensitive transcriptomic subtype at baseline to a fibroblast- and growth fac-
tor-rich subtype at progression. Fibroblast-supernatant conferred cetuximab resistance in vitro, confirming a
major role for non-genetic resistance through stromal remodeling. Cetuximab treatment increased cytotoxic
immune infiltrates and PD-L1 and LAG3 immune checkpoint expression, potentially providing opportunities
to treat cetuximab-resistant CRCs with immunotherapy.
INTRODUCTION

Anti-epidermal growth factor receptor (EGFR) antibodies (anti-

EGFR-Ab) are effective in a subgroup of patients (pts) with
Significance

Only 43% of patients had prolonged benefit from cetuximab in
The identified associations of NF1, non-canonical KRAS and
transcriptomic subtypes with prolonged benefit may enable m
ineffective therapy. Genetic resistance driverswere not identifie
Most of these had switches from the cetuximab-sensitive CMS
This challenges the paradigm that genetic drivers predomin
proaches by targeting fibroblasts. Increased T cell infiltration a
sponses warrant trials of checkpoint inhibitors.
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This is an open access article und
metastatic colorectal cancer (CRC). Activating KRAS or NRAS

mutations in codons 12, 13, 59, 61, 117, and 146 have been

associated with primary resistance in randomized trials and

anti-EGFR-Ab treatment should only be administered for tumors
this trial despite treatment stratification by RAS mutations.
BRAF aberrations with primary resistance, and of CMS2/TA
ore effective treatment allocation and avoid toxicities from
d in themajority ofmetastases that had acquired resistance.
2/TA subtype to a fibroblast- and growth factor-rich subtype.
ate at acquired resistance and suggests therapeutic ap-
nd immune checkpoint upregulation following cetuximab re-
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Figure 1. CONSORT Diagram and Survival Data

(A) CONSORT diagram of 46 patients (pts) included and biopsy samples analyzed. BL, baseline; PD, progressive disease.

(B) Kaplan-Meier survival analysis of 35 pts whose samples were subjected to molecular analysis.

(C) Swimmer plot of progression-free survival (PFS) data and separation into pts with prolonged benefit and with primary progression.

See also Tables S1 and S2.
that are wild type (WT) at these loci (Allegra et al., 2016; Amado

et al., 2008; Bokemeyer et al., 2012; Douillard et al., 2013; Tejpar

et al., 2016). Despite this stratification, many pts do not benefit,

indicating additional resistancemechanisms.BRAF V600E (Lou-

pakis et al., 2009), MAP2K1 (encodes for MEK1) (Bertotti et al.,

2015), or PIK3CA (Sartore-Bianchi et al., 2009) mutations, ampli-

fications (amp) ofKRAS (Valtorta et al., 2013), and of the receptor

tyrosine kinase (RTK) genes ERBB2, MET, and FGFR1 (Bertotti

et al., 2015), have been suggested as further drivers of primary

resistance but are not recommended for routine use due to insuf-

ficient validation in clinical trials. Moreover, a recent transcrip-

tomic classification of CRCs into distinct subtypes found an

association of the transit amplifying (TA) subtype with cetuximab

(CET) sensitivity (Sadanandam et al., 2013), suggesting that non-

genetic molecular characteristics also influence anti-EGFR-Ab

sensitivity.

Anti-EGFR-Ab acquired resistance (AR) almost invariably oc-

curs in pts who initially benefit, and this has predominantly been

studied retrospectively in circulating tumor DNA (ctDNA) (Bette-

gowda et al., 2014; Diaz et al., 2012; Misale et al., 2012). KRAS

and NRAS (herein RAS) mutations, as well as EGFR exodomain

mutations that alter the binding epitope for the anti-EGFR-Ab

CET have been found in ctDNA from a large proportion of pts

with AR. Amp of MET or KRAS evolved in some pts (Bardelli

et al., 2013; Mohan et al., 2014; Siravegna et al., 2015). The

high prevalence of RAS mutations supports the notion that
36 Cancer Cell 36, 35–50, July 8, 2019
mechanisms of primary and AR are often similar. A small num-

ber of studies assessed anti-EGFR-Ab AR in tumor biopsies

(Misale et al., 2012; Van Emburgh et al., 2016). These also iden-

tified RAS and EGFR mutations, but their retrospective nature

and the analysis of only a small number of candidate genes

may have biased the results. Ligands for the RTKs EGFR and

MET (Hobor et al., 2014; Liska et al., 2011) confer anti-EGFR-

Ab resistance in vitro but their clinical relevance remains un-

known. Detailed insights into resistance mechanisms may

enable more precise therapy allocation to pts who are likely to

respond and open therapeutic opportunities for CET-resis-

tant CRCs.

RESULTS

Forty out of 45 pts treated with single-agent CET could be as-

sessed for treatment response and had sufficient biopsymaterial

available for molecular analyses. Sequencing of baseline (BL)

biopsies failed in 5 cases, leaving 35 for study (Figure 1A; Tables

S1 and S2). The median progression-free survival (PFS) and

overall survival of this cohort were 2.6 and 8.5 months, respec-

tively (Figure 1B). Twenty pts showed primary progression at

or before the first per protocol computed tomography scan

(scheduled at week 12). The remaining 15 were classified as

pts with prolonged clinical benefit (Figure 1C). As expected for

CRC, TP53 and APC mutations were common, and one tumor



Figure 2. Molecular Profiles of 35 BL Biopsies Categorized into Cases with Prolonged Cetuximab Benefit and Primary Progressors

(A) TP53 and APC mutations and microsatellite instability status.

(B) Non-silent mutation load. The p value was calculated using the Student’s t test.

(C) Waterfall plot of best radiological response and genetic aberrations of RAS/RAF pathway members or regulators and PIK3CA. Amp, amplification; Mut,

mutation; PR, partial response; PD, progressive disease as per RECIST criteria.

See also Data S1 and S2.
showed mismatch repair deficiency (Figure 2A). The mutation

burden did not significantly differ between tumors with pro-

longedbenefit (median =134) andprimary progressors (median=

120, Figure 2B). Progressive disease (PD) biopsies were taken

after radiological progression (median 14 days after CET cessa-

tion) from 25/35 cases, and 24 were successfully exome

sequenced. Sufficient RNA for RNA sequencing (RNA-seq)

was obtained from 25 BL and 15 matched PD biopsies.

Genetic Drivers of Primary Resistance
We first aimed to identify resistance drivers in BL biopsies from

20 primary progressors (Figure 2C). Oncogenic BRAF V600E

mutations were present in six pts, one in combination with

IGF1R amp (C1035BL, Data S1). No radiological response

occurred in any of these and PFSwas short, supporting previous

data that BRAF V600E confers resistance to CET (Pietrantonio

et al., 2015). C1011BL harbored a non-canonical BRAF D594F

mutation, disrupting the DFG motif of the kinase site. This is

predicted to lead to a kinase-impaired BRAF variant (Moretti

et al., 2009), which has been shown to paradoxically hyperacti-

vate downstream ERK phosphorylation (pERK) when combined

with oncogenic RAS alterations (Heidorn et al., 2010). C1011BL
indeed harbored a concomitantKRAS L19Fmutation, which has

an attenuated phenotype compared with canonical KRASmuta-

tions (Smith et al., 2010). Stable expression of BRAF D594F or

KRAS L19F in the CET-sensitive DiFi CRC cell line confirmed

that each was individually able to maintain a moderate level of

pERK despite CET treatment (Figure 3A), supporting a mecha-

nistic role in resistance. It is conceivable that together both

mutations further increase pERK signaling leading to fitness

advantages that may explain co-occurrence in C1011BL.

Another KRAS mutation (A18D), which confers an attenuated

phenotype in vitro (Scholl et al., 2009), was encoded on all seven

copies of the polysomic chr12p in C1033BL (Data S2), likely

explaining resistance in this case. Introduction of KRAS A18D

into DiFi cells promoted strong pERK during CET exposure

(Figure 3A), providing biochemical support for its role in resis-

tance. A KRAS G12D mutation was identified in C1032BL,

which had been found to be KRAS WT before study entry, indi-

cating either a false-negative result of the clinical assay or

intratumor heterogeneity. A KRAS amp was present in

C1028BL and an ERBB2 amp in C1022BL (Data S1). C1019BL

harbored a canonical activating MAP2K1 mutation (K57N) and

a concomitant MAP2K1 mutation (S228A), which did not
Cancer Cell 36, 35–50, July 8, 2019 37
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Figure 4. Transcriptomic Subtypes of BL Biopsies Categorized into Cases with Prolonged Cetuximab Benefit and Primary Progressors

(A) Transcriptomic subtype assignment. The figure legend for the transcriptomic subtypes is arranged to show the most similar CMS and CRCassigner subtypes

next to each other. Significance was assessed by the Fisher’s exact test.

(B) Association of clinical benefit with tumor sidedness and CMS subtype.

See also Figure S1.
influence kinase activity in a previous study (Pages et al., 1994).

Two tumors carried disrupting mutations in NF1 (C1021BL,

frameshift; C1045BL, nonsense). Both showed loss of heterozy-

gosity of the NF1 locus (Data S2), constituting biallelic inactiva-

tion of this tumor suppressor gene. NF1 encodes for a negative

regulator of KRAS and inactivation leads to EGFR inhibitor resis-

tance in lung cancer (de Bruin et al., 2014). Small interfering RNA

and CRISPR/Cas9 inactivation ofNF1 in CET-sensitive LIM1215

cells rescued a moderate level of pERK during CET treatment

(Figures 3B–3D). CRISPR/Cas9 engineered NF1 deficiency

furthermore maintained cancer cell growth despite CET treat-

ment (Figure 3E). These data suggest NF1 inactivation as a

driver of primary CET resistance in CRC. ERBB3 was mutated

(P590L) in C1017BL but this codon change had no impact on

in vitro growth in a previous study (Liang et al., 2012), question-

ing whether it confers CET resistance.

In contrast to previous studies (Bertotti et al., 2015; Sartore-

Bianchi et al., 2009), neither PIK3CA nor FGFR1 aberrations

clearly associated with resistance (Figure 2C): 4/20 pts

(20%) with primary progression harbored activating PIK3CA

mutations (2xE545K, G364R, and H1047R concomitant with

PIK3CA amp; Data S2), but also 3/15 pts (20%) with prolonged

benefit (2xV344G, H1047R). A tumor with a high level FGFR1

amp (C1037BL) and one with an FGFR1 R209H mutation

(C1007BL), previously reported in Kallmann syndrome (Laiti-

nen et al., 2011), had partial responses and prolonged benefit.

An EGFR amp was found in one tumor (C1030BL) and this

associated with prolonged benefit as described previously

(Bertotti et al., 2015).
Figure 3. Functional Impact of RAS/RAF Mutations and NF1 Inactivatio

(A) Western blot of BRAF and KRAS mutants in DiFi cells. Quantification of pERK

control.

