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Biomass polyphenols are bio-active macromolecules with distinct chemical structures in a
variety of biomass. In recent years, the study of biomass polyphenols and their application
in food and medicine fields has become a research hotspot, which predominantly focuses
on the preparation, purification, structural identifications, and measurements of biological
activities. Many studies describe methodologies for extraction and application of
polyphenols, but comprehensive work to review its physiological activities like drugs
and health products are lacking. This paper comprehensively unlocks the bioactivities of
antioxidant, antibacterial, antitumor, anticancer, neuroprotection, control of blood sugar,
regulation of blood fat, and promotion of gastrointestinal health functions of polyphenols
from different biomass sources. This review will serve as an illuminating resource for the
global scientific community, especially for those who are actively working to promote the
advances of the polyphenols research field.
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INTRODUCTION

The growth and development of biomass are sustained by the regulation of metabolism and
resistance against different biological stresses. The endogenous metabolites of biomass are
composed of primary and secondary metabolites. In the different biomass, the major
constituents are cellulose, hemicellulose, lignin, which can be applied to prepare various value-
added products and bio-materials (Sun et al., 2019; Zhou et al., 2019; Chen et al., 2020; Geng et al.,
2020; Chen et al., 2021; Liu et al., 2021; Luo et al., 2021). Apart from these constituents, there is
existed various minor constituents, such as flavonoids and polyphenols (Si et al., 2009; Gironi and
Piemonte, 2011; Quideau et al., 2011; Goodman, 2020). Biomass polyphenols are one type of
secondary metabolites synthesized primarily through the shikimic acid and phenylpropane pathways
(Hidalgo-Liberona et al., 2020; Wang et al., 2020). Biomass polyphenols are widely found in plant
skins, roots, leaves, and fruits, with an abundance of as much as 20% by weight (Quideau et al., 2011).

There has been a long history of utilization of biomass polyphenols, which have been used in tanning
and as medicines starting from ancient times (Quideau et al., 2011). The natural feelings and intrinsic
properties of biomass polyphenols make them remarkable amongst plant-derived products. In recent
years, biomass polyphenols have attracted much more attention in green/sustainable scientific fields due
to their broad distribution, natural abundance, diverse chemical structures, and biological functions. A
range of studies has demonstrated that biomass polyphenols comprisemultiple phenolic hydroxyl groups,
which have been reported to elicit prominent physiological functions such as free radical scavenging and
radical sequestration activities (Gironi and Piemonte, 2011; Dong et al., 2020; Pei et al., 2020). These
functionalities thus highlight biomass polyphenols as effective antioxidants. In addition to executing
antioxidant activities, biomass polyphenols dramatically inhibit the growth of different strains of bacteria,
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fungi, and viruses while not affecting the growth and development of
beneficial microorganisms under weak acidic and neutral
environments. This indicates the potential applications of biomass
polyphenols as bacteriostatic and anti-tumor agents. Moreover,
biomass polyphenols also effectively protect against cardiovascular
diseases via lowering the levels of several key pathogenic factors in the
blood, including blood lipid, oxidation of low-density lipoprotein, and
blood pressure (Gironi and Piemonte, 2011; Quideau et al., 2011;
Camargo et al., 2019; Delgado et al., 2019; Michaličková et al., 2019).

BIOMASS POLYPHENOLS

Biomass polyphenols are a class of natural compounds widely
distributed in biomass with an abundance second to lignin,
cellulose, and hemicellulose. Polyphenols are predominantly
accumulated in the leaves, vascular tissues, bark, immature fruits,
seed coat, and disinfected tissues of biomass. China is rich in biomass
polyphenol resources varieties (Figure 1), including Larch
(100–150mg/g, Yashunsky et al., 2014), Black wax (20–50mg/g,
Xu et al., 2016), Waxberry (20–50mg/g, Chen et al., 2002), Yu Gan
(200–300mg/g, Yang and Liu, 2019), Houpixia (400–1,500mg/g,
Dai et al., 2006), Mangrove (500–600mg/g, Dahibhate et al., 2020),
Gallnut (300–500mg/g, Ge et al., 2015).

Structure of Polyphenols
Polyphenols share common structural features, their basic framework
includes the polyhydroxy substitution of a benzene ring, as well as the
absence of any nitrogen functional groups. Biomass polyphenols can
be divided into the classes of 1) hydrolyzed tannins (gallate
polyphenols) and 2) condensed tannins (polyflavanol polyphenols
or proanthocyanidins) (Gironi and Piemonte, 2011). Hydrolyzed
tannins are products of tannin hydrolysis, revolving around cleavage

