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Background: Gait dysfunction or impairment is considered one of the most common

and devastating physiological consequences of stroke, and achieving optimal gait is a key

goal for stroke victims with gait disability along with their clinical teams. Many researchers

have explored post stroke gait, including assessment tools and techniques, key gait

parameters and significance on functional recovery, as well as data mining, modeling

and analyses methods.

Research Question: This study aimed to review and summarize research

efforts applicable to quantification and analyses of post-stroke gait with focus on

recent technology-driven gait characterization and analysis approaches, including the

integration of smart low cost wearables and Artificial Intelligence (AI), as well as feasibility

and potential value in clinical settings.

Methods: A comprehensive literature search was conducted within Google Scholar,

PubMed, and ScienceDirect using a set of keywords, including lower extremity, walking,

post-stroke, and kinematics. Original articles that met the selection criteria were included.

Results and Significance: This scoping review aimed to shed light on tools and

technologies employed in post stroke gait assessment toward bridging the existing

gap between the research and clinical communities. Conventional qualitative gait

analysis, typically used in clinics is mainly based on observational gait and is hence

subjective and largely impacted by the observer’s experience. Quantitative gait analysis,

however, provides measured parameters, with good accuracy and repeatability for

the diagnosis and comparative assessment throughout rehabilitation. Rapidly emerging

smart wearable technology and AI, includingMachine Learning, Support Vector Machine,

and Neural Network approaches, are increasingly commanding greater attention in gait

research. Although their use in clinical settings are not yet well leveraged, these tools

promise a paradigm shift in stroke gait quantification, as they providemeans for acquiring,

storing and analyzing multifactorial complex gait data, while capturing its non-linear

dynamic variability and offering the invaluable benefits of predictive analytics.

Keywords: post-stroke, gait, hemiplegia, machine learning, statistical tools, spatiotemporal, dynamics, artificial

intelligence
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1. INTRODUCTION

Stroke, defined as the sudden rupture or blockage of a
cerebral blood vessel and consequent damage to central nervous
system cells and tissues due to the interruption of oxygen
supply, remains a major health challenge throughout the
world. According to the World Health Organization (WHO),
every year, 15 million people worldwide are diagnosed with
stroke, of which, approximately 6 million die and another
5 million are left with permanent disabilities (1). Indeed,
stroke is globally considered as the second leading cause
of mortality for individuals above the age of 60 years, and
the fifth leading cause of death in individuals aged 15–59
years (2).

While developed countries are reporting an overall decline
in the incidence of stroke in the population below 65 years
of age, its incidence is increasing in the developing world.
Predictions for the next two decades indicate tripling in stroke
mortality in Latin America, the Middle East, and Sub-Saharan
Africa. In the United Arab Emirates (UAE), stroke is the second
leading cause of disability, next to road accidents. Based on
statistics from the Department of Health in Abu Dhabi (DOH),
approximately 8,000–10,000 Emiratis experience a stroke each
year, translating to at least one stroke occurring every hour (3).
In addition to the high prevalence, 50% of stroke patients in
the UAE are below the age of 45 years, which is approximately
20 years younger than the global average (3). Despite increased
awareness and lifestyle changes, post stroke rehabilitation based
on accurate and repeatable, objective assessment that leads to
individualized rehabilitation protocols, and improved long-term
mobility and quality of life is yet to be implemented on a
large scale.

A variety of standardized stroke scales are currently
used by clinicians to quantify stroke impairments, including
neurological deficits and gait abnormalities (4) (see Table 1).
Gait abnormalities in stroke patients are predominantly due
to sensorimotor dysfunction, including muscle weakness,
perceptual and proprioceptive deficits, spasticity or hypotonia.
These impairments can affect a stroke victim in various
degrees and combinations depending on the severity of the
stroke (level A or minimal neurological deficit; level B or
moderate deficit; and level C or severe deficit). Walking
dysfunction for individuals with post-stroke gait impairment
is often characterized by abnormal kinematic and kinetic
patterns, deviations in the spatiotemporal features, altered
muscle activation, and increased energy expenditure during
walking. Early and effective rehabilitation with appropriate
pharmacological and therapy interventions can help regain
good ambulatory function with optimized modified gait
patterns. While 52–85% of hemiplegic stroke patients regain
their walking capacity, their gait patterns typically continue to
differ from those of healthy individuals, with negative impact
on biomechanics, overall body function, and quality of life
(17, 18). Reduced walking speed, shorter and narrower steps,
the inability to walk a mile (1,609 m) or difficulty to ascend
a flight of stairs are observed to contribute to post-stroke
disability (19).

1.1. Major Determinants of Ambulatory
Function/Mobility in Stroke
Gait velocity of individuals with post-stroke gait impairment
ranges from approximately 0.18 to 1.03 m/s, whereas that of
healthy age-matched adults has an average of 1.4 m/s (20).
Identifying the clinical features that are primarily associated with
post-stroke walking ability is critical for the development of
effective gait-training programs. In particular, impairments in
muscle strength, motor function, and balance have been observed
to be highly correlated with walking ability. The muscle strength
of the affected hip flexor, ankle plantar flexors, knee extensors,
knee flexor, as well as that of unaffected knee flexors and ankle
plantarflexors are moderate to highly correlated (r = 0.5∼0.8)
with walking and stair climbing speed (20, 21). Motor function
of the affected lower limb as rated by Fugl-Meyer Assessment is
significantly correlated with gait velocity of patients with mild
to moderate stroke (r ∼ 0.6) (22). Indeed, balance function, as
measured on the Berg Balance Scale, was highly correlated with
functional walk distances [6MinWalk Test (6MWT) and 12Min
Walk Test (12 MWT)] at self-paced speed (r = 0.78–0.80) (23).

Other stroke-induced impairment, including spasticity,
sensory function, and cardiovascular fitness have less impact on
walking, and the association between these impairments with
the walking velocity remains controversial (20). The correlation
between the degree of spasticity and walking speed was also
found non-significant (20, 24). Keenan et al. reported that tactile
and proprioception impairments affect walking ability (25).
However, Nadeau et al. and Dettmann et al. found no significant
correlation between lower limb sensation and gait speed (22, 26).
Further, cardiovascular fitness [Peak oxygen uptake (Vo2 peak)]
was observed to be moderately associated with 6 MWT distance
(r = 0.56) in sub-acute stroke (27).

1.2. Post-stroke Gait Assessment
In clinical gait assessment, both a person’s “ability” to walk
and “how” the individual walks are relevant. Walking ability
of a person with stroke is a function of the stroke severity
and is typically based on two main aspects: how far can an
individual walk and what is his/her tolerance level. These are
usually assessed using 3-, 6-, or 10- min walk tests. Functional
Ambulation Category (FAC), Short Physical Performance Battery
(SPPB), and/or Motor Assessment Scale (MAS) may also be
employed for further assessment. On the other hand, the quality
of gait or “how” the person walks is based on studying gait
patterns and specific gait characteristics. Studied much more
often in research settings rather than clinical settings, gait
characteristics are nowadays assessed using instrumented gait
analysis, including kinematic and kinetic assessment, which
are beneficial for clinicians toward setting patient-specific
quantitative functional ambulatory benchmarks and goals.

During the early stages of post-stroke recovery, patients often
undergo qualitative observational, also referred to as visual gait
analysis (using naked eye or video images) by physicians to
evaluate gait performance and functional improvement (28).
Table 2 lists various observational gait scales widely practiced
in clinical settings. Current clinical assessment methods based
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TABLE 1 | Stroke scales and characteristics.

Tool Year No. of test

items/

components

Time to

administer

Tool format Score summary Description

Barthel Index (5, 6) 1955 10 5 min Each task uses different

scores from (0, 5, 10, 15)

0–100; least to great

independence

Measurement of functional

independence in stroke patients

Modified Rankin

Scale (5)

1957 6 items 5 min 6-Point ordinal scale (0–5);

score of 6 added denote

death

0–5; no symptoms to

severe disability

Describes the degree of disability

in daily activities of people with

stroke or other neurological

disorder

Hunt & Hess Scale

(7)

1968 5 NA Not weighted 1–5; minimum to maximum

mortality

Prediction of prognosis and

outcome in patients with

subarachnoid hemorrhage

Mathew Stroke

Scale (8, chap.9)

1972 10 15 min Arbitrarily weighted 100 point scale; lower

scores reflect a more severe

deficit

Measurement of stroke severity

in clinical trials; designed for

study on glycerol therapy

Glasgow Coma

Scale (GCS) (9)

1974 3 components 2 min Tasks graded using 4

(1–4), 5 (1–5), and 6 (1–6)

point ordinal scale

3–15; Deep comma to fully

awake

Assessment of level of

consciousness (LOC) for acute

medical and trauma patients

Glasgow Outcome

Scale (GOS) (8,

chap.9)

1975 5 items Few seconds Not weighted 1–5; dead to a good

recovery

Used for categorizing the

outcomes of patients after

traumatic brain injury

Fugl-Meyer

assessment scale

(10)

1975 28 35 min Ordinal scale 172 point scale Used to assess motor and joint

functioning, balance, and

sensation in stroke patients with

hemiplegia

Toronto stroke scale

(10)

1976 11 categories NA NA 0 to 155 Used for evaluating acute stroke

patients

Orgogozo Stroke

Scale (8, chap.9)

1983 10 10 min Ordinal scale 0–100; severe to normal Used for patients with middle

cerebral artery infarction

Functional

Independence

Measurement (FIM)

(8, chap.9) (6)

1984 18 30-45 min 7-Point ordinal scale, 1

(requiring complete

dependence) to 7

(completely independent)

18–126; complete

dependence to complete

independence

Used for assessing a patient’s

level of disability

Canadian

Neurological Stroke

Scale (CNS)

(5, 10, 11)

1986 8 5–10 min Each section uses

different scores from

(0,0.5,1,1.5, 3)

1.5–11.5; lower to greater

neurological deficit

Evaluation and monitoring of

acute-stroke neurological status

Hemispheric Stroke

Scale (8, chap.9)

(10, 12)

1987 20 15-30 min Ordinal scale 0–100; Good to bad Assessment of neurological

deficit in stroke therapy using

hemodilution

Modified Mathew

Stroke Scale

1988 10 NA Ordinal scale NA Used in nimodipine and

hemodilution studies for acute

stroke

Copenhagen stroke

scale (13, 14)

1988 10 item <10 min Ordinal scale; a (normal)

to f (worse) and a to d in

the revised one

NA For estimating the initial severity

of stroke

NIH Stroke Scale

(NIHSS) (15)

1989 15 7 min Each scores between 0

and 4

0–42; No stroke symptoms

to severe stroke

Measurement of neurological

deficit in acute stroke patients

Scandinavian Stroke

Scale (6, 10, 13)

1992 9 5 min Ordinal scale 0–58; very severe to mild Designed for non-neurologists

for multicenter hemodilution trials

European Stroke

Scale (16)

1994 14 8 min Arbitrarily weighted tasks 0–100; maximally affected

to normal

Detection of therapeutic effect

and matching of treatment

groups for middle cerebral artery

stroke

Japan stroke scale

(15)

NA 10 NA Weighted tasks NA Measuring stroke severity

NA, not available.
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TABLE 2 | Observational gait scales and characteristics.