(B) Western blot following NF1 (siNF1) or control (siCON) small interfering RN

normalized to untreated control.

(C) Sanger sequencing of LIM1215 cells transduced with two CRISPR guide RN

(D)Western blot of CRISPR-inactivatedNF1 and Cas9 control cells with/without 2

normalized to untreated Cas9 control.

(E) Growth of CRISPR-inactivated NF1 and Cas9 control cells by crystal violet st
Together, oncogenic aberrations of RAS/RAF pathway genes

or RTKs that could explain resistance were identified in 14/20 pts

(70%) with primary progression.

Validation of Transcriptomic Subtypes as Non-genetic
Predictors of CET Benefit
BL biopsies for which RNA-seq could be performed (n = 25) were

next assigned to transcriptomic CRC subtypes using the

CRCassigner (Sadanandam et al., 2013) and the consensus

molecular subtype (CMS) classifications (Guinney et al., 2015)

(Figure S1A). There are strong similarities between subtypes of

both classifications, and 21/25 cases (84%) were assigned to

matching subtypes, confirming robust performance (Figure 4A).

The TA subtype has previously been associated with CET sensi-

tivity (Sadanandam et al., 2013) and was 3.4-fold enriched (p =

0.017) among cases with prolonged benefit. The TA subtype is

most similar to the CMS2 subtype, and was 2.9-fold enriched

(p = 0.015) among pts with prolonged CET benefit. This validates

the TA/CMS2 subtypes as non-genetic predictors of single-

agent CET benefit. As described (Khambata-Ford et al., 2007),

tumors with CET benefit also expressed higher levels of the

EGFR ligands AREG and EREG (Figure S1B).

Pts with right-sided colon cancers do not benefit from first-line

combination therapy with CET and chemotherapy, even if they

are RAS/RAF WT, but whether right-sided tumors benefit from

CET beyond first-line remains a matter of debate (Weinberg,

2018). Three pts with right-sided tumors showed prolonged

benefit from single-agent CET in this trial (Figure 4B). CMS

subtype information was available for two of these and both
n on Cetuximab Sensitivity

signal relative to total ERK as a loading control, and normalized to luciferase

A in LIM1215 cells. Quantification of pERK signal relative to total ERK, and

As against NF1. Guide sequences are highlighted by a black bar.

4 h cetuximab treatment. Quantification of pERK signal relative to total ERK and

aining (left) and quantification (right).
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Figure 5. Genetic Alterations in RAS/RAF Pathway Members and Regulators at AR in 14 Cases

(A) Mutations/amps identified by exome sequencing (1583) of biopsies.

(B) Mutations identified by deep amplicon sequencing (2,1793) of KRAS, NRAS, BRAF, and EGFR in biopsies; color key as in (Figure 5A).

(C) Mutations/amps identified by circulating tumor DNA (ctDNA) sequencing (1,0483); color key as in (A); *indicates present at BL but with substantial increase in

mutation abundance at PD.

(D) Fraction of cancer cells sampled by ctDNA that harbored a resistance driver mutation at PD.

BL, baseline; PD, progressive disease.

See also Figures S2, S3, Data S3, and Tables S4 and S5.
displayed the CET-sensitive CMS2. CMS subtype may be more

relevant than sidedness for response prediction to single-agent

CET beyond the first-line setting.

Genetic Drivers of AR
PD biopsies from 14 metastases (mets) that radiologically pro-

gressed after prolonged clinical benefit were successfully exome

sequenced (Figure 5A), including biopsies from two different pro-

gressingmets in C1027.We first investigated genes with a known

role in CET resistance. Only one KRAS mutation was acquired
40 Cancer Cell 36, 35–50, July 8, 2019
among these PD biopsies (C1005PD, G12C). This clonally domi-

nant mutation (Data S2) was accompanied by an EGFRmutation

(G322S), which has not previously been described and whose

relevance is uncertain in the context of a well-characterized

CET resistance mutation in KRAS. One biopsy acquired a KRAS

amp (C1037PD). C1024PD acquired a clonally dominant EGFR

mutation that has not previously been described (D278N),

locating to the EGFR extracellular domain II (Schmiedel et al.,

2008) but not affecting CET binding epitopes. Expression of

EGFR D278N in the LIM1215 cells did not confer CET resistance



Table 1. Recurrently Mutated Genes in PD Biopsies

Gene

Protein Size

(Amino Acids)

Mutations Present in PD Samples

but Absent in Matched BL Samples

FAM120C 1,096 C1025PD (G981S), C1030PD (R395X)

DSPP 1,301 C1014PD (S803fs), C1025PD (G260R)

PTPN14 1,187 C1020PD (L510P), C1030PD (D596H)

NBEA 2,946 C1007(M2285I), C1026PD (S189R)

FAT3 4,589 C1020PD (K4152T), C1025PD (P2099S)

See also Table S3.
and introduction into 3T3 fibroblasts showed no evidence of

constitutive EGFR phosphorylation (Figures S2A and S2B), sug-

gesting that this is a passenger mutation. No other RAS, EGFR,

BRAF, or ERK mutations or amps were detected in PD biopsies.

Two further RTK genes acquired mutations at PD: FGFR3

in C1030PD (P418L) (Figure 5A) and ALK in C1024PD (D626H)

(Table S2). Neither is located to the well-defined mutational hot-

spots in these genes or has been reported in the COSMIC cancer

mutation database (Forbes et al., 2010), indicating that these

may be passenger mutations. Computational prediction showed

a high driver score for FGFR3P418L (Tamborero et al., 2018), but

functional analysis showed no rescue of pERK during CET treat-

ment (Figure S2C). C1024PD acquired an FGFR1 amp (Data S1).

However, the presence of an FGFR1 amp in C1037BL, who

subsequently responded to CET (Figure 2C), questions whether

this is sufficient to establish resistance. C1027PD1 acquired a

narrow amp (1.58 Mbp, 60 DNA copies) encompassing FGF10

(Figure S2D). FGF10 encodes a ligand of the FGFR2 RTK, which

is expressed in most CRCs (Otte et al., 2000). Recombinant

FGF10 rescued growth and pERK in CRC cell lines treated

with CET, supporting the notion that the acquired FGF10 amp

drives resistance in C1027PD1 (Figure S2E). FGF10-induced

resistance could be reversed by treatment with a pan-FGFR

inhibitor (FGFRi) (Figures S2F and S2G). Different contributions

of FGFR1 and FGFR2 to CET resistance may result from differ-

ences in downstream signaling events (Pearson et al., 2016).

We also investigated genes that recurrently acquired muta-

tions in PD biopsies to identify potential drivers of AR beyond

the RAS/RAF pathway. Five genes had each acquired muta-

tions in two PD biopsies (Table 1). All genes were large and

we found no evidence of biallelic inactivation, which would

be expected for tumor suppressor genes, or for recurrence

of mutations in specific functional domains or amino acid po-

sitions, which would indicate gain-of-function mutations either

in our samples or in the COSMIC mutation database. Thus,

none of these genes were considered likely to confer CET

resistance (Table S3).

Genetic Drivers of AR Are Undetectable in Most PD
Biopsies despite Ultra-deep Sequencing
CET AR is often polyclonal (Bettegowda et al., 2014), and

sequencing of PD biopsies with a mean depth of 1583 may

have failed to detect resistance mutations in small subclones.

We hence re-sequenced known CET driver hotspots in KRAS,

NRAS, BRAF, MEK1, and EGFR by deep (2,1793) amplicon

sequencing in order to call mutations with variant allele fre-

quencies (VAFs) as low as 0.5% (Figure 5B; Table S4). This re-
vealed a KRAS Q61H mutation in C1025PD (VAF, 4.9%) and

an EGFR exodomain S492R mutation in C1027PD1 (VAF,

2.1%). Both are known to confer CET AR and were subclonal

in these PD samples (Data S2).

Taken together, we identified known and not previously

described CET resistance drivers in four PD biopsies. One

case acquired an FGFR3 mutation with unlikely relevance and

one an FGFR1 ampwith unclear relevance for resistance. Impor-

tantly, no drivers of AR were found in 9/14 (64%) biopsied mets

despite each radiologically progressing (Figure S3).

Genetic Drivers of AR in ctDNA
The low prevalence of CET resistance drivers in PD biopsies was

striking as it contrasts with results of ctDNA analyses of this trial

and others that reported the evolution of RAS and EGFR aberra-

tions in the majority of pts at the time of CET AR (Bettegowda

et al., 2014; Khan et al., 2018). To assess the prevalence and

clonality of resistance drivers in ctDNA, we applied a ctDNA

sequencing (ctDNA-seq) assay targeting CET resistance and

CRC driver genes (Table S5), which simultaneously infers

genome-wide copy-number profiles (Mansukhani et al., 2018).

This enabled us to correct VAFs for the influence of copy-number

states and to then quantify the proportion of the cancer cells that

harbored resistance drivers by comparison against TP53 muta-

tions, which are usually truncal in CRC (Brannon et al., 2014).

Available ctDNA from nine pts that progressed after prolonged

CET benefit (five BL/PDpairs, four PD only) was deep sequenced

(1,0483). Known CET resistance mutations in RAS, BRAF, or

EGFR were identified in 7/9 cases (78%) at PD (Figure 5C; Table

S5). A kinase-impairing BRAFmutation (D594N) was detected in

6.8%of the cancer cell fraction in ctDNA at BL and this increased

to 37.4% at PD in C1030 (Table S5). BRAF D594N rescued pERK

in DiFi cells during CET treatment (Figure 3A). Together with the

identification of a kinase-impairing BRAF mutation in a primary

resistant tumor (C1011BL), this substantiates a role of BRAF

D594 mutations in CET resistance. DNA copy-number profiles

generated from ctDNA at PD furthermore identified amps of

MET and KRAS in three and two cases, respectively (Figure 5C;

Data S3). The FGF10 amp found in the C1027PD1 biopsy was

also identified at PD. Overall, ctDNA-seq revealed genetic

drivers of AR in 8/9 pts (89%) and frequent polyclonal resistance,

similar to published ctDNA results (Bettegowda et al., 2014). We

next used TP53mutations, detected in all ctDNA samples, to es-

timate the fraction of the cancer cell population represented in

the ctDNA that harbored AR mutations at PD (Table S5). All de-

tected AR driver mutations taken together in each tumor were

confined to a median 21% of the cancer cells in the population

(Figure 5D). The fraction of cancer cells that harbor an amp

cannot be estimated from ctDNA data as the absolute number

of DNA copies in such subclones are unknown. Thus, only

considering the five cases without concurrent AR amps in

ctDNA, we still found a resistance gap with no detectable resis-

tance mechanism in 49%–100% of cancer cells sampled by

ctDNA (Figure 5D). Although ctDNA and amplicon deep

sequencing may not identify very small subclones with genetic

resistance drivers due to sensitivity limits, we hypothesized

based on the ctDNA results and the inability to define genetic

AR drivers in 64% of biopsies from radiologically progressing

mets, that non-genetic resistance mechanisms may exist.
Cancer Cell 36, 35–50, July 8, 2019 41



Figure 6. Transcriptomic CRC Subtypes and CAFs as Drivers of AR to Cetuximab

(A) Transcriptomic subtypes in 13 BL and PD biopsy pairs. TA, transit amplifying; SL, stem-like.