ester linkages. Condensed tannins aremainly composed of polyflavanol
polyphenols or proanthocyanidins, which contain hydroxyl flavanol
monomers connected by C-C bonds (Porter, 1992). Since hydrolyzed
tannins and condensed tannins are completely distinct in the aspect of
the unit skeleton, there are significant differences in their functional
properties and applications (Figure 2). For example, hydrolyzed
tannins are unstable and prone to be hydrolyzed under various
conditions (acid, alkali, and under the presence of certain enzymes).
Condensed tannins are not readily hydrolyzed, but can be further
condensed into insoluble upon contact with a strong acid (Gessner and
Steiner, 2005). When polyphenols interact with proteins, alkaloids, or
polysaccharides, the polyphenolmolecules initially approach the surface
of protein molecules through hydrophobic bonds. The entry of
polyphenols to the hydrophobic bag enables the following formation
of multi-point hydrogen bonds. Due to a large number of coordination
groups, most metal ions also tend to form precipitates if allowed to
complexwith polyphenols. Under alkaline conditions, polyphenols and
metal ions readily form polycomplexes. In addition, the phenolic
hydroxyl in the phenolic structure of biomass polyphenols (catechol
or catechol) is easily oxidized to the quinone structure via consuming
oxygen in the environment (Zhang et al., 2005).

Classification of Polyphenols
More than 8,000 different kinds of polyphenols and their derivatives
have been identified in the biomass kingdom (Boadas-Vaello et al.,
2017). The name of polyphenols is assigned due to the presence of
multiple phenolic groups in their chemical structures. In terms of
structural differences, polyphenols can be further divided into four
categories: phenolic acids, astragalus, lignans, and flavonoids
(Table 1). A couple of studies have demonstrated the dominant
biomass polyphenols that are found in common foods, including
gallic catechins in green tea, resveratrol in grapes, capsaicin in chilis
and peppers, curcumin in turmeric, genistein in soybean, and
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gingerol in ginger (Bhuyan, 2018). Investigation of the biological
outcomes of these particular edible goods allows for a better
understanding of the structural details related to the
functionalities of polyphenols.

BIOACTIVITY OF POLYPHENOLS

Polyphenols are usually ingested as mixtures of different
compounds that are immersed in a complex food substrate.
The material then undergoes digestion, which exerts changes
in structure and activity, before the mixture eventually reaches
and acts upon target organs. After ingestion, absorption from
the digestive tract usually requires intestinal enzymes, such as
lactase rhizopericoside hydrolase and cytosolute

β-glucosidase, to hydrolyze glycoside binders and produce
the corresponding aglycones (Day et al., 2000; Gee et al.,
2000). These aglycones can be further metabolized by
second-stage enzymes to produce methylated, sulfurated,
and gluconaldized compounds (Manach et al., 2004).
Meanwhile, polyphenols that are not absorbed in the small
intestine reach the colon, where they are converted into
simpler metabolites by colonic microbiota and consequently
being absorbed and get involved in further metabolic reactions
(Liu et al., 2018).

Due to the diversity of biomass polyphenols, a variety of
biological activities has been reported, including antioxidant
(Hu et al., 2020; Ji et al., 2020), anti-inflammatory (Myint
et al., 2021), bacteriostatic (Martin and Bolling, 2015; Gullon
et al., 2016; Liu et al., 2019), anti-tumor (Sharma et al., 2017;

FIGURE 2 | Structural representation of typical hydrolyzed tannins (A) and condensed tannins (B).

FIGURE 1 | Different biomass that contain polyphenols.
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Sajadimajd et al., 2020), regulation of intestinal flora (Cardona
et al., 2013; Suzuki, 2013) and prevention of cardiovascular
diseases (Kang, 2013; Tangney and Rasmussen, 2013; Kitai

and Tang, 2017; Orr et al., 2020). Biomass polyphenols have
also been widely used in the fields of the development of drugs
and health products.

TABLE 1 | Classification of polyphenols from different biomass.

Classification of
polyphenols

Representative
compounds

Structure Biomass References

Phenolic acids Gallic acid Gallnut, sumac, tea plant Asnaashari et al., 2014; Wang et al.,
2013

Ferulic acid Ferula, ligustici, angelica Zheng et al. (2021)

Caffeic acid Coffee, Wine

Chlorogenic acid Honeysuckle, eucommia ulmoides leaves,
hawthorn fruit

Astragalus Resveratrol Peanut, mulberry, grape Zheng et al., 2021; Hiradate et al.,
2002

Lignans Flaxseed lignans Flaxseed, sesame Zheng et al. (2021)

Flavonoids Luteolin, apigenin Parsley, dragonhead, Chili Zheng et al. (2021)

Quercetin, rutin Apple, onions, Vegetables

Nobiletin, naringenin Citrus fruits

Daidzein, puerarin Legumes

Delphinidin, scabiolide Fruits and vegetables with bright colors

Proanthocyanidin Blueberry, grape pip
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Antioxidant Activity
Redox is an essential class of metabolic reaction that occurs in
living organisms. However, when the electron flow becomes
decoupled, the generation of harmful free radicals results in
detrimental outcomes (Fiedor and Burda, 2014; Zhao et al.,
2021). Free radicals are atoms, molecules, or ions with
unpaired electrons. They are highly unstable, will rapidly
attack molecules in adjacent cells, and are prone to
chemically react with other molecules (Yu et al., 2020).
These reactions in turn contribute to various forms of
impairments to cells. Most of the impairments can be
repaired, but the entire reaction can be avoided if the free
radical interacts with an antioxidant in cells. Antioxidants

play a vital role in inhibiting molecular oxidation reactions to
reduce the harmful accumulation of reactive oxygen species
(Fiedor and Burda, 2014). Antioxidants also protect human;
somatic cells from the deteriorating effects of free radicals
and reactive oxygen species (ROS) by altering the expression
of sensor proteins that are involved in oxidative stress
(Figure 3) (Fiocchetti et al., 2019). The different kinds of
chronic diseases and the process of lipid peroxidation are
thus delayed. In recent years, there has been a great interest in
unveiling natural plant-derived novel and safe dietary
antioxidants.