Tool Gait parameter No. of test

items

Tool format Time to administer Score summary

Gait Assessment and Intervention

Tool (G.A.I.T) (28)

kinematics 31 2 to 4-level ordinal

scale

20 min, not including

videotaping

0–62; normal to

greatest extent of gait

deviation

New York Medical School Orthotic

Gait Analysis, (NYMSOGA) (29)

kinematics,

spatiotemporal

17 3-level ordinal not reported not reported

Hemiplegic Gait Analysis Form

(HGAF) (30)

kinematics,

spatiotemporal

18 3-level ordinal scale not reported 0–88; normal to

abnormal gait

Rivermead Visual Gait Assessment

(RVGA) (31)

kinematic 20 4-level ordinal scale 10–15 min 0–59; normal to

abnormal gait

Wisconsin Gait Scale (WGS) (32, 33) kinematics,

spatiotemporal

14 3, 4, and 5-level

ordinal scale

35–45 min for video

recording and offline

processing

13.35–42; normal to

worst

Tinetti Gait Scale (TGS) (34) kinematic 8 2 and 3-level ordinal

scale

5 min 0–12; most deviation

to normal

Gait Abnormality Rating Scale -

modified (GARS-M) (35)

kinematics,

spatiotemporal

7 4-level ordinal scale not reported 0–21; low to high risk

of falling

on visual observation rely heavily on training and clinical
judgment. However, despite being scrutinized for inter-observer
variability (36), “observational gait analysis” methods continue
to be popular among clinicians. This is due to the simplicity
and availability of these tools, as well as their low cost (37).
Nevertheless, validity, reliability, specificity, and responsiveness
(38, 39) of these qualitative methods are questioned (36). In
general, subjective observational gait scales may be useful for
the rudimentary evaluation of some spatiotemporal and/or
kinematic gait parameters but are not adequate for analyzing
the multifaceted aspects of gait variability and complexity (for
example kinetic and balance parameters). There is no consensus
currently to when a more sophisticated gait analysis should be
undertaken in stroke patients. The timing is likely to depend on
the severity of the stroke, as well as parameters including fatigue,
instability, pain, and consistent poor walking patterns despite fair
to good muscle activity during passive examination.

Instrumented gait analysis, which has become standard in
research settings in the 1990’s, provides an accurate, reliable
biomechanical gait evaluation approach incorporating key
parameters (spatiotemporal, kinematic, and kinetic measures)
(40). Gait labs typically include large, cumbersome, and expensive
equipment, such as motion capture systems (Vicon, Motion
Analysis Inc., Qualisys, OptiTrack, etc.), force plates (Bertec,
Kistler, Noraxon, etc.), sensor-embedded walkways (Tekscan,
GaitRite, etc.), and balance platforms, in addition to any
other instruments deemed important for particular research
applications, including post stroke gait assessment. Construction
and configuration of these labs are specific to allow for accurate
testing. For example, an area of at least 9 meter wide by 11 meter
long with 3–5 meter ceilings (higher ceilings for stair climbing
and sports applications) and special floors. Not surprisingly, the
implementation of these labs in clinical settings remains scarce,
not only due to the construction challenges and cost, but also

the limited number of clinical practitioners appropriately skilled
to conduct the tests and manage/interpret the large amount
of generated data obtained from the array of possible sensor
technology in use in post stroke gait rehabilitation. On the
other hand, the clinical efficacy of 3-dimensional instrumented
gait analysis (3DGA) has improved this last decade as reported
by Wren et al. in their systematic reviews conducted in 2011
as well as in 2020 (41, 42). They classified studies based
on the type of efficacy the studies addressed, which included
technical, diagnostic, outcome prediction, diagnostic thinking
and treatment, patient outcome, and societal efficacy. There
is strong evidence suggesting a continued advancement of
technology, including system accuracy and reliability, and data
collection and analysis. From the clinical perspective, there is
an increased use of 3DGA for understanding and evaluating
the efficacy of treatment at a group-level. Also, the impact of
3DGA in treatment decision-making is evidenced. This includes
diagnosing gait deficit and associated causes (e.g., toeing),
devising treatment options (e.g., surgical or non-surgical), as well
as changing and reinforcing treatment plans. In addition, the
efficacy on individual treatment outcomes was also supported
by studies. A scarcity of research analyzing the cost-effectiveness
of 3DGA at a societal level recommends the need for further
research toward this aspect (41, 42).

Today, small, light wearable sensors, such as inertial
measurement units (IMU), pressure sensors, accelerometers, and
various types of smart wearables are rapidly revolutionizing
gait assessment in research settings and have the potential
to be included in routine clinical practice. These sensors
offer new opportunities for researchers to continuously record
gait allowing the application of methods that quantify gait
dynamics over time and can provide real-time feedback to
patients and clinicians. Their light weight, portability and low-
cost offer potential for research outside the lab and in natural
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environments (clinics, sports arenas, etc.). In addition, these
sensors allow for easy synchronization with other physiological
measurement equipment, such as EMG, ECG, and EEG,
providing invaluable multifactorial continuous data of the
subject/patient in various settings.

Recently, artificial intelligence, including machine learning
techniques has emerged as a promising tool for processing
instrumented gait data efficiently (43–47). These techniques
have found applications in numerous problems relating to
gait assessment, including dimensionality reduction, feature
extraction, and classification. For instance, Zhou et al. employed
Support Vector Machine (SVM), Random Forest (RF), and
Artificial Neural Network (ANN) to classify young middle-
aged, older adults, and geriatric patients, based on dynamic gait
outcomes (46). Kernel Principal Component Analysis (KPCA)
was incorporated for dimensionality reduction of the data for
SVM classifiers. Lau et al. implemented SVM, ANN, and Radial
Basis Function neural networks (RBF) classifiers to classify
different walking conditions of hemiparetic patients, and found
that SVM resulted in a highest overall classification accuracy
of 97.5% (44). In addition, Lee et al. applied general regression
NN for decision making process (43), whereas, Scheffer and
Cloete used ANN, which was optimized to distinguish between
hemiparetic stroke and able-bodied ambulation (45). These AI-
based techniques have demonstrated capability of systematically
analyzing and extracting information from an extensive amount
of instrumented gait data that are multi-dimensional, highly
non-linear, and/or too complex for analysis using traditional
statistical approaches.

Considering the relevance of post stroke gait analysis in
a clinical context and the potential value of a technological
paradigm shift in that domain, this study includes the review of
current literature up to January 2021 on post-stroke gait analysis
with focus on conventional and advanced gait analysis tools and
techniques that are low cost, commercially viable, easy to use,
transportable and do not require excessive training for potential
use in clinical practice. In particular, this review highlights:

1. basic measurement protocols required to assess post-stroke
gait in clinical and/or research settings based on findings from
the literature.

2. data processing and analysis protocols used by various
researchers and the functional applicability of different
techniques.

3. characteristics of gait in individuals with post-stroke gait
impairment and the significant parameters used to assess gait
deficits following a stroke.

This scoping review is primarily dedicated to bridging the
gap between recent technology-driven engineering research gait
studies and clinical applications, particularly in the area of
post stroke gait. This gap can be seen in the faster adoption
of the rapidly emerging gait assessment/analysis tools and
technology in research labs as compared to clinical settings.
Nowadays, gait studies can be performed using cost-effective,
reliable and wearable sensors. These are invaluable when
integrated into functional clinical application, where real-time

gait analysis could be key to the development of patient-specific
gait rehabilitation strategies and techniques. The main goal of
this review is to provide a practical resource on technology-
driven gait characterization and analyses tools and techniques
and discuss their value and feasibility for clinical practice. The
remainder of the review is structured as follows: section 2
describes the adopted methodology, including the approach,
search strategy and selection criteria. Section 3 highlights the
attributes of normal and pathophysiological gait, including post-
stroke gait and mobility. Conventional and technology-driven
gait characterization tools and technologies are reviewed in
section 4, while section 5 summarizes associated conventional
and technology-driven data processing and gait analysis. Section
6 sheds light on relevant gait and physiological parameters used
to characterize post-stroke gait both in research labs and clinical
settings. Novel state-of-the-Art AI techniques for gait analysis
are described in section 7. Section 8 details the limitations of the
study, while section 9 presents the conclusions and future work.