(B) Volcano plot showing differential expression of growth factors in 5 cases from (A) undergoing CMS2>4 switches. Significance was assessed by paired t test.

(legend continued on next page)
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Transcriptomic Characteristics and Their Association
with AR
Based on the observation that mechanisms of AR are often

similar to those conferring primary resistance, we investigated

whether transcriptomic subtypes have a role in AR. We first

analyzed PD biopsies from tumors with prolonged benefit in

which no genetic aberrations of CET resistance genes had

been found. Strikingly, 5/7 cases (71%) showed a switch from

the CET-sensitive CMS2 subtype to the CMS4 subtype

(CMS2>4) and 4/7 (57%) showed a TA to stem-like (SL) subtype

switch (TA > SL; Figures 6A and S1A). No CMS2/TA > CMS4/SL

switches occurred in six pts with primary PD. CMS2>4 switching

in the majority of PD biopsies without identifiable genetic resis-

tance mechanisms suggested that this contributes to AR.

Transforming growth factor beta (TGF-b) expression is a

defining characteristic of the CMS4/SL subtypes. TGF-b1 and

TGF-b2 RNA expression significantly increased (3.1- and 2.9-

fold increase in the means) following a CMS2>4 switch (Fig-

ure 6B). TGF-b3 mean expression increased 7.2-fold at PD but

this did not reach significance. A high level of TGF-b activity in

these samples was confirmed by the upregulation of a transcrip-

tomic TGF-b signature and of an epithelial-to-mesenchymal

transition (EMT) signature which can be induced by TGF-b

(Figure 6C).

CMS4 CRCs are enriched with cancer-associated fibroblasts

(CAFs), which are a major source of TGF-b and of mitogenic

growth factors (GFs) (Becht et al., 2016a). Applying the MCP-

counter algorithm (Becht et al., 2016b) to RNA-seq data bio-

informatically confirmed a significant increase in CAF abundance

in PD biopsies that had undergone a CMS2>4 switch (Figure 6D).

Correspondingly, CMS2>4 subtype switches increased the

expression of several GFs (Figure 6B), including FGF1 and

FGF2 (2.3- and 3.1-fold increase in the means, respectively),

which activate multiple FGFRs and of the MET ligand HGF, which

increased 8.3-fold, although the latter was not significant. In

contrast, the mean expression of the EGFR ligands AREG and

EREG decreased 2.4- and 2.3-fold after subtype switching, but

this was not significant.

Conditionedmedia (CM) fromCAFs can confer CET resistance

in CRC stem-like cells (Luraghi et al., 2014). We questioned

whether CAFs also promote resistance in well-described CET-

sensitive CRC cell lines. Treatment with CM from immortalized

CRC CAFs indeed rescued growth and maintained pERK in

DiFi and LIM1215 cells during CET treatment (Figures 6E and

6F). RNA-seq showed that CAFs expressed FGF1, FGF2, HGF,
(C) Changes in TGF-b and EMT transcriptomic signatures through CMS2>4 swit

(D) Changes in fibroblast abundance through CMS2>4 switches based on MCP-

(E) Impact of CAF conditioned medium (CM) on the growth of DiFi (left panel) an

(F) Western blot analysis showing CAF CM rescue of pERK in DiFi (left panel) an

(G) mRNA expression (normalized counts) of growth factors (GFs) (left panel) and

(H) Growth assay with 200 mg/mL CET and recombinant GF at a concentration of 2

panel) and LIM1215 (bottom panel).

(I) Western blot analysis of pERK with and without recombinant GF treatment in

(bottom panel).

(J) Growth assay with CAF CM and combinations of CET, pan-FGFR inhibitor (

(bottom panel).

(K) Western blot analysis of pERK after 2 h treatment with CAF CM and combina

(E, H, and J) All error bars ± SD of six replicates.

See also Figure S4 and Table S6.
TGF-b1 and TGF-b2, and low levels of TGF-b3, and that the cor-

responding receptors were expressed in DiFi and LIM1215 cells

(Figure 6G). Treatment of these cell lines with recombinant FGF1,

FGF2, or HGF maintained growth and pERK during CET expo-

sure (Figures 6H and 6I), whereas TGF-b1-3 had no consistent

impact. We next assessed whether inhibitors of the correspond-

ing GF receptors in combination with CET can reverse the resis-

tance induced by CAF CM (Figures 6J and 6K). Combination of

CET with FGFRi had minimal impact on pERK and cancer cell

growth, whereas combination with a MET inhibitor (METi)

showed a clear reduction of both. However, only the triple com-

bination of CETwith FGFRi andMETi effectively repressed pERK

and achieved the largest decrease in cancer cell growth during

CAF CM treatment. Thus, FGF and HGF both contribute to

CAF-mediated CET resistance.

Although these results support CMS2>4 switches and the

associated increase in CAFs and mitogenic GF as a mechanism

of CET AR, BL biopsies from two pts who subsequently achieved

prolonged benefit from CET also displayed the CMS4 subtype.

Thus, CMS4 identity does not invariably confer resistance.

RNA-seq data from BL and PD biopsies were available from

one of these cases (C1020) and showed that TGF-b2 (4.4-fold),

TGF-b3 (4.2-fold), HGF (2.7-fold), and FGF2 (1.6-fold) all

increased from BL to PD (Table S6). This suggests a model

where a gradual increase in GF expression in a process associ-

ated with CAF infiltration and the acquisition of the CMS4

subtype promotes resistance.

This can evolve concurrently with genetic resistance in distinct

subclones within the same pt, as demonstrated for cases that

acquired CMS4 in a biopsy, whereas ctDNA showed the evolu-

tion of genetic resistance drivers, including RAS/RAF mutations,

in subclones (C1027, C1041, and C1044). As anticipated, the

triple combination of CET, METi, and FGFRi could not suppress

the growth of RAS- or BRAF-mutant cell lines (Figure S4). The

parallel evolution of molecularly diverse resistance mechanisms

within pts, including currently undruggable RAS mutations, hin-

ders the development of signaling pathway-targeting strategies

to prevent or reverse resistance. The identification of new thera-

peutics that apply distinct selection pressures is hence a ma-

jor need.

CET Impacts the Cancer Immune Landscape
CET triggered immunogenic cell death and increased CRC

immunogenicity in murine models (Pozzi et al., 2016). Yet,

whether CET promotes CRC immune responses in pts is unclear.
ches.

counter analysis.

d LIM1215 (right panel) treated with 50 mg/mL CET for 5 days.

d LIM1215 (right panel) treated with 200 mg/mL CET for 2 h.

their receptors (right panel) in CAF, DiFi, and LIM1215 cells.

0 ng/mL (FGF1/2), 10 ng/mL (TGF-b) and 50 ng/mL (HGF) for 5 days in DiFi (top

the presence or absence of 200 mg/mL CET in DiFi (top panel) and LIM1215

FGFRi), and MET inhibitor (METi) for 5 days in DiFi (top panel) and LIM1215

tions of CET, FGFRi, and METi in DiFi (top panel) and LIM1215 (bottom panel).
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Figure 7. Impact of CET on the Tumor Immune Landscape

(A) Cytolytic activity (CYT) change in paired BL and PD biopsies.

(B) Single sample gene set enrichment analysis enrichment-score change for 28 immune cell subtypes from BL to PD.

(legend continued on next page)
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We investigated this to explore potential opportunities to target

CET-resistant CRCs with immunotherapy.

We first applied the cytolytic activity (CYT) signature (Rooney

et al., 2015), which estimates the abundance of cytotoxic im-

mune cells fromRNA-seq data (Figure 7A). The CYT did not differ

between BL biopsies from tumors with prolonged benefit versus

those with primary progression (Figure 7A). However, the mean

CYT increased 5.9-fold from BL to PD in CRCs with prolonged

benefit but not in those with primary progression, demonstrating

that effective CET treatment increased cytotoxic immune infil-

trates. CYT remained low in two tumors with prolonged benefit

that showed no radiological shrinkage (C1018 and C1030), sug-

gesting that cancer cell death induction is required to stimulate

cytotoxic infiltrates. The largest CYT increases occurred in cases

that switched from the CMS2 to the CMS4 subtype, which is

associated with an inflamed phenotype (Guinney et al., 2015).

However, the median CYT in PD biopsies of the five cases that

switched to the CMS4 subtype was still 3-fold higher than in

the five BL biopsies classed as CMS4 before CET exposure.

Hence, increased CYT after CET therapy cannot be attributed

to transcriptomic subtype changes alone.

Next, we bioinformatically inferred the abundance of 28 im-

mune cell types from RNA-seq data (Charoentong et al., 2017).

A significant increase in T cells that promote and execute adap-

tive immune responses, including all assessed CD8+ T cell sub-

types, effector memory CD4+ and T helper type 1 (Th1) cells, was

observed in PD biopsies taken after CET responses (Figure 7B).

Some immune cell types that can dampen effective cancer

immune responses, including regulatory T cells (Tregs) and

myeloid-derived suppressor cells (MDSCs), also significantly

increased. In contrast, immune cell infiltrates did not change in

primary progressors. The presence of BATF3+ dendritic cells

(DCs), which cross-present antigens from dying cancer cells to

CD8+ T cells, is critical for immunotherapy efficacy in melanoma

(Spranger et al., 2015). Applying a BATF3+ DC score (Spranger

et al., 2017) showed a 1.7-fold increase (p = 0.035) at PD in

tumors that had responded to CET but no change in primary pro-

gressors (p = 0.68, Figure 7C). Thus, several critical cell types for

effective recognition of tumors by the adaptive immune system

are enriched in tumors that responded to CET.

To ascertain changes in immune infiltrates, we stained CD8+

and CD4+ T cells, and Tregs (FOXP3+CD4+) in paired BL and

PD formalin-fixed paraffin-embedded biopsies available from

five pts with prolonged benefit and from five primary progressors
(C) Transcriptomic score estimating the abundance of BATF3+ dendritic cells (BA

(D) Immuno-histochemical quantification of immune cell densities in formalin-fixe

(E) Changes in the number of T cell receptor beta chain (TCR-b) sequences (left) a

the largest TCR-b clonotype in samples with R100 TCR-b sequences.