Biomass polyphenols have strong activity due to their
ability to delocalize uncoupled electrons, which can
scavenge free radicals, chelate metal ions and inhibiting
oxidase activity, and protect endogenous antioxidant
enzymes in the body (Kim et al., 2014; Croft, 2016). Most
natural antioxidants are phenolic compounds. The most
important natural antioxidants are tocopherols, flavonoids,
and phenolic acids. Among the phenolic hydroxyl groups, the
phenolic hydroxyl group is the most easily oxidized, exhibiting
the capacity to capture free radicals such as ROS and active
nitrogen species (Geng et al., 2016; Zheng et al., 2021). This
functionality enables polyphenols to scavenge free radicals and
quench ROS, thus providing strong antioxidant capacity
(Fraga, 2007; Dugasani et al., 2010; Losada and Dí az,
2017). These antioxidants, which are commonly used as
food supplements, prevent the free radical chain reaction of
oxidation and inhibit the initiation and propagation steps. All
of these lead to the termination of the reaction and delay of the
oxidation process. Antioxidants have the unique property of
extending the shelf life of foods without any adverse effect on
their sensory or nutritional qualities. Antioxidants used as
food additives are non-toxic and effective at low

FIGURE 3 | (A) Schematic model of ROS-activated signaling involved in the rapid modulation of neuroglobin (NGB) levels, its localization, and function on the redox
balance outside mitochondria. (B) Schematic model of the impact of E2 intracellular-activated pathway on NGB expression, localization. The NRF-2 pathway describes
how NGB affects the E2-dependent activation of the antioxidant NRF-2 system. E2: 17β-estradiol; ERα: estrogen receptor α; PI3K: phosphatidylinositol three kinase
(Fiocchetti et al., 2019).

FIGURE 4 | Antibacterial mechanism of polyphenols. Brown dots
represent tea polyphenol. TP: tea polyphenol; F: fungi; B: bacteria; V: virus;
PAL: phenylalanine ammonia-lyase; CAT: catalase; POX: peroxidase; PPO:
polyphenoloxidase (Yang and Liu, 2019).
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concentrations. Other outstanding properties include high
stability, robustness to the various stages of food processing,
possess no smell, taste, or color, are easy to be mixed into
foodstuffs, and have sufficient solubility.

Biomass polyphenols have been widely used in various fields
due to their strong antioxidant activities. Hu et al. (2020)
impregnated tea polyphenols (Gallic acid) into tea seed oil
with ethanol and removed the ethanol by vacuum distillation
to produce tea polyphenol colloids. It was found that no chemical
changes occurred after the addition of tea polyphenols to tea seed
oil. The antioxidant stability of colloidal tea polyphenols in tea
seed oil was superior to that of synthetic antioxidants and tea
polyphenol palmitate, and the optimal addition of tea
polyphenols to tea seed oil ranged from 0.1–0.2 g/kg. Ji et al.
(2020) found that the major phenolics in sea buckthorn were
flavonoids, phenolic acids, and tannins, which showed
antioxidant functions via regulating the activities of cellular
enzymes. Myint et al. (2021) found that stevia leaves were
demonstrated to possess the highest antioxidant capacity

among plant foods due to the abundance of polyphenols
(PPS). The stevia leaves PPS showed antioxidant activity
similar to epigallocatechin gallate (EGCG), and their
antioxidant activity, hydrophilic activity, and stability are
stronger than ascorbic acid (VC), vitamin E, and chlorogenic
acid. The antioxidant activity of stevia leaves PPS is stable under
various physical conditions, except for in the presence of
potassium sorbate or sucrose. In addition, the combination of
PPS and VC improves their antioxidant stabilities. Taken
together, PPS has the potential to be a natural, inexpensive,
and abundant antioxidant for use in pharmaceuticals and
cosmetics. In animal studies, Gerasopoulos et al. (2015) have
included polyphenols extracted from olive oil processing
wastewater to feed 20-day-old piglets for 30 days. The authors
found that the polyphenol-rich diet significantly increased levels
of total antioxidant capacity, catalase activity, and glutathione in
the pig’s blood, as well as reducing oxidative stress. Liu et al.
(2018) and Cimmino et al. (2018) showed that biomass
polyphenols reduced the content of malondialdehyde in

FIGURE 5 | The role of ROS/RNS in carcinogenesis (Ríos-Arrabal et al., 2013).

TABLE 2 | Antibacterial effect of different polyphenols.