2. METHODS

2.1. Study Approach
This paper appraises or evaluates the current use of biomechanics
and physiological data recording and analyses for the assessment
of post-stroke gait, as well as potential future directions
including smart wearables and big data/artificial intelligence-
based techniques. One of the main goals for this review is to serve
as a practical resource for both engineers and physicians who deal
with post-stroke gait assessment in research labs as well as clinics.
As such, a broad topic area, including gait and its multifactorial
physiological parameters, measurement tools and protocols, data
analysis techniques, and future trends including AI and ML is
included in this review.

As highlighted in (48), scoping reviews are an ideal tool for
determining the coverage of a body of literature pertaining to
the topic under study, determining the volume of the available
studies, as well as, providing a broad or detailed overview
of the focus. It can be used as a precursor to a systematic
review. Scoping reviews also generally address a broader research
question as compared to systematic reviews, and hence typically
include more extensive inclusion criteria (48). Considering the
nature of this study and intent, which are to identify the type of
evidence and provide a broad overview about a wide scope of the
aforementioned research area, the authors believe that a scoping
review rather than a systematic review would best benefit both
research and clinical communities.

2.2. Search Strategy
A comprehensive literature search was conducted within
Google Scholar, ScienceDirect, and PubMed databases using
a combination of keywords from the following groups: (1)
“lower limb” or “lower extremity” or “lower-body”; (2) “walking”
or “locomotion” or “movement” or “move” or “motion” or
“gait”; (3) “analysis” or “assessment” or “quantification” or
“evaluation”; (4) “stroke” or “post-stroke”; (5) “spatiotemporal”
or “kinematics” or “kinetics” or “plantar pressure” or
“Electromyography (EMG)” or “non-linear methods” or
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“machine learning” or “classification” or “statistical.” The search
was limited to articles published in English until January 2021.
The title and abstract of the search results were screened against
the inclusion/exclusion criteria. The full text of the relevant
articles was reviewed and those meeting the study criteria were
considered for further analysis. The references were checked to
identify additional articles for possible inclusion in this study
(see Figure 1).

2.3. Study Selection Criteria
Articles were screened against the following inclusion/exclusion
criteria. Articles for inclusion had to address (1) characteristics
of post-stroke gait including biomechanical and physiological
parameters, or (2) post-stroke gait quantification and analysis of
lower extremity, or (3) gait measurement system/protocol, or (4)
data analysis using traditional and non-traditional techniques.
Studies addressing a sample population of post-stroke patients,
who are able to walk are considered in this review. Studies that
involve the application of special treatment strategies (e.g., use
of botulinum toxin injection, aerobic exercise, etc.), movement
therapy, robot-assisted therapy, and studies with robotic
exoskeleton and/or ankle foot orthosis are outside the scope of
this study and not included in the review. Articles analyzing
subjects with spinal cord injury, multiple sclerosis, Parkinson’s
disease, and other diseases that interfere with gait were
also excluded.

The articles meeting the inclusion and exclusion criteria were
screened for value provided in gait quantification and analysis
of post-stroke patients. The measurement methods were studied
in detail, and the parameters considered were identified. The
various techniques to analyze gait data and their applicability for
clinical diagnostics/prognostics and personalized medicine were
further examined.

2.4. Data Extraction
Following the screening of the full-text articles based on
the criteria, a primary reviewer (DMM) performed the data
extraction. A part of the data extraction was also carried out
by an additional reviewer (SIIIA). The results were verified by
(KK, HFJ, and AHK). The clinical application and relevance were
discussed and confirmed by our clinical collaborator (SAW).
The data extraction focused on three broad areas: characteristics
of post-stroke gait, experimental/measurement/study protocol,
and data analysis techniques. The characteristics included
both biomechanical (e.g., spatiotemporal, kinematics, kinetics)
and physiological parameters (e.g., heart rate variability). The
measurement systems consisted of conventional techniques
(e.g., footprint method) as well as the advanced techniques
(e.g., pressure mat, motion capture, wearable sensors, etc.).
The data analysis techniques incorporated statistical-based
(e.g., ANOVA, linear regression, etc.) approaches as well
as data-driven methods. Additionally, artificial intelligence
techniques (e.g., ML, SVM) applicable to gait data analysis were
also reviewed.

3. INTRODUCTION TO NORMAL GAIT AND
PATHOPHYSIOLOGY OF HUMAN GAIT

3.1. Normal Gait Pattern
According to (49), normal gait can be defined as a series of
rhythmic, systematic, and coordinated movements of the limbs
and trunk that results in the forward advancement of the body’s
center of mass. As such, human movement is characterized using
individual gait cycles and functional phases. As illustrated in
Figure 2, a gait cycle consists of two main phases, stance and
swing, which are further divided into five and three functional
phases, respectively (51, 52). The stance phase corresponds to
the duration between heel strike and toe-off of the same foot,
and it constitutes approximately 60% of the gait cycle. The swing
phase begins with toe-off and ends with heel contact of the
same foot and occupies 40% of the cycle. Each functional phase
contributes to successfully establishing the goal of walking. Any
abnormalities observed in the phases or events of gait may be
linked to musculoskeletal and/or neuro-muscular complications,
such as the case of individuals with post-stroke gait impairment.

Many studies (53–62) have been conducted on healthy
gait in order to derive a quantitative baseline for normal
gait in terms of parameter ranges, so that deviations from
the baseline could be identified as impairment or adaptation
and proper treatment/rehabilitative therapies put in place.
Adaptation may refer to any gait deviation that arises when
an action is taken to mitigate the effects of an impairment.
Table 3 provides gait parameter ranges as observed in studies
on healthy adults. Determining an appropriate normal range
for many of the features is highly challenging as individuals
exhibit a wide range of gait patterns across different age groups
and gender.

3.2. Stroke and Pathophysiology of Human
Gait
Stroke patients may exhibit deficits in muscle strength and
muscle tone, mobility, perception and motor-control, sensation,
and balance (63, 64). This leads to significant changes in
voluntary movement, thereby affecting gait patterns. Gait
deviations in post-stroke patients are divided into (i) primary
deviations, defined as those directly due to pathology, and
(ii) secondary deviations, which are the result of the physical
effects of the primary deviations (passive), or a compensatory
mechanism (active).

Reduced gait speed and poor adaptation to daily-life tasks
and environmental constraints are often observed (65) in
persons with stroke. In sub-groups of stroke patients, functional
adaptations include asymmetric steps, reduced weight bearing on
the paretic limb, and reduced intra- and inter-limb coordination,
leading to various compensatory adjustments including pelvic
obliquity, hip hiking, and hip abduction with circumduction
pattern to achieve foot clearance (66) (Figure 3). Kinematic
deviations include reduced amplitude of the joint angle profiles
at the lower extremities, whilst kinetic deviations include reduced
joint moment and power. In addition, drop-foot is considered to
be another major deficit following a stroke.
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FIGURE 1 | Flowchart of the search.

FIGURE 2 | Functional phases of a normal gait cycle according to (50).

3.3. Post-stroke Mobility
Independent mobility after stroke is key to intervention
during the various stages of post-stroke. Mobility is
defined as “the ability to move oneself (e.g., by walking,
by using assistive devices, or by using transportation)

within community environments that expand from one’s
home, to the neighborhood, and to regions beyond” (67).
The assessment of functional mobility after stroke is very
important as it determines the effectiveness of rehabilitation
strategies.
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TABLE 3 | Typical gait parameters of an adult healthy population.

Parameters (self-selected speed) Range

Gait velocity (m/s) 1.30–1.46

Stride length (m) 1.68–1.72

Step length (m) 0.68–0.85

Stance phase (s) 0.62–0.70

Swing phase (s) 0.36–0.40

Cadence - fast walking (steps/min) 113–118

Single support (% of stride) 60.6–62.0

Double support (% of stride) 21.2–23.8

Data adapted from (56). Ranges are indicative of subject populations and do not

necessarily hold for the general population.

FIGURE 3 | An example of uncorrected post-stroke spastic gait pattern (66).

A Timed Up & Go (TUG) task is a simple tool employed to
assess improvements in functional mobility over time. A TUG
task starts with a patient in a seated position in a chair. It
calculates the time taken for the subject to stand up, walk 3
meters at a comfortable speed, turn around, walk back to the
chair, and sit down. According to Persson et al., based on a
study involving 91 patients with first-ever stroke during their
1st week, and at 3, 6, and 12 months post-stroke, the TUG
time has reduced from 17 to 12 s between the 1st week and 3
months, with no statistically significant changes afterwards (68).
Buvarp et al. investigated the longitudinal progression as well as
the change in functional mobility between moderate and mild
stroke (69). They reported improvement in functional mobility
of moderate stroke group at 1 year post-stroke [patients with
age <75 improved by 7.2 s in TUG time (P < 0.001), and
patients with age ≥75 years improved by 5.8 s (P = 0.011)]. For
the mild stroke group, no statistically significant improvement
was reported.

Other methods that assess walking and balance of persons
with stroke at the level of community walking include Step
Test, Side-Step Test, and Four-Square Step Test that assess
a single task, and Brunel Balance Assessment, Dynamic
Gait Index, Modified Emory Functional Ambulation Profile,
Community Balance and Mobility Scale, and mini-Balance

Evaluation Systems Test that assess multiple tasks (70). Based
on clinical utility, single-task measures may be recommended
to use as screening tools or to identify basic components
of walking and balance. On the other hand, multi-task
measures enable a comprehensive evaluation of walking and
balance and could be used for identifying mobility deficits
and devising treatment strategies. Readers are directed to (70,
71) for a summary of the psychometric properties of these
assessment techniques.

4. TOOLS AND TECHNIQUES FOR
POST-STROKE GAIT CHARACTERIZATION

Gait analysis typically involves measurement, quantification,
assessment, and interpretation of parameters that characterize
bipedal walking or gait. Measurement covers a range of
techniques available for recording gait events. Quantification
phase includes the extraction of the various biomechanical
parameters of gait (spatiotemporal, kinematic, kinetic), while
assessment is concerned with the application of analytical
and computational techniques, and interpretation consists of
inferring the implicit factors affecting the walking mechanism.