(F) Analysis of immune cell densities in the tumor center and at the margin in slid

(G) Example of immune infiltrates before and after CMS2>4 subtype switches (re

(H) Differences in immune cell abundance in biopsies that acquired CMS4 followin

by subtracting median enrichment scores between the two groups. Higher abun

as in (B).

(I) Median mutation and neoantigen loads (based on NetMHC rank <0.5%) at BL

(J) Expression of a 28-gene T cell-associated inflammation signature.

(K) RNA expression changes of targetable immune checkpoints and cytokine rec

Statistical significance was assessed with the Mann-Whitney test followed by fals

panels.

See also Figure S5.
(Figure 7D). CD8+ T cell densities increased significantly at PD

compared with BL (2.0-fold change in means, p = 0.047) in pts

who responded to CET. CD4+ and Treg numbers increased,

but this was not significant (1.9-fold, p = 0.057 and 2.2-fold,

p = 0.063), possibly because of the small number of cases in

this analysis. Thus, CET treatment promotes T cell infiltration of

CRCs that respond and these are present at the time of

progression.

We furthermore assessed the number and diversity of rear-

ranged T cell receptor beta chains (TCR-b) in RNA-seq data. A

significant increase in the total number of TCR-b sequences

and of distinct TCR-b clonotypes was apparent in PD samples

of CET responders (Figure 7E), further validating the enrichment

of T cells. The frequency of TCR-b clonotypes could only be

assessed in three PD biopsies from CET responders because

all other samples had insufficient total numbers of TCR-b se-

quences (<100). Although this needs to be interpreted with

caution because of the small number of biopsies and TCR-b

reads, the frequencies of the most abundant clonotype were

between 8% and 10%, which may indicate that an oligoclonal

T cell expansion occurred. B cell receptor chains showed a nu-

merical increase at PD in CET responders but this was not signif-

icant (Figure S5A).

Our results show an increase in Th1 and CD8+ T cell infiltrates

and CYT despite the high TGF-b levels in tumors that had under-

gone a CMS2>4 switch. This appears to contradict observations

that show an important role of TGF-b in preventing T cell activa-

tion and differentiation in CRCs (Tauriello et al., 2018), and T cell

migration into other tumor types (Mariathasan et al., 2018). To

elucidate this further, we applied an approach similar to the

CRC Immunoscore (Angelova et al., 2018), which assesses

T cell infiltrates separately at the margin and in the tumor center.

The tumor center could be identified in all paired biopsies from

Figure 7D and margins were present in three paired biopsies

from responders and in one from a primary progressor. CD8+

T cell infiltrates had specifically increased in the tumor center,

whereas their density at the margin remained largely unchanged

(Figures 7F and 7G). CD4+ T cells and Treg also predominantly

increased in the tumor center, but this was not significant

(Figure S5B). Comparison of immune cell infiltrates further-

more showed that activated CD8+, effector memory T cells,

and Th1 cells most strongly increase and that Th2 subtype

T cells are among the most strongly decreased in biopsies that

switched from CMS2 to CMS4 compared with those showing
TF3-DC).

d paraffin-embedded specimens.

nd of clonotypes (right) from BL to PD. Percentages indicate the abundance of

es from (D).

d, CD8; brown, CD4; blue, FOXP3; C, cancer cell area; S, stroma).

g a subtype switch and biopsies showing CMS4 at BL. Values were generated

dance following CMS2>4 switch in red, lower abundance in green; color scale

and PD.

eptors.

e discovery rate correction in (B) and with the paired Student’s t test in all other
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the TGF-b-rich CMS4 subtype at BL (Figure 7H). Together, this

suggests that the immune inhibitory effects of a TGF-b-rich envi-

ronment may be less impactful following CET treatment than

in untreated tumors (Tauriello et al., 2018). Importantly, tumor

mutation load and neoantigen burden did not significantly differ

between BL and PD biopsies, suggesting that the increase in

T cell infiltrates was not the result of an increased antigenicity

following CET exposure (Figure 7I).

We furthermore applied a signature of T cell-associated inflam-

mation that is predictive for immune checkpoint inhibitor benefit in

several cancer types (Ayers et al., 2017). This significantly

increased fromBL toPD in responders but not in primary progres-

sors (Figure 7J). Effective CET therapy hence not only augments

immune infiltrates including cytotoxic T cells, but also T cell-asso-

ciated inflammation which may indicate enhanced T cell recogni-

tion of cancer cells. We finally questioned whether changes in

immune infiltrates were accompanied by altered expression of

immune checkpoints or chemokine receptors that can be tar-

geted by current immunotherapy agents. The immune checkpoint

proteins LAG3, PD-L1, TIM3, andGITR and the chemokine recep-

tor CXCR2, which promotes myeloid cell infiltration, were signifi-

cantly upregulated (Figure 7K). The upregulation of immune

checkpoints may restrain T cell infiltrates and could provide

opportunities to develop novel therapeutic strategies following

CET failure.

DISCUSSION

This prospective trial revealed associations of biallelic NF1 loss

and of non-canonical RAS/RAF aberrations with primary resis-

tance to single-agent CET. While KRAS A18D and L19F, and

BRAF mutations other than V600E were rare in large CRC

cohorts (each <1%) (Giannakis et al., 2016; TCGA, 2012), NF1

mutations have been reported in �5% of cases and successful

validation as a predictivemarker in randomized trials could spare

these pts ineffective treatment. Our results are supported by a

study describing an association of NF1 mutations with poor

PFS with CET in combination with chemotherapy (Mei et al.,

2018), although 3/4 were missense mutations with unknown

effects on NF1 function and there was no testing for loss of

heterozygosity.

In contrast to previous reports (Bertotti et al., 2015; De Roock

et al., 2010), neither PIK3CA mutations nor FGFR1 aberrations

clearly associated with primary resistance. PIK3CA exon 20 mu-

tations have been particularly described to confer resistance to

anti-EGFR-Ab in combination with chemotherapy; however, we

found the exon 20 mutation H1047R in a responder but also

in combination with a PIK3CA amp in a primary progressor.

Concomitant copy-number aberrations or the use of single-agent

CETmay explain these differences. The small sample size further-

more warrants cautious interpretation of these results.

We found a strikingly lower frequency of AR driver mutations in

RAS and EGFR in PD biopsies than anticipated based on the

pervasive detection of these drivers in ctDNA from CET-treated

pts (Bettegowda et al., 2014). The absence of CET resistance

driver gene aberrations in 64% of PD biopsies was corroborated

by ctDNA analysis, which did not detect AR drivers in 49%–

100% of the sampled cancer cell population. This challenges

the current paradigm that CET AR is almost exclusively mediated
46 Cancer Cell 36, 35–50, July 8, 2019
by genetic mechanisms. The majority of PD biopsies without

identifiable genetic resistance drivers no longer displayed the

CET-sensitive CMS2/TA subtype found before treatment initia-

tion but rather the CMS4/SL subtype, which is rich in fibroblast

and in GF, which conferred CET resistance in vitro. This strongly

suggests that subtype switching and associated stromal remod-

eling is a mechanism of AR to single-agent CET. This could

explain similar genetic results in a series of 37 PD biopsies that

found no aberrations in RAS, BRAF, or EGFR in 46% of biopsies

with anti-EGFR-Ab AR (Arena et al., 2015) and in a study of 22 pts

in whom no genetic AR driver was found in 41% of biopsies, and

those detected in the remaining biopsies were frequently subclo-

nal (Pietrantonio et al., 2017).

These data demonstrate the limitations of ctDNA analysis,

which is restricted to the identification of genetic resistance

mechanisms and the importance of parallel tissue analyses

with multi-omics approaches. They furthermore portray a CET

resistance landscape resembling that of EGFR inhibitors in

lung cancer or BRAF inhibitors in melanoma where non-genetic

resistance can occur. Lung cancers can upregulate GFs that

activate bypass signaling pathways or EMT as non-genetic

resistance mechanisms (Sequist et al., 2011; Soucheray et al.,

2015; Zhang et al., 2012) and fibroblast-mediated stromal re-

modeling can confer AR to BRAF inhibitors in melanoma (Hirata

et al., 2015).

We showed that resistance induced by CAF CM or by FGF10

can be reversed through drug combinations in vitro. However,

combinatorial drug treatments are challenging in pts, due to

likely toxicities when attempting to combine multiple signaling

pathway inhibitors and because of the inability to effectively

target RAS mutant clones that evolved in 4/9 pts. However,

strategies to delay resistance by preventing subtype switching,

for example by inhibiting TGF-b, a master regulator of the

CMS4/SL subtype, or by targeting CAFs (Kalluri, 2016) could

be assessed.

Our analysis of the immune landscape in CRCs that responded

to CET and then progressed shows significantly increased cyto-

toxic T cells but also of immune-suppressive cells, such as Tregs

and MDSCs. This was accompanied by the upregulation of a

signature that has been predictive of checkpoint inhibitor

success in other cancer types, potentially indicating a role for

immunotherapy. The significant upregulation of immune-sup-

pressive checkpoints, such as PD-L1 and LAG3, defines testable

strategies.

The paradoxical increase in immune infiltrates following

CMS2>4 switches, despite the TGF-b-rich CMS4 phenotype,

may be explained by the context-dependent effects of TGF-b

and by the timing of events: TGF-b has been well documented

to prevent differentiation of naive CD4+ T cells into Th1 and

Th2 cells, and naive CD8+ T cells into cytotoxic T cells (Li and Fla-

vell, 2008; Li et al., 2006). However, our data show low TGF-b

expression in pre-treatment biopsies. It is likely that immuno-

genic cell death fosters T cell activation, priming and infiltration

before resistance-associated stromal remodeling and the asso-

ciated increase in TGF-b occur. The observed increase in CYT in

tumors that underwent a CMS2>4 switch suggests that T cells

remain active in the tumor. This can be explained by previous

work demonstrating that TGF-b has little effect on activated

T cells (Cottrez and Groux, 2001; Kim et al., 2005; Sung et al.,



2003). Nevertheless, combining checkpoint and TGF-b inhibitors

in clinical trials would be a rational strategy to test if inhibitory

effects of TGF-b (Tauriello et al., 2018) still play a role.

Investigating how CET modulates CRC immune landscapes

in additional trials is desirable, because tissue attrition, which

is typical in biopsy studies, limited the number of cases

amenable to immunophenotyping in this trial. Assessing larger

series of CET-treated CRCs with multi-parametric immunofluo-

rescence imaging could furthermore define the spatial distribu-

tion of various immune cell subtypes and the relationship to

cells producing immune inhibitory cytokines in greater detail.

A key result of our study is that drugs that are in routine clinical

use can have a major impact on cancer immune landscapes.

Mouse models such as those described by Tauriello et al.