Type of polyphenols Biomass Bacteria types References

Polyphenol Tea Proteus vulgaris, Staphylococcus aureus Pani et al. (2014)
Apple Bacillus, Escherichia coli Pseudomonas, Bacillus subtilis Gullon et al. (2016)
Pomegranate fruit slag Salmonella, Escherichia coli Salto and Lopez (2016)

Teucrium polium Flavonids Teucrium polium Staphylococcus aureus Hafsa and Ibrahim (2017)
Oligomeric proanthocyanidins Trester Streptococcus, Escherichia coli Hafsa and Ibrahim (2017)
Flavonoid Olive Staphylococcus epidermidis Williams et al. (2017)
Polyphenol Curry Leaves Staphylococcus aureus Hafsa and Ibrahim (2017)
Flavonoid Hawthorn Staphylococcus aureus Yang and Zhang (2019)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org September 2021 | Volume 9 | Article 7538986

Yan et al. Application of Polyphenols From Biomass

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


mutton, the fat oxidation was inhibited followed by the
improvement of meat quality. More importantly, the biomass
flavonoid polyphenol fisetin has been shown to relieve allodynia
in a reserpine-induced rat model with fibromyalgia, hyperalgesia,
and depression. Through evaluating multiple parameters, the
researchers suggest that fisetin lowered biogenic amine (5-
hydroxytryptamine, noradrenaline, and dopamine) levels,
inhibited the oxidation of nitroso stress to downregulate ROS
level, to exert its resistance to hurt feelings and antidepressant
potential.

In conclusion, biomass polyphenols show prominent
antioxidant performance and free radical scavenging
capabilities, which is of great significance to broadening their
fields of research and various applications.

Antibacterial Activity
In recent years, consumers are increasingly intended to use
natural extracts and other substances as potential antibiotics to
inhibit the growth of pathogenic bacteria due to the concerns on
the destruction of nutrition by sterilization technology and the
abuse of synthetic antibiotics, as shown in Table 2 (Xu et al., 2019;
Liu W. et al., 2020). Polyphenols are considered to be one of the
intriguing natural extracts to hinder the growth and proliferation
of bacteria viamultiple modes of action, which include alteration
of the bacterial membrane permeabilization, inhibition of the
bacterial DNA gyrase, interference with the energy metabolism,
and perturbation of the functions of bacterial porins (An et al.,
2004; Gradisar et al., 2007; Wang et al., 2020; Yun et al., 2021). In
addition, the presence of phenolic hydroxyl groups potentiates
the antibacterial activities of polyphenols on damaging the
structural integrity and functionality of bacterial membranes
(Sousa et al., 2015).

Emerging evidence has demonstrated the beneficial effect of
biomass polyphenols against bacteria. Pani et al. (2014) studied
the toxicities of 29 polyphenols at different concentrations of the
monophototoxin produced from Fusarium oxysporum in wheat.
Most of the polyphenols exhibited an inhibitory rate of 70%
against deoxynivalenol ranging from 1 to 1.5 mm. A serial of
biomass polyphenols shows prominent inhibition on distinct
strains of bacteria, fungi, and yeasts. Tea polyphenols are a
kind of antimicrobial agent with a broad inhibitory spectrum
on multiple pathogenic bacteria, such as Proteus common,
Staphylococcus epidermidis, and Staphylococcus aureus. In
addition, apple polyphenol extract elicits a suppression effect
on the growth of Bacillus aerobics, Escherichia coli, Pseudomonas,
and Bacillus subtilis. Pomegranate pulp is rich in eight different
kinds of polyphenol compounds, all of which exert strong
bacteriostatic abilities against Salmonella and Escherichia coli
(Gullon et al., 2016). Flavonoids alone or in combination with
known therapeutic agents effectively control S. aureus infection
(Elmasri et al., 2015). More interestingly, Williams et al. (2017)
found that oligoproanthocyanidins in grape dregs modulate
intestinal microflora and alleviates intestinal Ascaris suum
infection when grape dregs were added to the pig’s diet. When
10–40 g/kg grape seed powder was added to the chicken diet, it
was found that the total number of Streptococcus, Escherichia coli,
and microbial colonies in the chicken intestines decreased while

the number of beneficial lactic acid bacteria increased in a dose-
dependent manner (Hafsa and Ibrahim, 2017). Bearing this
antibacterial activity in mind, researchers have endeavored to
further investigate the mechanisms behind polyphenols’
bacteriostatic functionality.

Yang and Zhang (2019) delineated the bacteriostatic
mechanism of tea polyphenols as shown in Figure 4. Their
results showed that the electrolyte leakage rate of bacteria was
significantly enhanced after treatment with different
concentrations of tea polyphenols, indicating the impairment
of bacterial membrane permeability in the presence of
polyphenols. The bacterial membrane is mainly composed of
lipid bilayers containing hydrophilic and hydrophobic ends. The
binding between phenolic hydroxyl groups and hydrophilic ends
triggers agglomeration of membrane lipids, thus destroying the
bacterial membrane. Intriguingly, when inoculated in plants and
fruits, polyphenolic compounds induce the activities of a couple
of antibacterial enzymes, including phenylalanine aminase,
catalase, peroxidase, polyphenol oxidase, chitinase and β-1, 3-
glucanase, thereby improving the antibacterial abilities of plants
and fruits (Ramadas et al., 2020).