Considerable research efforts have been devoted
to the measurement of gait parameters ranging from
simple stop watches and measuring tapes, to emerging
sophisticated hardware and software technologies including
lightweight wearable sensors. This section will review both
traditional and novel techniques applied for measuring
gait characteristics as identified in the literature (see
Table 4).

4.1. Conventional Approaches to Gait
Characterization
The first documented experiments on gait analysis with major
contribution to muscle and tendon biomechanics date back
to the seventieth century conducted by Giovanni Alfonso
Borelli (1,608–1,679) the Italian physiologist, physicist, and
mathematician. Richard Baker (92) provides a comprehensive
review of the history of gait analysis techniques before the
emergence of modern-day computers. Rudimentary experiments
involving only the use of stopwatches, measuring tapes, and basic
telescopes were able to make significant contributions toward the
quantitative study of gait.

Gait analysis generally includes the assessment of
spatiotemporal parameters, such as gait velocity, step length,
stride length, single-limb support time, double-limb support
time, swing duration, and cadence by direct observation or from
video tapes (93). These measures, as compared and discussed
by McGinley et al. (93) have varied accuracy. Dynamic data
includes both kinetic and kinematic data, such as vertical ground
reaction forces, plantar pressure distribution, joint reaction
forces, moments and power, as well as kinematic data describing
joint angular motion, and EMG data reflecting muscle activity
patterns.

In addition to qualitative observational/visual gait using the
naked eye and/or video images to evaluate gait performance and
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TABLE 4 | An overview of the literature focusing on gait parameters and measurement devices for post-stroke gait studies considered in this review.

References Gait parameters Sample Time post-stroke Measurement/Protocol Observation

Moseley et al. (72) Segmented kinematics n/a n/a n/a Decreased peak hip

extension in the late stance

phase; Decreased peak

lateral pelvic displacement

in stance phase; Increased

peak lateral pelvic

displacement in stance

phase; Decreased knee

flexion (or knee

hyperextension) in stance

phase; Increased knee

flexion in stance phase;

Decreased ankle

plantarflexion at toe-off.

Moore et al. (73) Segmented kinematics n/a n/a n/a Decreased peak hip flexion

and ankle dorsiflexion in

swing phase; Reduction in

the peak knee flexion in

early swing phase;

Decreased knee extension

prior to heel strike;

Nickel (74) Gait velocity, gait cycle time,

cadence, stride length, total

double support time, single

support time, duration of

stance phase, duration of

swing phase

49 stroke patients and

24 controls (controls

had either transient

ischemic episodes or

asymptomatic carotid

stenosis, symmetrical

gait without walking

support); time since

stroke

avg 43.4 (range 0.5 to

336) months

Portable stride

analyser, an insole

system with

compression foot

switches (B& L

Engineering, Santa Fe

Springs, CA).

Cadence and velocity

improved over time;

Asymmetric patterns did not

change over time;

Age-matched controls in

this study showed abnormal

gait behavior compared to

normal subjects.

Olney et al. (75) Spatiotemporal, joint

kinematics, moments,

mechanical work and power

31 hemiplegic stroke

patients

avg 11.4 (range 2.0 to

88.0) months

2D motion capture

system (LoCam 51

camera); 3 trials;

Use of principal component

analysis (PCA) for clustering

of variables.

Silver et al. (76) Walking speed, cadence,

gait cycle symmetry

(intralimb stance-swing

ratio, interlimb stance

duration ratio, interlimb

swing ratio, overall

stance-swing ratio)

5 post-ischemic stroke

patients (mild to

moderate gait

asymmetries due to

residual hemiparesis)

26 ± 4.6 (range 9 to

70) months

Videotape (Peak Motus

Video Analysis system);

modified Get-Up and

Go task.

Improvements in walking

speed and cadence,

reduction in time required to

complete the task;

Sophisticated kinematics

and kinetics analysis

required to draw further

results.

Woolley (77) Distance and temporal

parameters, joint

kinematics, kinetics,

mechanical power, energy

expenditure,

electromyography

n/a n/a n/a Many gait deviations in the

hemiplegic patients may be

related to reduced walking

velocity.

Hesse (78) Stance and swing time

symmetry, ground reaction

forces, muscle activity

profile, cardiovascular

fitness

Hemiparetic subjects n/a 10 meter test most

commonly used; 2

walking trials

10-meter test and 6 min test

are highly recommended to

derive basic gait

parameters; Abnormal

muscle activity observed in

stroke population; trajectory

of vertical forces and center

of pressure varies between

controls and post-stroke

patients; appearance of

stance and swing time

asymmetry.

(Continued)
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TABLE 4 | Continued

References Gait Parameters Sample Time Post-Stroke Measurement/Protocol Observation

Hsu et al. (20) Gait velocity, step length

asymmetry ratio, single

support time asymmetry

ratio

26 stroke patients

(those with limited

lower-body joint range

of motion, joint pain,

and history of unstable

medical conditions,

neurological, and/or

musculoskeletal issues

were excluded)

avg 10.3 (range 1 to

43) months

GaitMatII (EQ Inc.,

Plymouth Meeting, PA)

(3.8 m); Cybex 6000

isokinetic

dynamometer (Cybex

International Inc.,

Medway, MA) to

measure isokinetic

muscle strength; 6

trials per speed

condition; comfortable-

and fast-speed

The weakness of the

affected hip flexors and

knee extensors contribute to

a decrease in gait velocity;

The spasticity of the

affected ankle plantarflexors

causes asymmetry.

Patterson et al.

(79)

Stance time, swing time,

double support time,

intra-limb ratio of

swing-stance time, step

length, spatiotemporal

symmetry

161 stroke patients and

81 age-matched

healthy subjects

avg 23.7 (SD 32.1)

months

GAITRite (10 m); 3 trials Ratio equation can be used

for standardization due to its

clinical utility; Swing time,

stance time, and step length

are the most useful gait

parameters

Patterson et al.

(80)

Velocity, spatiotemporal

symmetry

171 stroke patients

data (first-ever unilateral

stroke; hemorrhagic or

ischemic)

avg 23.3 (SD 31.1)

months

GAITRite mat (CIR

Systems Inc., New

Jersey, USA); 3 trials;

preferred/comfortable

speed

Swing time, stance time,

and step length

asymmetries may progress

in the long term post-stroke

stages; In terms of gait

velocity and neurological

and motor deficit, no

difference is seen across the

stages.

Laudanski (81) joint angles of hip, knee,

and ankle

10 chronic hemiparetic

stroke patients and 10

healthy controls

6.5 ± 5.4 years 7 IMU sensors (Xsens

Technology B.V.,

Netherlands), placed at

midthigh, midshank,

midfoot, and pelvis;

Optotrak 3020 system

(Northern Digital Inc.,

Ontario, Canada) for

validation; force plates

(AMTI, Newton, MA); 3

trials; self-selected

speed

IMU-based systems are

suitable for lower limb major

joint angle estimation of

healthy subjects and range

of motion estimation of

stroke patients. Additional

calibration techniques are

required for the application

in stroke population.

Yang et al. (82) Walking speed, temporal

symmetry (stance ratio,

swing ratio, swing-stance

ratio, overall symmetry ratio)

13 stroke patients (with

unilateral lower limb

weakness; able to walk

independently; and

could follow

instructions)

23.4 ± 15.1 months Two IMU sensors

(MicroStrain Inc.,

Williston, USA);

shank-mounted; 10 m

walking test; 3 trials;

self-selected speed

Subjects’ walking speed

was comparable with other

studies on stroke; Gait

symmetry measurements

were consistent with

previous studies.

Nadeau et al. (40) Spatio-temporal

parameters, kinematics,

kinetics

Provides a comparison

with literature in terms

of the actual values for

healthy

n/a Optotrak system

(Northern Digital Inc.,

Ontario, Canada)

Kinematics:- lower limb joint

motion profiles similar to

those of healthy individuals,

but with reduced peak

amplitudes; Kinetics:-

Asymmetric pattern, and

reduced peak moment and

powers on the affected side.

Trojaniello et al.

(83)

Gait velocity, stance time,

swing time, step time, stride

time

10 hemiparetic

subjects, 10 subjects

with Parkinson’s

disease, 10 subjects

with Huntington’s

disease, and 10 healthy

elderly subjects

n/a Single IMU (OpalTM,

APDM); lower-trunk

mounted; GAITRite (12

m); single trial;

self-selected,

comfortable speed

Temporal parameters

measured were less

accurate due to the

presence of missed/extra

gait events; Post-stroke gait

analysis using single IMU is

found to be challenging.

(Continued)
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TABLE 4 | Continued

References Gait Parameters Sample Time Post-Stroke Measurement/Protocol Observation

Parisi et al. (84) Gait cycle time, stance time,

swing time, initial double

support time, terminal

double support duration,

cadence, velocity, step

length, stride length

5 hemiparetic stroke

patients and 3 healthy

controls

n/a Single IMU (Shimmer,

Dublin, Ireland) placed

at lower trunk;

optoelectronic motion

capture system (ELITE

2002, BTS S.p.A.,

Milano, Italy) for

validation; 2 force

plates; 12 m hallway;

1-3 trials; self-selected

speed

Low-cost system for

accurate measurement of

spatiotemporal features.

Wüest et al. (85) Gait velocity, cadence,

stride length, gait limb

phase, gait stance phase,

gait peak swing velocity, gait

asymmetry

14 stroke patients

(ischemic or

hemorrhagic; free from

musculoskeletal illness,

cardiovascular

disorders, or other

neurologic diseases)

and 25 nondisabled

controls

any stage after stroke 8 body-fixed inertial

sensors (Physilog,

GaitUp; Lausanne,

Switzerland); 2

sessions each with 3

trials; Timed Get-Up

and Go task;

Excellent test-retest

reliability; IMU-based timed

Get-Up and Go can

distinguish stroke patients

from nondisabled controls.