(2018) offer the opportunity to systematically investigate such

interactions further and to delineate the role of cytokines and

cell subtypes that are currently difficult to target in pts, such

as Tregs or MDSCs. Exploring immunotherapies in CET-resis-

tant CRCs may circumvent the limited clinical opportunities to

directly target the frequently polyclonal and heterogeneous

CET resistance mechanisms.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

p-ERK Cell Signaling Technologies Cat# 9101; RRID:AB_331646

ERK Cell Signaling Technologies Cat# 9102; RRID:AB_330744

p-EGFR Cell Signaling Technologies Cat# 2236; RRID:AB_331792

EGFR Cell Signaling Technologies Cat# 2232; RRID:AB_331707

NF1 Cell Signaling Technologies Cat# 14623

beta Tubulin antibody (HRP) - Loading Control Abcam Cat# ab21058; RRID:AB_727045

Cas9 Cell Signaling Technologies Cat# 14697; RRID:AB_2750916

Biological Samples

Human Metastatic Colorectal Cancer Patient Saples PROSPECT-C Trial clinicaltrials.gov/ct2/show/NCT02994888

Chemicals, Peptides, and Recombinant Proteins

Cetuximab Merck KG

AMG-337 Selleckchem Cat# S8167

BGJ-398 Selleckchem Cat# S2183

Recombinant human FGF1 acidic RnD Systems Cat# 232-FA-025

Recombinant human FGF2 basic RnD Systems Cat# 233-FB-025

Recombinant human TGFb1 RnD Systems Cat# 240-B-002

Recombinant human TGFb2 RnD Systems Cat# 302-B2-002

Recombinant human TGFb3 RnD Systems Cat# 243-B3-002

Recombinant human FGF10 PeproTech Cat# 100-26

Recombinant human HGF PeproTech Cat# 100-39H

Polybrene Sigma-Aldrich Cat# H9268

Blasticidin Sigma-Aldrich Cat# 15205

Puromycin Sigma-Aldrich Cat# P8833

Neomycin Sigma-Aldrich Cat# N1142

Phosphatase Inhibitor Cocktail 2 Sigma-Aldrich Cat# P5726

Critical Commercial Assays

All Prep DNA/RNA Micro Kit Qiagen Cat# 80284

GenePrint 10 kit Promega Cat# B9510

QIAamp DNA Blood Mini Kit (50) Qiagen Cat# 51104

Qubit dsDNA Broad Range Assay Kit Thermo Fisher Scientific Cat# Q32850

QIAmp Circulating Nucleic Acid Kit Qiagen Cat# 55114

SureSelectXT Human All Exon v5 Kit Agilent Cat# 5990-9857

NEBNext� Ultra� Directional RNA Library Prep Kit New England Biolabs Cat# E7420S

RNeasy Mini Kit Qiagen Cat# 74104

Qubit RNA High Sensitivity Kit Thermo Fisher Scientific Cat# Q32852

QuantSeq 3’ mRNA-Seq Library Preparation Kit for

Illumina (FWD)

Lexogen Cat# 015.96

Bioanalyzer High Sensitivity DNA Agilent Cat# 5067-4626

CellTiter-Blue Promega Cat# G8080

QuikChange Lightning Agilent Cat# 5990-8816

TransIT-LT1 Mirus Cat# MIR 2300

Lipofectamine 2000 Thermo Fisher Scientific Cat# 11668019

siGenome Dharmacon

Lipofectamine� RNAiMAX Thermo Fisher Scientific Cat# 13778030

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Sequencing Data (Whole Exome, Whole Genome,

mRNA, Targeted ctDNA)

European Genome-Phenome

Archive

EGA: EGAS00001003367

Experimental Models: Cell Lines

DIFI N. Valeri, ICR

LIM 1215 N. Valeri, ICR

NIH-3T3 P. Huang, ICR

HT29 ATCC Cat# HTB-38 RRID:CVCL_0320

SW480 ATCC Cat# CCL-228 RRID:CVCL_0546

SW620 ATCC Cat# CCL-227 RRID:CVCL_0547

Human fibroblasts from rectal carcinoma (RC11) D. Vignjevic, Institute Curie,

France

Oligonucleotides

See Table S7 for details.

Recombinant DNA

R777-E053-Hs.EGFR Addgene Cat# 70337 RRID:Addgene_70337

R777-E015-Hs.BRAF Addgene Cat# 70299 RRID:Addgene_70299

R777_E087-Hs.FGFR3 Addgene Cat# 70371 RRID:Addgene_70371

pDONOR223_BRAF_p.D594H Addgene Cat# 82816 RRID:Addgene_82816

KRAS (NM_004985) Human Tagged ORF Clone OriGene Cat# RC201958

pENTR1A Invitrogen Cat# A10462

pLX304 Addgene #25890 RRID:Addgene_25890

pLenti-CMV-Puro-DEST Addgene Cat# 17452 RRID:Addgene_17452

pEZY3 Addgene Cat# 18672 RRID:Addgene_18672

pLX304-LacZ S.Whittaker

pLenti-CMV-Puro-LUC Addgene Cat# 17477 RRID:Addgene_17477

pEZYegfp Addgene Cat# 18671 RRID:Addgene_18671

psPAX2 Addgene Cat# 12260 RRID:Addgene_12260

pMD2.G Addgene Cat# 12259 RRID:Addgene_12259

lentiCas9-Blast Addgene Cat# 52962 RRID:Addgene_52962

pLentiguide-Puro Addgene Cat# 52963 RRID:Addgene_52963

Software and Algorithms

BWA v0.7.12 Li and Durbin, 2009 http://bio-bwa.sourceforge.net

Picard v2.1.0 https://broadinstitute.github.io/picard/

SAMtools v0.1.19 Li et al, 2009 http://samtools.sourceforge.net

GATK v3.5-0 McKenna et al., 2010 https://software.broadinstitute.org/gatk/

fastqc v0.11.4 https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/

MuTect v1.1.7 Cibulskis et al., 2013 https://software.broadinstitute.org/cancer/

cga/mutect

VarScan2 v.2.4.1 Koboldt et al., 2012 http://varscan.sourceforge.net

BAM-readcount V0.7.4 https://github.com/genome/bam-readcount

fpfilter.pl Koboldt et al., 2013 https://github.com/genome/fpfilter-tool

Platypus v0.8.1 Rimmer et al., 2014 https://github.com/andyrimmer/Platypus

Annovar v20160201 Wang et al., 2010 http://annovar.openbioinformatics.org/en/latest/

CNVKit v0.8.1 Talevich et al, 2016 https://cnvkit.readthedocs.io/en/stable/

SnpEff v4.2 Cingolani et al, 2012 http://snpeff.sourceforge.net

Sequenza v2.1.2 Favero et al, 2015 http://cbs.dtu.dk/biotools/sequenza/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Bcl2fastq v1.8.4 http://emea.support.illumina.com/sequencing/

sequencing_software/bcl2fastq-conversion-

software.html

Tophat2 v2.0.7 Kim et al., 2013 https://ccb.jhu.edu/software/tophat/index.shtml

Bowtie2 v2.1.0 Langmead and

Salzberg, 2012

http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

Rsubread FeatureCounts v1.24.2 Liao et al, 2014 http://bioinf.wehi.edu.au/featureCounts/

DESeq2 v1.18.1 Love et al, 2014 https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

CMScaller v0.99.1 Eide et al, 2017 https://github.com/peterawe/CMScaller

CRCAssigner Sadanandam et al., 2013

MCP-counter v1.1.0 Becht et al., 2016b https://github.com/ebecht/MCPcounter

Limma v3.34.9 Ritchie et al., 2015 https://bioconductor.org/packages/release/

bioc/html/limma.html

MiXCR v3.0.5 Bolotin et al, 2015 https://mixcr.readthedocs.io

VEP McLaren et al, 2016 https://www.ensembl.org/info/docs/tools/

vep/index.html

Polysolver v1.0d Shukla et al., 2015 https://software.broadinstitute.org/cancer/

cga/polysolver

netMHCpan-4.0 Jurtz et al., 2017 http://www.cbs.dtu.dk/services/NetMHCpan/

deconstructSigs v1.8.0 Rosenthal et al., 2016 https://github.com/raerose01/deconstructSigs

Ion Torrent Suite v5.2.2 ThermoFisher Scientific

SureCall v4.0.1.45 Agilent

FWD Human (GRCh38) Lexogen QuantSeq 2.2.3 BlueBee Cloud https://www.bluebee.com

Lexogen QuantSeq DE 1.3.0 BlueBee Cloud https://www.bluebee.com

QuikChange Primer Design (Lightning) Agilent https://www.agilent.com/store/

primerDesignProgram.jsp
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Marco

Gerlinger (marco.gerlinger@icr.ac.uk). DNA andRNA sequencing data have been deposited in the EuropeanGenomePhenome short

read archive and access can be obtained after signing a material transfer agreement which protects patient confidentiality and

prohibits any attempts to re-identify patients.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Trial Design and Samples
The Prospect-C trial is a prospective translational study investigating biomarkers of response or resistance to anti-EGFR-Ab-therapy

in KRAS WT chemo-refractory metastatic CRC. No NRAS mutant cases were enrolled as the licensed cetuximab (CET) indication

changed to KRAS and NRAS WT CRC during the trial. Pts who were at least 18 years old and had a World Health Organization

performance status of 0-2, were eligible if: all conventional treatment options including fluorouracil, irinotecan, oxaliplatin were

exhausted or pts were intolerant/had contraindications for oxaliplatin/irinotecan-based chemotherapy; they had metastatic cancer

amenable to biopsy and repeat measurements with computed tomography (CT) scanning. See Table S1 for pts characteristics

including gender and age.

Written informed consent was obtained from all pts. The study was carried out in accordance with the Declaration of Helsinki and

approved by the national UK ethics committee (UKResearch Ethics Committee approval: 12/LO/0914). All participantswere required

to have mandatory image-guided pre-treatment biopsies (targeted to the CT identified index lesion), and mandatory biopsies at the

time of RECIST-defined progression (from one or 2 suitable progressing metastatic sites). Treatment consisted of single-agent CET

at a dose of 500 mg/m2 administered every other week until progression or intolerable side effects.

The identification of biomarkers of primary and acquired resistance to CET therapy in DNA and RNA fromCRC tumor biopsies was

the primary endpoint of the study. The study recruited to the recruitment target of 30 pts that had been treated and had BL and PD

samples available for genetic analyses. After removing cases with insufficient DNA yield or tumor content based on sequencing
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results, data from 24 paired BL and PD samples was available for mutation and copy number analysis. 11 cases fromwhich only a BL

biopsy was available were included in the analysis. Secondary endpoints included the identification and validation of biomarkers for

resistance and response to CET in RNA and ctDNA. The trial protocol also permitted further exploratory molecular analyses.