Currently, the studies on the antibacterial properties of
biomass polyphenols continue to be carried out in breadth
and depth. However, the structure-function relationship of
polyphenols and the combinational applications of
polyphenols with more prominent antibacterial effects require
further investigation.

Antitumor and Anticancer Activity
Reactive oxygen free radicals are the metabolites of the Redox
reaction in biological organisms. Under normal physiological
conditions, the generation and scavenging of free radicals are
finely balanced in a dynamic equilibrium. However, when the
imbalance occurs, excessive free radicals will deteriorate the
organisms, leading to aging and the increased incidence of a
range of disorders (Zhang et al., 2020; Wang et al., 2021). The
accumulation of free radicals generates direct damage on the
genetic materials and other biological macromolecules, including
the aberrant gene transcriptional activation, changes in the
structural and functional identities of proteins, breakage, and
polymerization of peptide bonds, and lipid peroxidation, leading
to the occurrence of tumors and cancers (Figure 5) (Ríos-Arrabal
et al., 2013). Polyphenols have attracted broad attention in cancer
therapeutics due to their chemopreventive roles as both blocking
and suppressing agents (Sharma et al., 2017; Sajadimajd et al.,
2020). In terms of their blocking functions, polyphenols can avoid
the activation of carcinogens, prevent the reactive carcinogens
from interacting with critical DNA sites, and facilitate the
metabolic clearance of carcinogens. Moreover, polyphenols are
capable of suppressing oncogenesis and cancer progression, to
elicit their chemopreventive functions on multiple stages of
carcinogenesis (Zhou et al., 2016).

Vegetables and fruits contain a wide variety of polyphenols,
and studies have reported that regular consumption of fruits,
vegetables, and nuts reduces the risk of various types of cancer,
especially with a significant impact on gastric, esophageal, lung,
oral, pharyngeal, pancreatic and colon cancers (Yi et al., 2019).
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Epidemiological and experimental studies have shown that
consumption of food and beverages rich in polyphenols (such
as catechins, flavonoids, and anthocyanins) is closely associated

with a lower incidence of cancer (Naasani et al., 2003). Animal
experiments have also demonstrated that food polyphenols
effectively suppress chemical-induced tumors and inhibit
tumor developments at multiple stages (Sharma et al., 2017;
Sajadimajd et al., 2020). An increasing number of studies
highlight the role of biomass polyphenols as potential
anticancer cell mutagens. Han et al. (2019) showed that
cranberry-extracted polyphenols are bioactive anticancer
components, and they have dramatic capacities towards
inhibiting the viability and colony formation of human colon
cancer cells HCT116. Mechanistically, treatment of polyphenols
caused the cell cycle arrest at G0/G1 phase and subsequently led
to the induction of cell apoptosis. There is ample evidence
showing that polyphenols target a variety of molecules that are
involved in multiple cellular signaling pathways. Emerging
evidence has shown that non-coding RNAs function as
oncogenes or tumor suppressors in the regulation of
tumorigenesis and tumor progression (Yi et al., 2019). The
antitumor mechanisms of polyphenols are multi-targeted and
include the activation of different pathways to induce apoptosis in
cancer cells. Moreover, three predominant epigenetic changes
(alterations in chromatin structure, DNA methylation, and
regulation by microRNAs) are also involved in tumor cells
treated with biomass polyphenols. As shown in Figure 6 (Yi
et al., 2019), EGCG, curcumin, and resveratrol regulate multiple
classes of miRNAs to elicit their antitumor potentials.

Although multiple targets have been identified in terms of the
antitumor/anticancer activities of the biomass polyphenols, the

FIGURE 6 | Representative polyphenols that are involved in regulating the antitumor mechanisms of microRNAs. MiR, microRNA; ILF2, Interleukin enhancer
binding factor 2; CXCL1/2, chemokine (C-X-C motif) ligands 1/2; PGK1, phosphoglycerate kinase 1; MMP2/9, matrix metalloproteinase 2/9; XIAP, X-linked inhibitor of
apoptosis; PP2A/C, protein phosphatase 2A/C; E2F3, E2F transcription factor 3; Sirt1, Sirtuin type 1; PTEN, phosphatase and tensin homolog; K-Ras, kirsten rat
sarcoma; C-MET, cellular-mesenchymal epithelial transition factor; Bcl-2, B-cell lymphoma-2; p53, protein 53; P38 signaling pathway, protein 38 signaling
pathway. reproduced with copyright permission from Elsevier (Yi et al., 2019).

FIGURE 7 | The neuroprotective roles of Gardenia jasminoides extract
(GJE) and Geniposide on a rat model with chronic cerebral ischemia (Zhang
et al., 2016).
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detailed mechanisms of how polyphenols are capable of
controlling the expression of these genes/miRNAs remain
elusive. It would therefore be interesting to select single or
high purity polyphenols from natural product resources with
strong antitumor/anticancer activities to further investigate their
relationships with antitumor factors.