Zhang et al. (86) Path length, strike angle, lift

of angle, maximum angular

velocity, stance ratio, load

ratio, foot flat ratio, push

ratio

16 stroke patients

(ischemic or

hemorrhagic) and 9

healthy controls

5 months to 11 years

(median 20 months)

Inertial sensors (MTw

Awinda, Xsens

Technologies B.V.,

Enschede, The

Netherlands), shoe and

lower-back mounted; 6

Minute-Walk-Test

Symmetry assessment

using a single 3D

accelerometer on low back

shows good discriminative

power compared to the one

based on spatiotemporal

parameters derived from

two feet sensors.

Rastegarpanah et

al. (87)

Step speed, step length,

step time, joint angles of

hip, knee, and ankle, peak

ground reaction forces

4 stroke patients with

hemiparesis, and 4

healthy controls (no

history of neurological

disorders or brain

damage)

n/a VICON MX System;

Kistler force plate;

10-meter walk; 6 trials

Effect of targeting motor

control on spatiotemporal

parameters of gait in healthy

controls as well as stroke

patients; effect on peak

ground reaction forces in

stroke patients.

Solanki et al. (88) Stride length, step length,

stride time, step time, single

support time, swing and

stance phase duration,

symmetry index

9 post-stroke patients

and 15 healthy controls

1 to 48 months Shoe FSR (Force

Sensing Resistors),

paper walkway, VICON

(Vicon Motion Systems

Ltd, Oxford, United

Kingdom)

Design of a cost-effective

and portable Shoe FSR

device for gait

characterization using

spatiotemporal data;

applicable for outdoor use.

Latorre et al. (89) spatiotemporal and

kinematic

82 post-stroke

(ischemic or

hemorrhagic) patients

(age≥10, able to walk

10 m with/without

assistance, able to

understand

instructions) and 355

healthy subjects

(age≥10, no history of

musculoskeletal or

vestibular disease

and/or prosthetic

surgery)

748.55 ± 785.12 days Kinect v2; at a

comfortable speed

The system showed

excellent reliability, validity,

and variable sensitivity, thus

can be used as alternative

to expensive

laboratory-based

assessment systems,

although its sensitivity to

kinematic measurements is

limited.

Wang et al. (90) plantar pressure difference

(PPD), step count, stride

time, coefficient of variation,

phase coordination index

(PCI)

18 hemiparetic patients

and 17 healthy adults

n/a textile capacitive

pressure sensing insole

with a real-time

monitoring system; 20

m long corridor;at a

comfortable speed

In comparison with healthy

adults, stroke patients

showed higher PPD, larger

step count, a larger average

stride time and a lower

mean plantar pressure on

(Continued)
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TABLE 4 | Continued

References Gait Parameters Sample Time Post-Stroke Measurement/Protocol Observation

the paretic leg, increased

plantar pressure in the toe

region and lateral foot, and

a threefold higher PCI. This

study further confirmed the

clinical applicability of textile

insole sensors.

Rogers et al. (91) peak plantar pressure and

contact area

21 stroke patients (≥3

months post-stroke,

able to walk 10 m

independently with or

without a walking aid,

had no other

co-existing neurological

condition)

≥3 months Tekscan HR Mat

(TekScanTM South

Boston, USA); 3

walking trials;

self-selected

comfortable speed; 2

test sessions in 2

weeks apart

Plantar pressure analysis

protocol resulted in good to

excellent repeatability for

foot regions, except for

toes.

functional improvement (Table 2), conventional post stroke gait
measurement techniques include footprint methods to measure
spatial parameters and stop watches for temporal features (94,
95). Although these techniques are simple, inexpensive, and
relatively reliable, the subjectivity of measurement remains a
major concern, particularly in the assessment of pathologic gait.

4.2. Technology-Driven Approaches to Gait
Characterization
In the past two decades, the field of gait assessment and
analysis has witnessed a remarkable technological advancement,
particularly in gait assessment technology. Instrumented
walkways, despite their relatively high cost, are now widely
used, both in research and to a limited extent clinical practice
(20, 79, 80, 83). These systems include low-profile floor walkway
systems equipped with grids of embedded sensors below the
surface, which record foot-strike patterns as a function of
time and space as an individual walks across the platform, and
dedicated software which computes the various spatiotemporal
gait measures. Patterson et al. (79, 80) used a GAITRite mat
(CIR Systems Inc., New Jersey, USA) to measure spatiotemporal
data toward the evaluation of post-stroke gait symmetry.
Trojaniello et al. (83) employed GAITRite as a reference system
to measure temporal parameters to validate the findings from
inertial sensors. A similar product, WalkwayTM(Tekscan Inc.,
South Boston, USA) offers dynamic plantar pressure in addition
to spatiotemporal data. The company recently launched the
StridewayTM, a modular gait analysis platform featuring both
spatiotemporal and plantar pressure assessment platforms
(88). Such instrumented mats involve less setup time and are
generally simple to operate. However, they require a specific
operational environment and are restricted to trials involving
over-ground tasks.

Marker-based optical motion capture (Mocap) systems are
well recognized to be an effective technique for obtaining
3D kinematic movement data. Passive Mocap systems [e.g.,
Vicon (Vicon Motion Systems Ltd, Oxford, United Kingdom)
and ELITE optoelectronic system (BTS S.p.A., Milano, Italy)],
include retro-reflective markers (that reflect the light emitted by

high-resolution infrared cameras) attached to specific anatomic
landmarks. The location of the marker is identified by decoding
the camera images. Here, the markers must be calibrated for
identification before the recording session commences. Active
systems (e.g., Optotrak motion capture system; Northern Digital
Inc., Waterloo, Canada), on the other hand, use light-emitting
diode (LED) markers (reflect their own light powered by
a battery), which are automatically identified. Rastegarpanah
et al. (87) used a Vicon system in conjunction with a Kistler
force plate as part of their experimental study on a stroke
population to investigate the significance of targeting effects on
gait parameters including step speed and step length. Parisi et
al. (84) employed the ELITE 2002 to acquire spatiotemporal
data and compared it with IMU data as part of their validation
study on both hemiparetic stroke patients and healthy controls.
An Optotrak-based framework was proposed by Nadeau et
al. (40) to investigate the kinematic changes in persons with
post-stroke gait impairment. The patients were instructed to
walk over-ground after being outfitted with markers, while
the kinematic data was captured and processed by the system
(40). Further, in (81), the Optotrak system was proposed as
an efficient tool for capturing the ground truth data associated
with lower-limb joint angles in a study involving chronic stroke
patients. In contrast to the over-ground trials carried out in the
earlier studies, this experimental work assessed gait during a
typical stair ambulation task. Unlike walk mats, motion capture
systems can be used for trials involving complex tasks, where
analysis of motion in multiple planes is vital. In the context of
clinical relevance, although such systems yield extremely accurate
reliable data, operational factors including infrastructure, non-
portability, high cost, additional time required for initial set-
up and calibration, operational complexity, and restrictions to
indoor setup impose hurdles to their functional deployment in
clinics and rehabilitation centers (88). Therefore, more portable
cost-effective alternatives, such as Microsoft Kinect became the
application of choice (89). This system is based on a depth
sensor-based markerless motion capture solution. Less expensive
2D motion capture systems (e.g., LoCam 51 camera), as well
as video analysis systems (e.g., Peak Motus Video Analysis
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system), were also reported in the literature with acceptable
resolution (75, 76).

Optoelectronic systems (e.g., Optogait®, Microgate, Italy) have
also been used to capture spatiotemporal gait parameters. These
mainly consist of a transmitting and a receiving bar containing an
infrared light. Interruptions of the communication between the
emitter and receiver are detected by the system to calculate the
various gait parameters. Iosa et al. (96) used an Optogait system
to compute the spatiotemporal parameters, including walking
speed, stride duration, stance phase, swing phase, and double
support phase in a study involving patients with subacute stroke,
as well as healthy subjects.

Various techniques are available to measure kinetic
parameters, including ground reaction forces, and joint
moments and powers. Instrumented walkways offer dynamic
pressure mapping but are expensive. Force plates are also
used in various gait analysis studies (81, 84, 87, 97). Chen et
al. (98) developed a novel remote sensing technology called
“Electrostatic Field Sensing (EFS)” for measuring human gait
including stepping, walking, and running, and further extended
the work to post-stroke gait. This technology is credited with
several advantages, such as being non-contact, affordable, and
allows long-time monitoring (99).

Shoe insole systems represent another category of gait
quantification tools and techniques. These systems are designed
to allow for the recording of both dynamic plantar pressure
and spatiotemporal data. F-scan (Tekscan Inc., South Boston,
USA) is an ultra-thin in-shoe pressure measurement system
utilizing Force-Sensitive Resistive films (FSR) technology (100).
Focusing on portability, cost-effectiveness, and applicability
to outdoor setting, Solanki and Lahiri (88) developed FSR-
based shoes (ShoesFSR) that offered detailed gait characterization
including abnormal gait, such as observed in post-stroke. In
this design, two FSR sensors were placed at the heel region
spaced at 30 mm apart, and one at the toe. Maintaining
the complexity of the sensing circuit to the minimum, this
system successfully extracted various spatiotemporal features,
including stride length and stride time by detecting gait
events, such as heel strike, heel-off, toe strike, and toe-off. A
recent study identified that textile capacitive pressure sensing
insole (TCPSI) is a promising tool for characterizing post-
stroke gait patterns (90). Several gait parameters, including
plantar pressure difference (PPD), step count, stride time,
coefficient of variation, and phase coordination index (PCI)
were evaluated, and results were compared with normal gait.
The results confirmed that textile wearable sensors may be
used as a gait evaluation tool, external feedback gait training
device, and a compact gait analyzer for both stroke patients and
healthy subjects.