The efficacy parameters including partial response and stable disease weremeasured using RECIST v1.1 criteria. Progression free

survival (PFS) wasmeasured from start of treatment to date of progression or death from any cause. Overall survival (OS) was defined

as time from start of treatment to death of any cause. Pts without an event were censored at last follow up before PFS and OS were

estimated.

The cohort was dichotomized into primary progressors who had PD before or on the first per protocol CT scan, scheduled at

12 weeks from the start of CET treatment. This was performed at a median of 12 weeks with a range of 9-16 weeks on treatment.

Pts with prolonged benefit were defined as those who remained progression free at the time of this scan. Samples from healthy

donors were collected for ctDNA sequencing after obtaining written informed consent through the ‘Improving Outcomes in Cancer’

biobanking protocol at the Barts Cancer Centre (PI: Powles), which was approved by the UK national ethics committee (Research

Ethics Committee approval: 13/EM/0327).

Cell Lines
DiFi and LIM1215 cell lines were a gift from the Valeri Lab at ICR. Mouse NIH-3T3 cells were a gift from the Huang Lab at ICR. HT29,

SW480 and SW620 were obtained from ATCC. DiFi cells were cultured in RPMI-1640 (Gibco), GlutaMax (Gibco), 5% FBS. LIM1215

cells were cultured in RPMI-1640, 10% FBS, hydrocortisone (Gibco), 1-thioglycerol (Sigma) and insulin (Gibco). NIH-3T3 and HT29

cells were cultured in DMEM (Gibco), GlutaMax (Gibco) and 10% FBS. SW480 and SW620 were cultured in L15 (Gibco), GlutaMax

(Gibco) and 10% FBS. Human fibroblasts from rectal carcinomas which have been immortalized using hTERT virus (pCSII vector

backbone, RC11) were a gift from Fernando Calvo, initially provided by Danijela Vignjevic (Institute Curie, France)(Glentis et al.,

2017). Fibroblasts were cultured in DMEM (Sigma), GlutaMax (Gibco), 10% FBS, 1% insulin-selenium-transferrin. All cell lines

were grown at 37�C. RC11 was cultured at 10% CO2, DiFi, LIM1215, HT29 and NIH-3T3 were all cultured in 5% CO2 and SW480

and SW620 were cultured in 0% CO2. Human cell lines have been authenticated by STR profiling using the GenePrint 10 kit

(Promega). The DiFi cell line has no available STR profile, but the cells were confirmed as identical at start and end of this study.

DiFi and HT29 cell lines are female. LIM1215, SW480, SW620 and NIH-3T3 cell lines are male.

METHOD DETAILS

Sample Preparation
DNA and RNA were extracted simultaneously from snap frozen biopsies using the Qiagen All Prep DNA/RNA Micro Kit following the

manufacturer’s instructions. Matched normal DNA was extracted from blood samples using the Qiagen DNA Blood Mini Kit. DNA

concentration was measured using the Qubit dsDNA Broad Range Assay Kit, and integrity checked by agarose gel electrophoresis.

A minimum quantity of 500 ng, and where available 2 mg of DNA, was used for next generation sequencing. RNA from biopsies which

were successfully DNA sequenced was subjected to RNA-Sequencing if a sufficient quantity (>125 ng) and quality (RIN>5.5) was

confirmed by electrophoresis on the Agilent 2100 Bioanalyzer. Blood for circulating tumor DNA analysis was collected in EDTA tubes

and centrifuged within 2 hours (10 min, 1600g) to separate plasma, which was stored at�80�C. Upon thawing, samples were further

centrifuged (10 min, 16000g, 4�C). ctDNA was extracted from up to 4 mL plasma per patient and from 2x4 mL from healthy donors

using the Qiagen QIAamp Circulating Nucleic Acid Kit. ctDNA was quantified on the Agilent 2100 Bioanalyzer.

Whole Exome/Genome DNA Sequencing
Biopsy samples were sequenced by the NGS-Sequencing facility of the Tumour Profiling Unit at the Institute of Cancer Research

(ICR) or at the Beijing Genome Institute (BGI). Exome sequencing libraries were prepared from a minimum of 500 ng DNA using

the Agilent SureSelectXT Human All Exon v5 kit according to the manufacturer’s protocol. Paired-end sequencing was performed

on the Illumina HiSeq 2000 or 2500 platform with a target depth of 100X for exomes (BGI/ICR) and on the Illumina HiSeq X10 platform

with 70X for genomes (BGI).

Bioinformatics Analysis of DNA Sequencing Data
BWA-MEM (Li and Durbin, 2009) (v0.7.12) was used to align the paired-end reads to the hg19 human reference genome to generate

BAM format files. Picard Tools (http://picard.sourceforge.net) (v2.1.0) MarkDuplicates was run with duplicates removed. BAM files

were coordinate sorted and indexed with SAMtools (Li et al., 2009) (v0.1.19). BAM files were quality controlled using GATK (McKenna

et al., 2010) (v3.5-0) DepthOfCoverage, Picard CollectAlignmentSummaryMetrics (v2.1.0) and fastqc (https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) (v0.11.4).

Somatic Mutation Analysis
Tumor and germline DNA sequencing results were assessed for matching SNP profiles to check for potential sample swaps. This

identified one case where germline DNA and tumor DNA SNP profiles differed and this was removed from the analysis. For single

nucleotide variant (SNV) calls we used both MuTect (Cibulskis et al., 2013) (v1.1.7) and VarScan2 (Koboldt et al., 2012) (v2.4.1).

SAMtools (v1.3) mpileup was run with minimum mapping quality 1 and minimum base quality 20. The pileup file was inputted to
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VarScan2 somatic and run with a minimum variant frequency of 5%. The VarScan2 call loci were converted to BED file format

and BAM-readcount (https://github.com/genome/bam-readcount) (v0.7.4) run on these positions withminimummapping quality 1.

The BAM-readcount output allowed the VarScan2 calls to be further filtered using the recommended fpfilter.pl accessory script

(Koboldt et al., 2013) run on default settings. MuTect was run on default settings and post-filtered for minimum variant allele

frequency 5%. Indel calls were generated using Platypus (Rimmer et al., 2014) (v.0.8.1) callVariants run on default settings. Calls

were filtered based on the following FILTER flags - ‘GOF, ‘badReads, ‘hp10,’ MQ’, ‘strandBias’,’ QualDepth’,’ REFCALL’. We then

filtered for somatic indels with normal genotype to be homozygous, minimum depth R10 in the normal, minimum depth R20 in

the tumor and R5 variant reads in the tumor. Exonic regions were analyzed in whole genome sequenced samples to assure

comparability to the whole exome sequenced samples. Mutation calls were further filtered with a cross-normal filter by running

bam-readcount on the bed file of merged variants for all sequenced matched normal (blood) samples. For both SNV and Indel calls

we used a threshold ofR2% of the total number of reads at the call loci. If the alternate allele count is equal to or greater than this

threshold the variant is flagged as present in the normal sample. A call is rejected if the variant is flagged in 5%ormore of the normal

samples in our cohort to remove common alignment artifacts or those arising recurrently at genomic positions that are difficult to

sequence.

Mutation calls weremerged and annotated using annovar (Wang et al., 2010) (v20160201) with hg19 build version. The allele counts

were recalculated using bam-readcount with minimum base quality 5 (in line with minimum default settings of the joint SNV callers).

The calls were then filtered on minimum variant allele frequencyR5%, minimum depthR20 in a called sample and a maximum of 2

variant alleles in the matched normal sample.

DNA Copy Number Aberration Analysis
CNVKit (Talevich et al., 2016) (v0.8.1) was run in non-batchmode for copy number evaluation.We first identified high confidence SNP

locations using bcftools call (Li et al., 2009) (v1.3) with snp137 reference and SnpEff SnpSift (Cingolani et al., 2012) (v4.2) to filter

heterozygous loci with minimum depth 50. We further extracted positions spaced 500 bp apart in the whole genome samples.

VarScan2 was used to call the tumor sample BAMs at these locations to generate B-Allele Frequency (BAF) data as input for CNVKit.

We generated basic access and antitarget files to indicate the accessible sequence regions. This excluded blacklisted regions sug-

gested by CNVKit and the HLA region. We then generated a pooled normal sample and used the winsorize and pcf functions within

copynumber (Nilsen et al., 2012) to identify further outlier positions and regions of highly uneven coverage. These regions were

merged to ensure consistency across all data.

CNVKit was run with matched normals along with the adjusted access and antitarget files. For the segmentation step we ran pcf

from the R-package copynumber. Breakpoints from this segmentation step were then fed into Sequenza (Favero et al., 2015)

(v2.1.2) to calculate estimates of purity/ploidy and these values were used as a guide to recenter and scale the LogR profiles in

CNVKit. BAF and LogR profiles were also manually reviewed by 2 researchers to determine their likely integer copy number states.

Adjustments were made in cases where both manual reviews identified a consensus solution that differed from the bio-

informatically generated integer copy number profile. Furthermore, BL/PD sample pairs where the ploidy of one sample was close

to double the ploidy of the other sample and copy number profiles were highly similar (suggestive of a genome doubling event), the

sample with lower ploidy was adjusted to the likely genome-doubled higher state to facilitate a direct comparison of copy number

changes, unless clear evidence of BAF and LogR profiles suggested otherwise. These adjustments were made in samples

C1004PD, C1022PD, C1025PD, C1027PD1, C1030PD, and C1043BL where both manual reviews supported a different solution

to Sequenza.

Analysis of Gene Amps
Amps were defined as a 3-fold or greater increase on the ploidy of a sample, a substantial loss event as a 3-fold or greater decrease

on the ploidy state and a homozygous deletion as CN=0. Amp and loss threshold values were rounded to the nearest integer copy

number state. Ploidy was estimated as follows,

Ploidy = ðCNAbsolute 3SegmentLengthÞ
.X

ðSegmentLengthÞ

with CNAbsolute representing the unrounded copy number estimate and SegmentLength the genomic length between segment break

points. BL and PD biopsy pairs were compared to identify which cases had acquired amps at PD that were absent at BL.