Neuroprotective Activity
The incidence of neurodegenerative disorders, such as
Alzheimer’s disease and Parkinson’s disease, gradually
increases with age (Remington et al., 2010; Figueira et al.,
2017; Li, 2018). These types of disorders share common
pathological hallmarks, including oxidative stress,
neuroinflammation, protein aggregation, and mitochondrial
dysfunction (Gu et al., 2021). Given their roles in mediating
essential biological processes, including signal transduction, cell
proliferation and apoptosis, and cell differentiation, polyphenols
have been long taken as potential neuroprotective agents. More
importantly, the neuroprotective function of polyphenols has
been suggested to be associated with their antioxidant activities,
especially towards scavenging ROS and nitric oxide (Zhen and
Liu, 2018).

A growing number of studies have provided experimental
evidence that the consumption of polyphenol-rich berry fruits is

beneficial to the nervous system and shows the potential to
mitigate age-dependent neurodegeneration via alleviating
cognitive and motor dysfunctions (Figueira et al., 2017;
Tavares et al., 2013). Moreover, the neuroprotective function
has also been demonstrated on Gardenia jasminoides extract
(GJE). The medium dose of GJE treatment showed the most
effective inhibition of neuronal necrosis in different brain regions
of the rat model of chronic cerebral ischemia (Figure 7) (Zhang
et al., 2016). Green tea polyphenols have been demonstrated to
play a neuroprotective role due to their antioxidant and anti-
inflammatory properties (Sutherland et al., 2006; Song et al.,
2019). Zhang et al. (2010) showed that a 30-days treatment with
green tea polyphenols (200 mg/kg, twice a day) prominently
restored blood-brain barrier permeability, rescued cerebral
infarction and improved neurological functions in rats
underwent cerebral ischemia. Moreover, the induction of
caveolin-1 mRNA and hyperphosphorylation of extracellular
signal-regulated kinase 1/2, markers of cerebral ischemia, were
also found ameliorated in cerebral ischemic tissue. Liu et al.
(2019) isolated four catechins, including two new catechin
derivatives, from Anhua dark tea. The study showed that the
compounds exhibited optimal neuroprotective effects by
inhibiting N-methyl-p-aspartate (NMDA) receptors. It
protected SH-SY5Y cells from NMDA-induced injury and

FIGURE 8 | The summary of potential mechanisms linking dietary polyphenol metabolites to improved glucose homeostasis. ↑, increase; ↓, decrease. * 90–95% of
the ingested polyphenols reach the colon. SGLT1, sodium-dependent glucose transporter; GLUT4, glucose transporter four; PI3K, phosphoinositide 3-kinase; AMPK,
5′ adenosine monophosphate-activated protein kinase; NF-κB, nuclear factor kappaB; COX2, cyclooxygenase-2 protein; CRP, C-reactive protein; IL-6, interleukin 6;
TNFα, tumor necrosis factor α; ACO-1, acyl CoA oxidase-1; CPT-1β, carnitine palmitoyl transferase-1β; PEPCK, phosphoenolpyruvate carboxykinase; FOXO1,
forkhead box protein O1; MCP-1, monocyte chemoattractant protein-1; IRS2, insulin receptor substrate two; GK, glucokinase; G6Pase, glucose-6-phosphatase.
(reproduced with copyright permission from MPDI (Kim et al., 2016)).
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apoptosis by regulating NR2B expression and activating PI3K/
Akt signaling pathway. These compounds are expected to be
effective therapeutic agents for the prevention of excitatory brain
injury. Taken together, these findings emphasize that the
antioxidant, anti-apoptotic, and reduction of brain edema
activities of tea polyphenols are prerequisites for their
neuroprotective functions.

Hypoglycemic and Lipid-Lowering Activity
High blood lipid content is one of the essential risk factors of fatty
liver, cerebral infarction, coronary heart disease, and the
formation of vascular sclerosis. Excessive accumulation of
blood glucose in diabetic patients easily leads to acute severe
metabolic disorders, for example, life-threatening hyperosmolar
hyperglycemia syndrome. In the meantime, diabetic patients also
suffer from infectious diseases, which lead to chronic
complications including microangiopathy, diabetic
nephropathy, and diabetic retinopathy. The nervous system
complications may also be accompanied, such as peripheral
neuropathy, autonomic neuropathy, and diabetic feet. All of
these symptoms and complications severely ruin the quality of
life of diabetic patients (Monika L. et al., 2019). Diabetic patients
with combined neuropathy also develop pancreatic sclerosis and
atrophy (He et al., 2020). Medicinal biomass has been applied to
control diabetes and hyperlipidemia in different countries
(Sugiyama et al., 2007; Yang et al., 2010; Saeed et al., 2012),
and has become the major source of safe and effective
hypoglycemic and hyperlipidemic drugs. Importantly, the
hypoglycemic activity has been assigned to biomass

polyphenols due to their capabilities in exerting antioxidant
functions, promoting the synthesis and secretion of insulin,
perturbing the activities of intestinal digestive enzymes, and
inhibiting the glucose transport (Mahmood et al., 2013).