More recently, wearable sensor-based gait analysis has
become popular due to its ultra-small sensor size and low
cost. Miniature sensors can be attached directly to body
segments, and recording can be done without the need for
a sophisticated laboratory environment. These systems have
potential applications in both research laboratories and clinical
settings and are either based on individual sensor fusion
elements (accelerometers, gyroscopes, force/pressure sensors,

EMG, inclinometers, goniometers), or combined together as
an integrated IMU to measure gait characteristics (99, 101–
103). IMU technology successfully integrates accelerometers,
gyroscopes, and magnetometers within a single unit, and can
estimate the spatiotemporal and kinematic parameters from the
recording of acceleration forces, angular velocity, and magnetic
field data (52). The technology has also been found to be useful
for the analysis of pathological gait, such as post-stroke gait.
Laudanski et al. (81) measured the range of motion of the
lower limb joints of individuals with post-stroke gait impairment
using seven IMU sensors placed at different body segments.
He suggested adopting new improved calibration techniques
applicable for IMU protocol to further extend this technology to
a stroke population. Trojaniello et al. (83) tested the performance
of a single IMUmounted at the lower trunk to measure temporal
gait parameters and found that the use of a single IMU for
abnormal gait characterization is challenging, as it resulted in
less accurate measurements. On the other hand, Parisi et al. (84)
used a single IMU for successfully estimating both spatial and
temporal gait data. Further studies have reported IMU-based
gait analysis and the discriminative power of the spatiotemporal
parameters obtained (82, 85, 86, 104). The pros and cons, as
well as the current manufacturers of the instruments are given
in Table 5.

4.3. Gait Characterization in Clinics
The clinical application of quantitative gait assessment continues
to encounter a number of barriers, including the cost
of equipment, installation and infrastructure, difficulties in
structured multifactorial gait assessment and interpreting a vast
amount of complex gait data, low organizational support, lack
of knowledge and training, and reliability and validity of the
tools (105).

To overcome these limitations, researchers have proposed
various low-cost gait analysis protocols with application
to clinical practices (106, 107). This includes the use of
commercially available technologies to develop clinically-
relevant gait analysis systems with accepted levels of accuracy.
On the other hand, novel wearable technology, such as
inertial measurement units, are found to be cost-effective
for clinical use and combined with AI-based techniques,
evaluation and interpretation of the acquired gait parameters
can become accessible to non-experts (103, 108). In (103),
Caldas et al. presented a systematic review of gait analysis
methods that use inertial sensors and adaptive algorithms.
This paper has highlighted that various gait kinematic features
could be acquired reliably using IMUs, but more work is
needed to standardize the evaluation and report the results.
Although the current research suggests promising results
with regards to IMU-based gait analysis integrated with AI
techniques, further assessment is needed prior to clinical
implementation. As reported by Wikström et al. (108), the
most widely adopted techniques include classification methods,
dimensionality reduction, clustering, and expert systems. It
is anticipated that these forthcoming assessment/evaluation
tools, and technologies will improve clinical decision-making
process and enable clinicians to devise specialized rehabilitation
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TABLE 5 | Gait analysis instruments, advantages, disadvantages, and current manufacturers.

Instrument Pros Cons Current manufacturers

Pressure mat Less setup time, easy to operate High cost, non-portable, restricted to

over-ground trials, require specific

operational space

Tekscan Inc. (Walkway, F-Mat),

Novel Electronics Inc. (EMED)

Pressure insole Portable, cost-effective, does not require

specific operational space, useful for indoor

and outdoor setup

Low accuracy compared to pressure mat Tekscan Inc (F-Scan), Novel

Electronics Inc. (Pedar)

Motion capture Highly accurate, useful for complex tasks

involving motion in multiple planes

High cost, non-portable, additional time

requirements for initial setup and

calibration, special training required for

operating the system, restrictions to

indoor setup

Northern Digital Inc. (Optotrak),

Qualisys (Arqus, Miqus), Vicon

Motion Systems Ltd (VICON),

BTS S.p.A. (Elite, SMART-DX)

Wearable sensors Low cost, does not require specific operational

space, useful for indoor and outdoor setup,

less setup and calibration time

Special algorithms required to combine

multiple sensor data

Xsens (MTw), Shimmer Sensing

(Shimmer3 IMU), GaitUp SA

(Physilog)

strategies that will be available to use in clinical settings and
economical to implement. Although the value of innovation
in clinical gait assessment, including post stroke, promises
a paradigm shift toward data-driven precision/personalized
rehabilitation, the various logistical challenges including clinical
infrastructure and training, as well as the identification of target
patients remain issues open for discussion.

5. POST-STROKE GAIT DATA PROCESSING
AND ANALYSIS TECHNIQUES

This section reviews both traditional and technology-driven
methods of data processing and analysis protocols adopted
by various researchers in the context of gait analysis.
Technology driven approaches into gait characterization
provide a vast amount of data that cannot be simply
interpreted in clinical practice. Therefore, in addition
to the measurement technology, we review data-mining
technology, that allows vast amount of data to be interpreted in
a meaningful time-frame for the use by the clinicians during the
rehabilitation.

5.1. Conventional Approaches to Gait Data
Processing and Analysis
Numerous computational techniques, including traditional
statistical tests have been applied to analyzing quantitative gait
data obtained from instrumented gait recording technology
(79, 80, 109–115). For example, Lin et al. (110) employed
stepwise regression analysis to identify important impairments
in persons with stroke (muscle strength of plantarflexors and
dorsiflexors, spasticity index, passive stiffness of plantarflexors,
and position error) associated with gait parameters, and Pearson
correlation coefficients to study the relationship between the
gait parameters (i.e., gait velocity and spatiotemporal symmetry)
and impairment parameters. Cruz et al. (113) based their
analyses on multiple linear regression models. ANOVA tests
were used to determine the variability between different stages
of post-stroke, as well as the significant effect between variables

within the same group (80). Another study used an unpaired
t-test to compare stroke patients with controls, and further
adopted correlation tests to examine the relationship between
different symmetry measures, including symmetry ratio and
symmetry index (79). Further, stepwise linear regression, as
well as descriptive statistics (mean and standard deviation)
and correlation tests were adopted to study the behavior of
the hip and ankle joints during the swing phase of the gait
cycle in individuals with post-stroke gait impairment (116).
In (83), the difference between mean absolute values of initial
contact timings associated with different gait event detection
methods was calculated using the Wilcoxon signed-rank test.
This method was further applied to examine the difference
between the gait characteristics for affected and unaffected limbs.
In addition, the Wilcoxon rank-sum and Friedman tests were
also applied in the same work. Although such methods involve
less computational cost, they often fail to incorporate a variety
of high-dimensional inter-related data obtained from different
devices requiring more complex statistical analysis methodology
(108).

5.2. Technology-Driven Approaches to Gait
Data Processing and Analysis
The field of big data provides powerful techniques to
systematically analyze and extract information from
instrumented gait data that are too large, heterogeneous,
and/or complex to deal with traditional statistical approaches.
Machine learning techniques, including predictive analytics and
data mining techniques, have been incorporated to characterize
both normal and pathological gait. Predictive analytics uses
data modeling to understand trends in data to predict future
outcomes (e.g., SVM). Data mining approach, on the other
hand, helps to discover new patterns in data (e.g., clustering)
(117).

Principal Components Analysis (PCA)-based techniques
have widely been used as part of gait data analysis.
Olney et al. (75) implemented PCA for dimensionality
reduction, (118) applied the same technique on the
kinematic data obtained from 27 stroke patients, and (119)
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employed Functional PCA (FPCA) to understand the
relationship between velocity and functional assessment
scales.

Several attempts have been made to classify the patterns
of hemiplegic gait, particularly toward planning dedicated
rehabilitation strategies. Most recently, the applicability of
artificial intelligence has been explored. The most common
adopted machine learning classifiers include Support Vector
Machines (SVM) and Artificial Neural Networks (ANN). Lau
et al. (44) implemented SVM, ANN, and Radial Basis Function
neural networks (RBF) classifiers to classify five different
walking conditions (level ground, stair ascent, stair descent,
upslope, and downslope) for hemiparetic patients. The SVM
based classifier outperformed ANN and RBF methods with a
highest overall classification accuracy of 97.5%. Kaczmarczyk
et al. (120) applied ANN for classifying post-stroke gait
patterns.

Clustering analysis has also been used to classify the gait
patterns of stroke patients by employing spatiotemporal and
kinematic parameters as input features. The gait velocity,
peak knee extension during mid stance, and peak dorsiflexion
during swing phases were identified as key features that best
discriminated the groups (121). A similar approach was used by
(122) for post-stroke gait classification. Another study proposed a
feature extraction algorithm for plantar pressure images obtained
from stroke population (123).

6. POST-STROKE GAIT PARAMETERS

This section will review various gait and physiological parameters
used to characterize post-stroke gait.

6.1. Spatiotemporal Parameters
Spatial and temporal parameters of post-stroke gait are
significantly different from those of healthy individuals. Von
Schroeder et al. in 1995 conducted a study on 49 ambulatory
stroke patients and 24 controls to evaluate the changes in
the spatiotemporal parameters and motion patterns (74). The
patients who had no hemiplegia and those with bilateral
symptoms were analyzed separately. The controls included in the
study had either transient ischemic episodes or asymptomatic
carotid stenosis butmaintained symmetrical gait without walking
support. Both comprehensive (gait velocity, cadence, stride
length, gait cycle, total double support duration) and unilateral
(single support duration, duration of swing phase, duration of
stance phase) parameters of gait were analyzed. Compared to
age-matched controls and non- disabled individuals, post-stroke
patients exhibited decreased walking speed and cadence, as well
as increased gait cycle and double limb support. It was also
observed that the hemiplegic limb of patients spent more time
in swing and stance, while their unaffected limb spent more time
in stance and single support as compared to the controls. In
addition, less time was spent in stance andmore time in the swing
phase on the paretic limb as compared to the contralateral side.
However, the general gait parameters were observed to improve
over time, with the exception of the asymmetrical patterns which

did not change. Table 4 reports on various gait parameters
applicable to post-stroke gait analysis as well as their significance.