Deep Amplicon Sequencing
Ampliseq libraries were prepared by the ICR-TPU using the Ion Chef from 800 ng DNA extracted from BL/PD biopsies, and from

matched germline samples. A custom amplicon panel comprising a single pool of 77 amplicons (Table S4 for amplicon positions)

was designed to cover mutational hotspots and known CET resistance drivers in KRAS, NRAS, BRAF, EGFR and MAP2K1 and

several mutations identified by exome sequencing in each sample (including any TP53 and APC mutations) to enable subclonality

estimates. Up to 32 samples were pooled and sequenced on PGM 318 chips (v2) with 500 flows. Deep amplicon sequencing

data was aligned and somatic mutations were called using the Ion Torrent Suite software (v5.2.2). run with a minimum variant

frequency of 0.5% and 3 supporting variant reads.
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ctDNA-sequencing
Ultra-deep circulating tumor DNA (ctDNA) sequencing with molecular barcode error correction (Mansukhani et al., 2018) was applied

to cases with prolonged benefit fromCET andwhich had at least 25 ng of ctDNA. Libraries were prepared from 25 ng ctDNA using the

Agilent SureSelectXT-HS kit and hybridized to a CRC panel targeting up to 40 genes (Table S4) using our optimized protocol (Mansu-

khani et al., 2018). Libraries were pooled and sequenced on an Illumina HiSeq2500 in 75 bp paired-endmode, generating amedian of

125.7 M reads/sample.

The resulting data was aligned and molecular barcode-deduplicated in order to reduce false positive sequencing errors using

Agilent SureCall, with variants called using the integrated SNPPET caller. To call very low frequency variants, bam-readcount was

used to interrogate targeted hotspot positions in KRAS, NRAS, BRAF, MAP2K1 and EGFR (Table S4). In order to maximize the

sensitivity for the detection of resistancemutations, thesewere called if at least 2 independent variant readswere identified at amuta-

tional hotspot position and encoded for a recurrently observed amino acid change in the specific gene. Genome-wide copy number

profiles were constructed using CNVKit run in batch mode with Antitarget average size 30 kb as described (Mansukhani et al., 2018).

ctDNA sequenced from healthy donors (Mansukhani et al., 2018) was used as the normal reference dataset. Copy number profiles

generated from ctDNA were aligned with copy number profiles showing absolute copy numbers from matched biopsies and the

closest integer copy number was assigned to TP53 and mutated CET resistance driver genes for the subclonality analysis.

RNA-sequencing of Biopsies
NEB polyA kit was used to select the mRNA. Strand specific libraries were generated from the mRNA using the NEB ultra directional

kit. Illumina paired-end libraries were sequenced on an Illumina HiSeq2500 using v4 chemistry acquiring 2 x 100 bp reads. Bcl2fastq

software (v1.8.4, Illumina) was used for converting the raw basecalls to fastq format and to further demultiplex the sequencing data.

Tophat2 spliced alignment software (Kim et al., 2013) (v2.0.7) was used to align reads to the GRCh37 (hg19) release-87

human reference genome in combination with Bowtie2 (Langmead and Salzberg, 2012) (v2.1.0). FeatureCounts (Liao et al., 2014)

was used to perform read summarization. Sample QC was performed using Picard Tools CollectRnaSeqMetrics. We excluded 2

samples (C1006BL and C1007BL) with fewer than 10% of reads aligning to exonic regions. Lowly expressed genes were filtered

using a cpm threshold equivalent to 10/L, where L is the minimum library size in millions (Chen et al., 2016). Sample batch effects

were assessed using principal component analysis and did not require corrective action. Counts were normalized for library size

using estimateSizeFactors in Deseq2 (Love et al., 2014). FPKM data were generated using the fpkm function in Deseq2. For

downstream analysis all data were filtered for protein coding genes using the GTF annotation file and filtering on the gene_biotype

column.

RNA Sequencing of Cell Lines and CAFs
RNA was extracted using the Qiagen RNeasy kit and quantified using Qubit RNA High Sensitivity kit. 224 ng RNA was used as input

for Lexogen QuantSeq 3’ mRNA-Seq Library Preparation kit for Illumina (FWD), and libraries were prepared according to the

manufacturer’s protocol, with optimal 15 cycles of PCR determined by qPCR. Final libraries were quantified with both Qubit and

Bioanalyzer DNA High Sensitivity kits and equimolar pools were sequenced on an Illumina HiSeq2500 in Rapid 100 bp single-end

mode with dual indexing, generating a median of 7.2 M reads per sample. Sequencing data was analysed using the FWD Human

(GRCh38) Lexogen QuantSeq 2.2.3 and Lexogen QuantSeq DE 1.3.0 pipelines on the BlueBee cloud platform.

Cancer Cell Content Analysis
The cancer cell content of each sequenced sample was assessed based on the variant allele frequency (VAF) of somatic mutations

and samples with an estimated cancer cell content below 10% were removed from the analysis as the sequencing depth was

insufficient to accurately detect mutations in these samples (Cibulskis et al., 2013). As the majority of mutations are heterozygous

and hence present in half of the DNA copies of the cancer cells, 2xVAF can be used to approximation the fraction of cancer cells

in a sample. This led to the exclusion of 4 samples (C1001BL, C1009BL, C1010BL, C1042BL) as shown in the CONSORT diagram

(Figure 1A). The median estimated cancer cell content across the remaining 60 samples was 41% (Table S1).

Subclonality Analysis Exome Sequencing Data
The clonal status of mutations was assessed using the allele specific copy number generated in the CNVKit solution. We estimated

the cancer cell fraction (CCF) using the phyloCCF method as described (Jamal-Hanjani et al., 2017). We then inferred the mutation

copy number (i.e. the number of alleles harboring themutation) and assigned clonal/subclonal status to each variant using the criteria

described by McGranahan et al. (McGranahan et al., 2015).

Subclonality Analysis in ctDNA and Amplicon Sequencing Data
Variant allele frequencies of TP53 mutations, of hotspot resistance driver mutations in KRAS, NRAS, BRAF and EGFR and of the

EGFRmutation D278Nwere extracted from ctDNA BAM files. TP53mutation VAFs were used to calculate what fraction of the ctDNA

was of cancer cell origin by correcting for the influence of copy number aberrations using the following formula:

CCF = 2�VAF=ðCopiesmutated + 2�VAF � VAF�CopiestotalÞ
e6 Cancer Cell 36, 35–50.e1–e9, July 8, 2019



with CCF indicating the cancer cell fraction, Copiesmutated the number of copies that harbored the TP53mutation and Copiestotal the

absolute copy number of the TP53 locus. Clonality analysis of TP53mutation showed clonal mutations and loss of heterozygosity of

the TP53 locus for all tumor biopsies with the exception of C1027 which harbored 2 TP53 mutations, one present on 4 copies of

chromosome 17p and one on 2 copies, suggesting biallelic inactivation through 2 distinct mutation events. TP53 Copiesmutated

and Copiestotal were equal for tumors with TP53 LOH and in 1027 the VAFs of both TP53 mutations were taken together and the

sum of all chromosome 17p copies were used to estimate CCF.

The same formula was then resolved to calculate the expected VAF of a clonalmutation given theCCF of the ctDNA sample and the

local copy number state of this mutation:

VAF = ðCCF�CopiesmutatedÞ=ðCCF�Copiestotal + 2� 2�CCFÞ
Copiestotal for all mutations were inferred from ctDNA copy number profiles that had been close matched to the integer copy

number states of biopsies (Data S3). For subclonality calculation, we furthermore assumed that resistance drivers were only mutated

on a single gene copy (i.e. Copiesmutated=1, which is likely as they are thought to have a dominant effect). This assumption furthermore

maximized the estimated fraction of cancer cells that harbor a resistance driver mutation, hence providing a conservative measure of

the resistance gap. The fraction of the total CCF in ctDNA that harbors an observed resistance driver mutation was then calculated by

dividing the observed VAF by the expected VAF for a mutation that is 100% clonal. We then estimated the maximum fraction of all

cancer cells that harbored resistance driver mutations in a sample as the sum of the CCF values of all individual resistance driver

mutations in that sample.

Colorectal Cancer Subtyping
Consensus Molecular Subtypes (Guinney et al., 2015) were assigned using CMScaller (Eide et al., 2017). The CMScaller function

was run with raw count data and setting ‘RNASeq=TRUE’. Each sample was assigned the subtype with the shortest distance

according to the inbuilt nearest template prediction (NTP) (Hoshida, 2010). The CMScaller classification was considered low

confidence if FDR >0.01. Samples were also assigned to the molecular CRC subtypes, as described (Sadanandam et al., 2013).

To minimize technical differences in subtype assignment we generated data normalized using the same approach as CMScaller

(limma::normalizeQuantiles(log2(x+.25))). The data were then row median centered and correlated with the PAM centroids, as

defined by the published 786-gene CRCassigner signature. Each sample was then assigned to the CRC subtype with the highest

correlation. If the correlation coefficient is <0.15 or the difference with the second highest coefficient is <0.06 then the sample is

considered low confidence (Guinney et al., 2015). The EMT and TGFb expression signatures were generated by the Camera

Gene Set Analysis in CMScaller for each sample.

The subtyping showed a high level of agreement between the classification approaches. This was true even of assignments

considered low confidence by the published criteria.

Immune Cell Infiltrate Analysis
The cytolytic activity (CYT) was calculated as the geometric mean of the GZMA and PRF1 genes (normalized expression values as

input, offset by 1.0). The BATF3-DC signature was calculated as the mean of the normalized expression values of the genes in this

signature. FPKM normalized RNA sequencing data and published immune cell metagenes (Charoentong et al., 2017) were used as

input into the single sample gene set enrichment analysis (ssGSEA) algorithm using default settings to determine immune cell enrich-

ments in each sample as described (Barbie et al., 2009).

The Microenvironment Cell Populations (MCP)-counter algorithm (Becht et al., 2016b) was used as an independent bioinformatics

tool to assess immune cell enrichment. Data were normalized using limma voom (Ritchie et al., 2015) and the MCP-counter function

run with HUGO_symbols chosen as featuresType.

Quantifying Clonotypes for T and B Cell Populations
MiXCR (v3.0.5) (Bolotin et al., 2015) was used to extract B and T cell receptor repertoire data from RNA-seq data using the ‘analyze

shotgun’ command, selecting for ‘–starting-material rna’, ‘—species hs’ and ‘–only-productive’. Data were exported for T cell recep-

tor b and B cell heavy (IGH) and light (IGL) chain clonotypes.

Neoantigen Prediction
Our protocol for annotating neoantigens requires germline and somatic variant calls and prediction of pts’ HLA-types. A similar

protocol has been described before (Heindl et al., 2018), however, both for completeness and because of some differences, we

summarize it again in the following.

We take our somatic variant list as shown in Table S2. Germline variants are called using Platypus (Rimmer et al., 2014) (using

ucsc.hg19.fasta as reference file and default parameters). We retain only those variants that have a PASS in the FILTER column

of the Platypus output, genotype quality GQR10, germline sample genotype different from ‘‘0/0’’, germline coverage R10 and at

least one germline variant read. If more than one alternative variant satisfies these conditions and appears in the Platypus-assigned

genotype, we consider only the one with the highest allele frequency. We filter out variants found in segmental duplication regions (as

found in the genomicSuperDups.bed.gz file (Bailey et al., 2002) (Bailey et al., 2001) downloaded from the UCSC Genome Browser

website). Somatic mutation annotation was as described in the ‘Somatic mutation analysis’ methods. Germline variants are
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annotated running VEP (McLaren et al., 2016) on the cache refseq file homo_sapiens_refseq_vep_84_GRCh37 (updated 2016-02-

26). Transcript sequences for both somatic and germline variants are taken from the refseq_cds.txt file (GRCh37/hg19 Feb 2009).