Chakraborty et al. (2012) emphasized that the role of 6-
gingerol in controlling insulin responsiveness via regulating
insulin secretion of mouse pancreas is essential for protecting
the hyperglycemia and oxidative stress caused by arsenic. When
the mice were fed with 6-gingerol for 12 days, Singh et al. (2009)
reported a significant reduction of fasting blood glucose,
accompanied by increased glucose tolerance and
downregulation of plasma triglyceride (TG), total cholesterol
(TC), insulin, low-density lipoprotein cholesterol (LDL-C) and
free fatty acid (FFA) levels. These findings support the anti-
hyperglycemia and cholesterol-lowering activities of 6-gingerol.
The other kinds of biomass polyphenols function to increase
insulin sensitivity and improve insulin resistance. Manzano et al.
(Manzano et al., 2016) showed that apple polyphenols (APE,
mainly quercetin and rutin) have therapeutic potential in the rat
model of insulin resistance. Nutritional intervention with APE
resulted in increased insulin sensitivity and a 45% increase in
glucose infusion rate (GIR). Furthermore, in vitro results showed
a synergistic effect between APE and insulin to increase glucose
uptake through GLUT4 translocation in muscle cells. This
translocation is mediated by the phosphatidylinositol 3-kinase
(PI3K) and peroxisome proliferator-activated receptor-γ
(PPARγ) signaling pathways. Xiong et al. (2020) also
demonstrated that catechins, procyanidin Al and procyanidin
A2 extracted from lychee seed LSF could activate the insulin

FIGURE 9 | Absorption of dietary polyphenols and their microbial transformation in the intestine. [reproduced with copyright permission from ACS Publications
(Liu J. et al., 2020)]
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signaling pathway and inhibit GSK-3β activity via the IRS-1/
PI3K/Akt pathway, which in turn inhibited Tau
hyperphosphorylation and ultimately improved cognitive
function in AD rats. Kim et al. (2016) provided a summary of
potential mechanisms by which dietary polyphenol metabolites
improve glucose homeostasis (Figure 8).

Vroegrijk et al. (2011) found that male C57BL/J6 rats fed with
a high-fat diet containing 1% pomegranate seed oil for 12 weeks
showed reduced fat content and body weight compared with
those fed with a full-fat diet. Additionally, Xu et al. (2009) studied
the effect of pomegranate flower extract on hepatic fat
accumulation in Zucker diabetic obese rats with severe fatty
liver disease and highlighted the hypolipidemic effect of the
isolated polyphenols. Yu et al. (2014) found that pomegranate
leaves (PGL) have a similar modulating effect on lipid
metabolism. Pomegranate leaves and their major active
components (ellagic acid, gallic acid, pyrogallic gallic acid, and
tannic acid) showed the effect of inhibiting pancreatic lipase
activity in vitro. High doses of PGL inhibited intestinal lipase
activity while promoting the expression of tight junction proteins,
thereby inhibiting lipid absorption and reducing blood serum
total cholesterol (TC) and triglyceride (TG) levels to prevent
intestinal mucosal damage due to lipid overload.

Green tea polyphenols, grape polyphenols, citrus juice
polyphenols, and sand buckthorn leaf polyphenols play similar
roles in lowering blood sugar via multiple modes of action. In
addition, several common fruit and vegetable polyphenols, such
as pomegranate polyphenols, tea polyphenols, hawthorn
polyphenols, and apple polyphenols, exert similar effects on
downregulating TG, TC, and LDL-C levels while upregulating
the level of high-density lipoprotein cholesterol. Currently, the
study on the mechanisms of glucose- and lipid-lowering
capabilities of biomass polyphenols has attracted much more
attention but still requires further investigations.

Promotion of Gastrointestinal Health
Intestinal barriers refer to the intact structure and function of the
intestine to prevent harmful substances such as bacteria and toxins
frompassing through the intestinalmucosa and entering other tissues,
organs, and blood circulation in the human body. The normal
intestinal mucosal barriers are composed of a mechanical barrier, a
chemical barrier, an immune barrier, and a biological barrier, and the
integrity of each intestinal barrier is indispensable to human health.
The intestinal barriersmaintain the normal intestinal permeability and
regulate the transportation and absorption of nutrients (such as sugar,
vitamins, amino acids, fatty acids, and other lipids) and other food-
related compounds (such as polyphenols). In addition, intestinal
barriers regulate the composition of bacteria from the lumen to
the blood flow of transfer (Tangney and Rasmussen, 2013;
Hidalgo-Liberona et al., 2020). The intestinal permeability is under
control of a complex system of junctions known as tight junctions
(TJ), gap junctions, and adhesion junctions. The system has consisted
of numerous TJ proteins and junction adhesionmolecules that control
the flow among adjacent intestinal cells. It has been reported
previously that polyphenols can mitigate leaky bowel disease by
directly adjusting TJ function, enhancing the synthesis and
redistribution of TJ proteins (such as occludin, claudins, and

occludula), and suppressing the activities of different kinases
involved in controlling TJ expression (Hidalgo-Liberona et al., 2020).