In an attempt to recommend the most suitable gait measures
for standardization, Patterson et al. (79) compared different
asymmetry measures that describe post-stroke gait, including
the symmetry ratio, symmetry index, log transformation of
the symmetry ratio, and symmetry angle. The study recruited
161 unilateral stroke patients and 81 healthy controls. They
found that no particular individual measure distinguished stroke
patients better than others. However, they suggested symmetry
ratio as a suitable measure based on its clinical utility. The
most useful parameters of gait included step length, swing
time, and stance time. Measures of gait speed and symmetry
across the post-stroke stages also reflected both spatial and
temporal symmetry deterioration in the later phases of post-
stroke, whereas velocity, neurological impairment, and motor
deficit did not change (80). These findings are in line with (124)
but contradict (74), who found an improvement of gait velocity
and cadence, especially during the first 12 months following a
stroke, with no changes observed in asymmetry patterns. These
contradictory findings may be due to selection bias and sample
size variability that can affect the results in such studies. Although
not explicitly reported in these papers, compensation strategies
may have played a role in improving speed without enhancing
symmetry.

A study on gait velocity and temporal symmetry (temporal
stance ratio, temporal swing ratio, temporal swing-stance ratio,
overall temporal symmetry ratio) involving 13 stroke patients
with unilateral lower-limb weakness reported reduced gait
velocity during a standardized 10-meter walk test as well as
deterioration in temporal asymmetry, comparable with other
related studies on individuals with post-stroke gait impairment
(82). It has been reported that difference in spatiotemporal
parameters could be influenced by gait speed, suggesting
speed-matched trials for better post-stroke gait characterization.
Consistent differences in the spatiotemporal parameters were
noticed between stroke patients and healthy controls at speed-
matched assessment (125, 126).

In summary, the literature agrees that the spatiotemporal
characteristics of post-stroke gait include reduced step or stride
length, increased step length on the hemiparetic side, slightly
wider base of support, slightly greater toe-out angle, reduced
walking speed and cadence. Stride time, stance period on both
lower limb, and double support time are increased. In addition,
less time in stance and more time in swing phase for the paretic
side, as well as asymmetries in spatial and temporal factors have
been reported (77).

Silver et al. assessed the improvement in the functional aspects
of gait in patients with chronic hemiparesis after undergoing
task-oriented aerobic training (76). The temporal parameters,
including walking speed, cadence, gait symmetry (intralimb
stance-swing ratio, interlimb stance duration ratio, interlimb
swing ratio, overall stance-swing ratio) were examined before
and after training using a modified TUG task. The post-ischemic
stroke patients in this study exhibited mild to moderate gait
asymmetry. A significant improvement in the walking speed
and cadence, as well as a reduction in the overall time required
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to complete the TUG task were evident with time. However,
improvements in gait asymmetry and temporal sequencing
remained not significant. On the other hand, the gait patterns
of chronic hemiparetic stroke patients were compared between
over ground and treadmill walking by analyzing relative stance
time, relative single-limb stance time, stance-swing ratio, peak
force, and impulse (127). It has been observed that self-supported
treadmill walking improved gait symmetry in hemiparetic
stroke patients.

6.2. Kinematic Parameters
Available evidence indicates that changes in the stance phase of
hemiplegic gait are attributed to reduced mean peak extension of
the hip joint in late stance, alterations in the lateral displacement
of the pelvis and flexion of the knee, and decreased plantarflexion
of the ankle at toe-off (72, 73). Further, hemiplegic culprits
include a significant decrease in peak hip and knee flexion
during the swing phase, reduced knee extension prior to initial
contact, as well as decreased ankle dorsiflexion during swing.
In general, the literature suggests that the joint motion profiles
of hemiplegic patients are influenced by abnormal muscle
activation patterns, muscle shortening (72, 73), and/or reduced
walking speed (128). In some patients, it was noted that
compensatory walking mechanisms may also lead to abnormal
angular motion patterns, for example, knee hyperextension
to compensate for stable weight support during forward
propulsion (129).

6.3. Kinetic Parameters
Kinetic analysis of gait includes accounting for the ground
reaction forces (GRF) and joint moments and powers. GRF
refers to the forces exerted by the body on to the ground
and are usually measured by force sensors embedded in
a walking platform. Moments and powers are obtained via
inverse dynamics by combining GRF measurements with
kinematic data.

Post-stroke GRF patterns differ from those of healthy subjects
exhibiting an asymmetric pattern, as well as decreased amplitudes
of the joint moments and joint powers at the hip, knee, and ankle
joints on the paretic side (40). Overall, threemain types of vertical
GRF patterns have been observed in individuals with post-stroke
gait impairment (77, 130): (1) a force curve with two vertical
peaks occurring at loading and push-off and an intermediate
trough at mid-stance phase, similar to the one seen in healthy
groups, (2) a relatively constant vertical force component during
stance, and several irregular peaks, (3) a single vertical peak force
during early stance, which gradually reduces to zero during the
late stance phase. In addition, a high correlation between the GRF
pattern and the foot contact pattern (heel-, flatfoot-, forefoot-
initial contact) of stroke patients has also been observed (131).
These kinetic patterns can be easily computed from wearable
sensors as detailed in (132).

It has been consistently reported that in stroke patients, the
net positive moment and power at the hip, knee, and ankle joints
follow profiles that are similar to those of healthy individuals
while walking at self-selected comfortable speed and low gait
speed, although with reduced amplitude in both limbs, and

smaller amplitude on the affected side as compared to the non-
affected side (40). Moreover, the amplitude of several kinetic
parameters (e.g., hip power bursts) was found positively scaled
to gait velocity or other functional ability (e.g., plantarflexors
strength) measures of stroke patients (65). Some studies have
revealed the applicability of plantar pressure dynamics in
understanding foot and ankle movement patterns (65, 133–135).
Spatial and temporal distribution of foot plantar pressure and
the displacement of the Center of Pressure (CoP) are significant
findings in this context. Several abnormalities, including lower
plantar pressure peaks for the paretic foot as compared to
the non-paretic foot (133), early paretic forefoot contact (134),
asymmetries in the spatial and temporal distribution of plantar
pressure along the plantar surface of the foot between affected
and unaffected limbs, as well as the variability of the CoP, have
been reported in individuals with post-stroke gait impairment
(65, 134, 135). A recent study (91) addressed the repeatability
of plantar pressure assessment in stroke patients and claimed
good to excellent repeatability for the foot regions with exception
to toes.

6.4. Electromyographic (EMG) Parameters
Surface EMG is a noninvasive technique used to capture muscle
activity, which could provide further insight into post-stroke
gait abnormalities since during walking EMG data reveals
characteristic patterns of neural activation associated with each
involved muscle in terms of onset timings, burst durations, and
levels of activations (136). However, EMG-based assessment for
gait asymmetry is not well explored as compared to assessment
using other typical gait attributes. Similar to other gait parameters
discussed above, EMG signals from stroke patients reveal
abnormal amplitude and timing as compared to healthy controls.
Flexor and extensor mechanisms seem to contribute to such
abnormal behavior (137). Hesse (78) reported the most common
EMG abnormalities including high tonic activity of the tibialis
anterior, early onset of the gastrocnemius, delayed onset of the
vastus lateralis, and highly paretic gluteus medius muscle activity
at gait onset.

6.5. Additional Parameters
Autonomic dysfunction is another common complication after
stroke, which inspired investigations regarding the role of Heart
Rate Variability (HRV) (138, 139). Korpelainen et al. showed
that HRV changes were present in patients with hemispheric and
medullary unilateral brainstem stroke (138). Similarly, recovery
of parasympathetic function was observed from the third day
after the onset of stroke, while both parasympathetic and
sympathetic functions recovered by the seventh day, depending
on the extent and laterality (midline versus lateral) of stroke.
It is therefore recommended that autonomic function be taken
into account during the first week after stroke to prevent cardiac
complications, such as postural hypotension during physical
therapy (139). Another study explored the significance of HRV
in predicting post stroke motor recovery and revealed a strong
positive correlation between HRV and the movement of the
affected extremities (140). Short-term and long-term variability
of heart rate analysis of post-stroke patients also reported changes
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in HRV associated with impaired renal function which correlated
with stroke severity.

Among other neurocontrol parameters, toe clearance (109,
141), foot clearance (142), claw toes (143), andmechanical energy
cost (65), in association with post-stroke gait characteristics, were
also reported to be useful in improving treatment outcomes and
monitoring post-stroke rehabilitation. Particularly, Begg et al.
(141) provided evidence that biofeedback training based on
minimum toe clearance was useful in reducing tripping risk of
post-stroke patients.

Analysis of additional biomechanical parameters suggested
that multi-joint abnormalities (e.g., reduced flexion at knee and
ankle) (142) contributed to the lower foot clearance in post-
stroke individuals. In (143), 46% of 39 hemiplegic patients
exhibited claw toe mostly before the end of the third month post-
stroke. Claw toe was significantly correlated with equinus and/or
varus foot. In addition, the mechanical energy cost was found be
higher in post-stroke patients as compared to healthy subjects at
similar walking speed (65).