Note that we discard approximately 1.5% of all variants because of inconsistencies between the variant annotation and the

refseq_cds.txt file sequences (either the variant’s transcript ID is missing altogether or the variant annotation is not consistent

with the sequence found in the refseq_cds.txt file).

For neopeptide generation, we consider the following protein–modifying germline and somatic variants: missense variants, in-

frame deletions, in-frame insertions, frameshift, start lost, stop lost, stop gained and synonymous variants. Synonymous variants

are only considered for their potential effect on other protein modifying mutations e.g. upstream frameshift mutations. When the

genomic positions of 2 variants overlap we retain only one of the 2. For each transcript T carrying at least one somatic variant of

the type above (transcripts with only synonymous variants are excluded for obvious reasons), we produce 2 mutated CDS files,

one carrying all germline variants (germline transcript, Tgerm) and the other carrying all germline and somatic variants (tumor

transcript, Ttum). Note that, for simplicity, we consider all germline and somatic variants to be in-phase. We then translate the

CDS sequences into amino acid sequences Sgerm and Stum, respectively, and generate all associated peptides of length 8 to 11.

Neopeptides associated to variants in T are all those generated by Stum that are not generated by Sgerm. Note that since we work

with CDS sequences (i.e., no UTR regions), start and stop lost variants are equivalent to missense variants that change the first

and last amino acid of the protein sequence, respectively. The in-house python scripts that we use to generate neopeptides are

available upon request.

We predict the pts’ HLA class I types by running the program Polysolver (Shukla et al., 2015) (version 1.0d) on normal samples (we

set race=Unknown, includeFreq=1 and insertCalc=0).

Finally, we predict neopeptide likelihood of binding to HLA complexes using the program netMHCpan4.0 (Jurtz et al., 2017). For

each sample, we run netMHCpan-4.0 against the corresponding neopeptide list as many times as the number of different HLA-types

of the patient. We then collect the neopeptides’ HLA-specific eluted ligand likelihood percentage rank scores and the associated

interaction core peptides. The interaction core peptide (Icore in the netMHCpan output) is the portion of the neopeptide that is

predicted by netMHCpan to span the full length of the HLA binding site and thus represents the peptide most likely to be presented

to T-cells. About 12.6% of all our neopeptides are predicted to have a core peptide that is shorter than the original neopeptide. For

each core peptide, we store only the best (i.e., lowest) HLA percentage rank observed in the sample. Finally, we calculate the

neoantigen burden in a sample as the number of core peptide high binders (%rank<0.5). Note that core peptide binders that are

shorter than their corresponding neopeptidesmay be devoid of mutated amino acids, i.e. theymay correspond to wild type peptides;

these cases are excluded from the above binders’ counts.

Immunohistochemistry
5 mm slides were cut from FFPE blocks and triple stained as described (Gerlinger et al., 2013). 5 representative tumor areas of

0.05 mm2 were identified per slide and CD8+, FOXP3+ CD4+ cells, and CD4+ FOXP3- T cells were quantified in each of the selected

areas at 40x magnification using ImageJ software. Densities were calculated as cells/mm2. Immune cell scoring was performed

blinded. For center and margin analysis representative areas were selected per slide, 2 areas from the invasive margin and the other

2 from the center of the tumor. Invasive margin was identified as the border region separating normal tissue from the malignant

tumor cells.

Testing for Mismatch Repair Deficiency (dMMR) / Microsatellite Instability (MSI)
Immunohistochemistry had been performed on 18 BL biopsies to test for loss of expression of theMMR proteinsMLH1, MSH2/6 and

PMS2. None of these 18 biopsies showed evidence for dMMR. In addition, we considered mutation load, somatic mutation status of

the MMR genes and the presence of COSMICMSI signatures (Sig.6, Sig.15, Sig.20 and Sig.26). Mutation signature analysis was run

using the R package ‘deconstructSigs’ (Rosenthal et al., 2016) (v1.8.0). Evidence of MSI was found only for C1013 based on a high

mutation load and dominance of MSI mutational signatures.

Drug Assays
Growth Factor rescue experiments were performed in DiFi and LIM1215 colorectal cancer cell lines treated with CET (provided by

Merck KG), AMG-337 and BGJ-398 (Selleckchem), FGF1, FGF2, TGFb1, TGFb2 and TGFb3 (RnD Systems) and HGF and FGF10

(Peprotech) for 5 days (7 days for FGF10). Treatments were replenished with fresh media after 3 days in 7 day assays. EGFR mutant

experiments were performed in LIM1215 cells. Cells were treated with CET for 5 days. DiFi and LIM1215 cells were seeded in stan-

dard media or CAF CM and treated with CET for 5 days. All experiments were performed in 6 replicates. Viability was assessed using

CellTiter Blue reagent (Promega) for all assays.

DNA Constructs and Site Directed Mutagenesis
The Gateway Entry clones R777-E053-Hs.EGFR, R777-E015-Hs.BRAF and R777-E087-HsFGFR3 (Addgene plasmids #70337,

#70299, #70371 respectively) were a gift from Dominic Esposito. Entry clone pDONR223_BRAF_p.D594H (Addgene #82816)

was a gift from Jesse Boehm, Matthew Meyerson and David Root. RC201958 KRAS TrueORF gold clone was purchased from

Origene and subcloned into the Gateway entry vector pENTR1A (Invitrogen) using a BamH1/EcoRV double digest. Site directed

mutagenesis was performed using QuikChange Lightning (Agilent) and custom designed primers (Table S7) to generate the following
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mutants: EGFR D278N, FGFR3 P418L, BRAF D549N, BRAF D594F, KRAS-STOP (to remove the C-terminal tag), KRAS A18D, KRAS

L19F. The full-length sequence of each clone was assessed using Sanger sequencing to confirm presence of the intended mutation

and that no other mutations had been inserted. LR Gateway recombination was used to generate expression constructs using the

following destination vectors: the lentiviral expression construct pLX304 (Addgene #25890, a gift from David Root), the lentiviral

expression construct pLenti-CMV-Puro-DEST (Addgene #17452, a gift from Eric Campeau and Paul Kaufman) and the transient

expression vector pEZY3 (Addgene #18672, a gift from Yu-Zhu Zhang). pLX304-LacZ (a gift from Steven Whittaker), pLenti-CMV-

Puro-LUC (Addgene #17477, a gift from Eric Campeau and Paul Kaufman), and pEZYegfp (Addgene #18671, a gift from Yu-Zhu

Zhang) were used as control vectors.

Transfection and Transduction
HEK293T cells were transfected with pLX304 or pLenti-CMV-Puro-DEST lentiviral constructs in combination with packaging

plasmids psPAX and pMD2.G (a gift from Didier Trono, Addgene #12260 and #12259 respectively) using TransIT-LT1 (Mirus).

DiFi, LIM1215 and NIH-3T3 cells were transduced with the resultant viral supernatants in the presence of Polybrene (8 mg/mL),

and selected with 5 mg/mL Blasticidin (pLX304) or 5 mg/mL Puromycin (pLenti). DiFi and LIM1215 cells were transiently transfected

with pEZY constructs using Lipofectamine2000 (Invitrogen) according to the manufacturer’s protocol and selected with 0.5 mg/mL

Neomycin.

siRNAmediated knockdown ofNF1 in DiFi and LIM1215 cells was performed using Dharmacon siGenome pool and Lipofectamine

RNAiMAX (Invitrogen) according to the manufacturer’s recommended protocol.

CRISPR Mediated NF1 Inactivation
LIM1215 cells were transduced with Cas9 viral particles (a gift from Feifei Song, Stephen Pettitt and Chris Lord, derived from

lentiCas9-Blast (Addgene # 52962, a gift from Feng Zhang)) in the presence of Polybrene (8 mg/mL) and selected with 5 mg/mL

Blasticidin to create constitutively expressing Cas9 lines, confirmed byWestern blotting using Cas9 (7A9-3A3) antibody (Cell Signal-

ling Technologies #14697). To produce lentiviral guide RNAs targetingNF1, HEK293T cells were transfected with pLentiguide-NF1#1

and pLentiguide-NF1#2 (a gift from Stephen Pettitt and Chris Lord, customized from pLentiguide-Puro (Addgene #52963, a gift from

Feng Zhang)) in combination with packaging plasmids psPAX and pMD2.G. LIM1215-Cas9 cells were transduced with the resultant

viral gRNA supernatants in the presence of Polybrene (8 mg/mL).

Western Blotting
Total cell lysates were prepared using NP-40 buffer supplemented with protease and phosphatase inhibitors (Sigma). Samples

were resolved by electrophoresis on SDS-PAGE gels for Western blotting. Primary antibodies used were p-ERK (Cell Signalling

Technologies #9101), ERK (Cell Signalling Technologies #9102), p-EGFR (Cell Signalling Technologies #2236), EGFR (Cell Signalling

Technologies #2232) and NF1 (Cell Signalling Technologies #14623). HRP-conjugated anti-beta Tubulin antibody (Abcam #ab21058)

was used as a loading control. Bands were detected using HRP-labelled secondary antibodies and ECL Prime (GE Healthcare), fol-

lowed by visualisation on an Azure Biosystems C300 detection system.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R (v3.4.0) and STATA13. The Fisher’s exact test was used to examine association of

categorical variables in 2x2 contingency tables. The Student’s t-test was applied to examine means of continuous data (e.g. normal-

ized RNA-Sequencing counts, cytolytic activity scores, median expression values of the T cell associated inflammation signature,

immunohistochemical immune cell densities and MCP-counter (Becht et al., 2016b) fibroblast infiltrate scores from non-paired sam-

ple groups). The paired Student’s t-test was applied to these datasets when comparing paired (BL and PD) data. p values %0.05

were considered statistically significant. The Kaplan-Meier methodwas used to estimate OS and PFS probability. TheMann-Whitney

statistical test was applied to compare ssGSEA rank scores of 28 immune cell populations followed by False Discovery Rate correc-

tion and a q value % 0.1 was considered statistically significant.

DATA AND SOFTWARE AVAILABILTY

Sequencing Data Deposition in Public Repositories
The accession number for the DNA and RNA sequencing data reported in this paper is (EGA: EGAS00001003367). Datasets are

password protected and will be shared with researchers subject to signing a data sharing agreement.

ADDITIONAL RESOURCES

Prospect-C trial information on ClinicalTrials.gov identifier: clinicaltrials.gov/ct2/show/NCT02994888.
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