Gastrointestinal dysfunction is one of the major factors that
contribute to type II diabetes, cardiovascular disease, insomnia,
obesity, and other disorders (Kang, 2013; Kitai and Tang, 2017;
Orr et al., 2020). Therefore, improvement of gastrointestinal
function requires much more investigation. Previous studies
(Pandey and Rizvi, 2009) have reported that polyphenols show
antioxidant, anti-inflammatory, anti-fat, anti-diabetes,
cardioprotective, neuroprotective, and anticarcinogenic effects
via collaborating with the intestinal microbiota. Biomass
polyphenols influence the activities of intestinal microflora,
repair gastrointestinal mucosal damage, optimize the intestinal
structure, and interact with other macromolecules to affect
gastrointestinal function. Chen et al. (2018) showed that the
addition of chlorogenic acid to weaning piglets led to an increase
of immune globulin level, the expression of antiapoptotic protein
B-cell lymphoma-2 was simultaneously upregulated in the
duodenum and jejunum. This indicates that the intestinal
beneficial effect of chlorogenic acid depends on the
enhancement of immune function and suppression of
excessive intestinal epithelial cell apoptosis. Liao et al. (2016)
showed that upon treatment of tea polyphenols, the reduction of
atherosclerosis plaque in mice negatively correlated with the
increased number of bifidobacteria in their intestine,
suggesting that tea polyphenols promote the proliferation of
bifidobacteria and prevent lipid metabolism, thereby
suppressing atherosclerosis. Biomass polyphenols were found
to accelerate beneficial bacteria proliferation to improve the
function of the intestines and stomach and repair the
damaged intestinal cells. Zhao et al. (2018) showed that when
treated with bitter butyl tea polyphenols, the reduction of gastric
acid secretion and increase of gastric juice pH was detected in
mice with gastric mucosa damage, indicating that bitter butyl tea
polyphenols supplement was an effective approach to combat
against gastric mucosa damage. With the increasing number of
studies on the relationship between biomass polyphenols and
gastrointestinal function, the development and utilization of
biomass polyphenols as functional factors for the
improvement of gastrointestinal function is expected to be
broadened. Liu et al. (2020a) depicted the metabolic
mechanisms of dietary polyphenols in the intestine (Figure 9).
In the body, a small percentage of dietary polyphenols is first
absorbed in the small intestine. They are then deconjugated,
circulated, and distributed among organs or excreted in the urine.
The remaining unabsorbed polyphenols reach the colon where
they are catabolized by bacteria to produce metabolites either
absorbed or excreted in feces. After intestinal and hepatic Phase
I and II metabolism, the microbial-derived polyphenolic
metabolites enter the systemic circulation. The metabolites in
the liver could be excreted via the biliary duct and re-absorbed
throughout the enterohepatic recirculation. In animal studies, the
addition of polyphenols to diets reduced high-fat diet-induced
obesity andmodulated the gut microbiota by increasing the growth
of short-chain fatty acid-producing bacteria and decreasing the
growth of lipopolysaccharide-producing bacteria. More clinical
trials are required to investigate the application of dietary
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polyphenols as nutritional or functional foods in the prevention
and treatment of obesity in humans, and studies that aim at
elucidating the mode of action of specific bacteria strains in
mediating dietary polyphenols would be necessary.

CONCLUSION AND PERSPECTIVES

Although polyphenols have been considered as chemical
impurities, recent studies and findings underlined its
biological activities in terms of exerting antioxidant,
antibacterial, antitumor, neuroprotection, regulation of blood
lipid, and promotion of gastrointestinal health functions. This
thus attracts more attention from researchers worldwide to
further investigate the pharmacological applications of
biomass polyphenols and use them as one of the major
components in natural products-derived drugs. More
interestingly, given that biomass polyphenols are enriched in
daily food, this further highlights the essential contribution of
polyphenols to human life and makes biomass polyphenols one
of the research hotspots. A range of studies has demonstrated
efficient extraction of polyphenols from tea, grape,
pomegranate, rapeseed, and other raw materials, which are
coincidentally used in medical treatments and as functional
food supplements. Many diseases are associated with
antioxidants, but given the purity of the extract and the
complexity of the structure, polyphenols are currently only
used as supplements for the treatment of diseases, and

research into their use as medicines for the treatment of
diseases still requires innovative extraction techniques and
in-depth research into anti-disease mechanisms, to explore
their therapeutic potential. Hence, the mechanisms of
polyphenols’ pharmacological actions still require further
investigation. It is hoped that with the increasing attention
from researchers on natural drugs and the progress of
scientific technology, more methods of rapid separation and
preparation of polyphenols can be developed, and the
underlying pharmacological mechanisms of polyphenols will
be further elucidated to provide the material basis for further
pharmacological examination and clinical investigation.
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