7. GAIT ANALYSIS AND ARTIFICIAL
INTELLIGENCE

Expert Systems (ES) represent early applications of analytical
tools in Artificial Intelligence (AI). They consist of a combination
of a database with a knowledge base, as well as rules including
logic operators that utilize probability theory to provide possible
outcomes as part of a user interface (144, 145). Expert systems
initially require users to define variables and appropriate
diagnostic values, as well as associated rules, confidence factors,
and user specified questions. The expert system then generates a
set of questions that guide the user toward a systematic diagnosis
or evaluation (146). An important feature of ES is that functional
evaluation, which is based on clinical observations, can be
standardized by incorporating a set process. ES have been applied
in numerous disciplines including general biomechanics, sports
biome- chanics, orthopedics, and gait analysis for improving
movement techniques, diagnostics, rehabilitation, and treatment.
By far themost common use is in gait analysis (147). Early studies
included automated detection of gait events using inductive
learning (148) and an integrated gait analysis framework (149,
150). Further advances in the use of ES came with the advent
of multi-sensor technology and analytics including video capture
of movement with reflective sensors placed on the body,
force plate derived features and physiological/neuromuscular
features (151). Use of more ANN-based classification superseded
ES with AI demonstrating better accuracy as compared to
statistical expert systems models. ANN consists of a series of
interconnected nodes that can be either designed as a single
layer or multilayer approximating the relationships, or adaptive
weightings determined from a training set, between input
and output measures, which can then be applied to unseen
data (150). Lugade and colleagues applied self-organizing maps
(SOM) or so-called Kohonen maps to estimate gait balance
control in the elderly using clinical evaluations (152). ANNs also
include feedforward or feedbackward backpropagation neural

networks (153). Further applications in gait included estimating
joint kinetics and kinematics using electromyography and
determining spatiotemporal gait patterns from EMG recordings
to determine falls risk or control measures for retaining balance
during gait (154–156).

As the volume of data from the variety of nowadays
readily available body sensors used to quantify human gait
and movement, including electroencephalography, electro-
oculography, electro-cardiography, and electromyography
video and force plate data, substantially increases, more
sophisticated modeling is needed to quantify and interpret
complex network physiology (157). In addition, today’s
advanced use of computer science has established novel features
describing gait movement associated biomechanics, moving
from discrete data to more realistic dynamic representations
(158, 159). Multivariate statistical analysis, machine learning
methods including Support Vector Machines (SVM) have been
recently extended to Deep Artificial Neural Networks such as
Layer-wise Relevance Propagation (LRP) methods to provide
numerical data on the contributions of variables included in the
model (160).

There remains a gap in literature regarding advanced
neural networks that deal with gait individualized pattern
characteristics. Since those are unique for each individual, they
require models that not only include conventional features
based on training static features of a sample population, such
as maximum joint angles, but also the inclusion of dynamic
variables such as the change of joint angle over time in
conjunction with sophisticated data reduction and individualized
feature selection of the most relevant gait characteristics in
the context of personalized medicine (161). Applying new
statistical learning algorithms, including deep learning combined
with large data sets, has led to the emergence of Explainable
Artificial Intelligence (XAI) designed to gain information about
the individual features included in the final AI classification.
However, this approach has had limited applications with
clinicians who required decision support algorithms to provide
information on causality as well (162). Table 6 provides an
overview of the up-to-date AI techniques used in various
literature resources.

8. LIMITATIONS

This review aimed to summarize available published work
on the assessment, quantification, as well as analysis of gait
dysfunction associated with post-stroke gait. The focus was
to highlight recent technology-driven gait characterization
and analysis approaches and their applicability to clinical
practice toward data-driven informed treatment and precision
rehabilitation strategies. As such, this article may have not
covered the complete biomedical aspects of stroke assessment
and/or rehabilitation. A non-systematic search methodology
was selected in order to broaden the scope and integration
of the three aspects of focus (assessment, quantification, and
analysis). In addition, we do not recommend any specific
protocol over the other, as most of the papers incorporate
different inclusion/exclusion criteria for subject selection, as
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TABLE 6 | An overview of the AI techniques applicable for gait analysis.

References Input parameters Technique

Lau et al. (163) Kinematic data Support vector machines (SVM), Artificial neural network (ANN), Radial

Basis Function network (RBF), and Bayesian Belief Network (BBN).

Lai et al. (56) Spatiotemporal, kinematic,

kinetic, and EMG data

Signal processing and computational intelligence methods.

Lau et al. (44) Kinematics data SVM, ANN, RBF.

Kaptein et al. (164) kinematic and physiological data Analysis of variance (ANOVA) supplemented by logistic and partial least

squares (PLS) regressions.

Laroche et al. (165) Kinematic trajectories SVM.

Karg et al. (166) time series gait data Hidden Markov Model (HMM).

Cippitelli et al. (167) body joint trajectories Algorithm based on anthropometric models.

Joyseeree et al. (168) Spatiotemporal data Random Forest (RF), boosting, Multilayer Perceptron (MLP), and SVM.

LeMoyne et al. (169) Temporal and kinetic data SVM.

Ferber et al. (170) n/a n/a.

Osis et al. (171) Kinematic data and ground

reaction forces

Principal Component Analysis (PCA).

Zeng et al. (172) Vertical GRF RBF networks.

Hannink et al. (173) Spatiotemporal data Deep convolutional neural networks.

Caldas et al. (103) IMU data artificial intelligence (AI) algorithms [e.g., artificial neural networks (ANN)

and hidden Markov models (HMM)].

Park et al. (174) Spatiotemporal and plantar

pressure

Random forest classification.

Pham and Yan (175) Vertical GRF Tensor decomposition.

Ertelt et al. (176) GRF Bayesian regulated neural networks.

Haji Ghassemi et al. (177) Inertial data Peak detection, two variants of dynamic time warping (DTW) methods

[Euclidean DTW (eDTW) and probabilistic DTW (pDTW)], and

hierarchical hidden Markov models (hHMM).

Zhan et al. (178) Stride length A rank-based machine-learning algorithm called disease severity score

learning (DSSL).

Zhang et al. (179) GRF SVM.

Bastien et al. (180) Ground reaction forces (GRF) A predictive linear model of the fore-aft GRF.

Galbusera et al. (181) review article Machine learning and deep learning.

Jiang et al. (182) Inertial data, GRF Random forest learning.

Nguyen et al. (183) Inertial data PCA, SVM, ANN.

Prado et al. (184) Temporal data Recurrent Neural Network classifier model.

Waugh et al. (185) Accelerometer data Canonical dynamical system (CDS)Fourier series.

Jauhiainen et al. (186) Kinematic data Cluster analysis.

well as different sampling sizes, which renders comparisons
unrealistic.

9. CONCLUSION AND FUTURE WORK

The main contribution of this work is providing a
multidisciplinary comprehensive review on post stroke gait
assessment and analysis toward bridging the gap between
research gait studies and clinical applications. The main goal
is to offer a practical resource on the multidimensional aspects
of post stroke gait focusing on novel tools and technologies for
quantitative assessment that can be feasibly incorporated into
clinical practice.

As generally agreed upon by many clinicians, quantitative
gait analysis outperforms traditional observational scales as it
generates unbiased outcomes that can be used as benchmarks

for rehabilitation. Instrumented gait analysis has wide potential
applications throughout the different phases post-stroke. For
example, as a diagnostic tool to quantitatively assess the severity
of a stroke and establish measurable benchmark parameters
toward devising patient-specific rehabilitation strategies. It can
also be used as means for continuously evaluating recovery
while ensuring patient safety and leveraging the plasticity
of the brain constrained by time during the various stroke
phases. A variety of gait parameters, including spatiotemporal
features, gait kinematics, kinetics, EMG patterns, toe and
foot clearance, claw toes, mechanical energy cost, and HRV
are available for consideration, where each signifies different
aspects of motor and functional deficits associated with stroke
that can be analyzed using a diverse menu of available
statistical and analytical tools, including XAI. As can be
observed from the literature, spatiotemporal symmetry and
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gait velocity are considered to be key parameters for post-
stroke gait analysis. On the other hand, in recent sensor
fusion approaches, multiple parameters are simultaneously
assessed to reflect and evaluate the inherent complexity and
variability of gait, including various physiological phenomena,
such as EMG, ECG and EEG, in addition to gait. Future
work is needed to recommend the best set of parameters for
post-stroke gait assessment. This review also summarizes the
variety of current measurement devices and tools available for
acquiring gait data. The latest trend is toward smart wearable
technology, which promises a paradigm shift in clinical gait
assessment, including stroke, and the creation of low cost,
portable, gait labs that can be transferred to the clinic for
accurate and reliable dynamic gait assessment. Data analyses
techniques help to understand the underlying information
associated with these parameters. In a clinical context, it
would be invaluable if such algorithms can predict post-stroke
recovery status and time, although this still seems to be a
highly challenging task. AI/NN models that include static and
dynamic features, combined with sophisticated data reduction
and individualized feature selection of the most relevant gait
characteristics are needed to close the loop for this paradigm
shift in alignment with personalized post stroke assessment
and rehabilitation.

Researchers and clinicians may consider looking into the
following key points:

1. Quantitative gait analysis is considered beneficial over the
conventional techniques during various stages of post-stroke
gait quantification, assessment, and analysis.

2. A combination of gait and physiological markers should be
employed while analyzing pathological gait, such as post-
stroke gait due to the complexity and variability of gait
patterns involved.

3. Data mining, non-linear and AI techniques could be suitable
options for post-stroke gait data analysis.

The authors are currently working on devising methods for
identifying the most significant gait parameters for clinical use,
cost and time-effective protocols for measuring the parameters
in clinical settings, and the most effective techniques for data
mining and analyses with the support of data from stroke
patients. The relevant questions of the need for innovation in
clinical post stroke gait assessment and identification of target
patients remain open for debate. Further clinical applications
of the above reviewed tools and technologies are needed to
demonstrate the overall efficacy of this paradigm shift in
comparison to conventional assessment methodologies.
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