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The trajectory tracking for a class of uncertain nonlinear systems in which the number of possible states is equal to the number
of inputs and each input is preceded by an unknown symmetric deadzone is considered. The unknown dynamics is identified by
means of a continuous time recurrent neural network in which the control singularity is conveniently avoided by guaranteeing the
invertibility of the coupling matrix. Given this neural network-based mathematical model of the uncertain system, a singularity-
free feedback linearization control law is developed in order to compel the system state to follow a reference trajectory. By means
of Lyapunov-like analysis, the exponential convergence of the tracking error to a bounded zone can be proven. Likewise, the
boundedness of all closed-loop signals can be guaranteed.

1. Introduction

During the last two decades, the control of systems using
artificial neural networks (ANNs) has emerged as an effective
and successful alternative to the conventional control tech-
niques. The success of this approach lies on the universal
approximation capability of ANNs which avoids the need
for very time-consuming first principles modeling. Thus, it
is possible to handle a broad class of nonlinear uncertain
systems with little or (ideally) no a priori information.

The first deep insight about the identification and control
of dynamic systems based on neural networks was provided
by Narendra and Parthasarathy in [1]. However, they could
not present a systematic procedure to analyze the stabil-
ity of their neurocontrollers. This issue was addressed by
Polycarpou and Ioannou [2], Rovithakis and Christodoulou
[3], Kosmatopoulos et al. [4], and Yu and Poznyak [5].
They used Lyapunov-like analysis systematically in order to
prove the stability of their algorithms. Based on these results,
further refinements and improvements were accomplished in

[6–9] and different applications were explored for robotics
[10, 11], manufacturing systems [12], chemical process [13],
power systems [14], and so on. It is worth mentioning that
the vast majority of these studies are based on feedback
linearization techniques. An inherent problem associated
with these techniques is the possibility of the control sin-
gularity. A first approach to try to solve this problem is
simply to focus only on a class of systems in which the
gain function is known and constant [15, 16]. Certainly, to
consider only this kind of systems could result into being very
restrictive in practice. A generalized procedure to handle the
control singularity consists of making modifications to the
conventional adaptive algorithms [17–21]. Nonetheless, such
modifications could provoke discontinuities in the control
signal or well they could require the use of projection
techniques. In this last case, the design and implementation
process of such controllers could become quite complicated.
To avoid the utilization of the projection, an integral-type
Lyapunov function was proposed in [22]. On the basis of this
function, a singularity-free smooth adaptive neural controller
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was developed. Notwithstanding, due to the requirement of
the integral operation, the practical implementation of this
approach is difficult [23]. In [24, 25], the neurocontrol of
systems with a unique input was studied. The singularity
was avoided by maintaining the input weight always different
from zero. However, a systematic procedure for this goal was
not specified.

Note that for the case of systems with multiple inputs,
in particular when the number of states is equal to the
number of inputs, the avoidance of the singularity cannot
be guaranteed only by maintaining the coupling matrix of
the neural network (see (12)), that is, 𝑆(𝑡)𝜙(𝑥(𝑡)), different
from zero. Evidently, a stronger condition is required. In
fact, the necessary and sufficient condition to guarantee the
nonsingularity is that the coupling matrix should always be
invertible. To simplify the implementation of this condition,
the input weight matrix 𝑆(𝑡) and the sigmoidal function
matrix𝜙(𝑥(𝑡)) can be constructed as squarematrices. Besides,
𝜙(𝑥(𝑡)) can be selected in such a way that its invertibility
can be assured. Then, the problem now is focused on
guaranteeing the invertibility of the input weight 𝑆(𝑡). In
this paper, unlike [24, 25] where no concrete procedure was
specified and as an alternative to the projection techniques
presented in [17–21], we propose a simple strategy to avoid
the control singularity. Taking into account that a necessary
and sufficient condition for the invertibility of the square
matrix 𝑆(𝑡) is that det(𝑆(𝑡)) ̸= 0 or equivalently | det(𝑆(𝑡))| > 0,
we define a positive threshold 𝜇 in such a way that when
| det(𝑆(𝑡))| ≥ 𝜇, the weights of the neural network are
updated according to stable learning laws. However, at the
instant when the condition | det(𝑆(𝑡))| < 𝜇 is presented,
the process of learning is immediately stopped. The effect of
this modification on the stability of the identification error
is thoroughly studied by means of Lyapunov analysis. The
proposed strategy is applied to the identification and control
of a class of uncertain nonlinear systems with multiple inputs
each one subjected to an unknown deadzone.

The deadzone is a nonsmooth nonlinearity commonly
found in many practical systems such as electrohydraulic
systems [26], pneumatic servo systems [27], DC servomotors
[28], and rudders and propellers [29]. When the deadzone
is not considered explicitly during the design process, the
performance of the control system could be degraded due
to an increase of the steady-state error, the presence of limit
cycles, or inclusive instability [30–32].

A direct way of compensating the deleterious effect of
the deadzone is by calculating its inverse. However, this is
not an easy question because in many practical situations,
both the parameters and the output of the deadzone are
unknown. To overcome this problem, in a pioneer work [30],
Tao and Kokotovic proposed to employ an adaptive inverse
of the deadzone.This scheme was applied to linear systems in
transfer function form. Cho and Bai [33] extended this work
and achieved a perfect asymptotic adaptive cancellation of the
deadzone. However, their work assumed that the deadzone
output was measurable. In [34], the work of Tao and Koko-
tovic was extended to linear systems in a state space form
with nonmeasurable deadzone output. In [35], a new smooth
parameterization of the deadzone was proposed and a class

of SISO systems with completely known nonlinear functions
and with linearly parameterized unknown constants was
controlled by using backstepping technique. In order to
avoid the construction of the adaptive inverse, in [36], the
same class of nonlinear systems as in [35] was controlled by
means of a robust adaptive approach and by modeling the
deadzone as a combination of a linear termand a disturbance-
like term. The controller design in [36] was based on the
assumption that maximum and minimum values for the
deadzone parameters are a priori known. However, a specific
procedure to find such bounds was not provided. Based on
the universal approximation property of the neural networks,
a wider class of SISO systems in Brunovsky canonical form
with completely unknown nonlinear functions and unknown
constant control gain was considered in [37–39]. Apparently,
the generalization of these results to the case when the control
gain is varying and state dependent is trivial. Nevertheless,
the solution to this problem is not simple due to the singular-
ity possibility for the control law. In [40, 41], this problemwas
overcome.

All the aforementioned works about deadzone studied
a very particular class of systems, that is, systems in strict
Brunovsky canonical form with a unique input. In this paper,
we consider a wider class of systems, that is, uncertain
nonlinear systems with multiple inputs where each input is
preceded by an unknown symmetric deadzone. This global
system could be seen as formed by an unknown affine system
(see (1)) whose inputs are the outputs of the different dead-
zones. By generalizing the model used in [36], the multiple
deadzones can be represented by means of a diagonal matrix
multiplied by the global input vector plus a disturbance-like
vector (the diagonal matrix is composed by the unknown
symmetric slopes of each deadzone). By using this model,
a continuous time recurrent neural network is employed
to identify the global unknown dynamics. On the basis of
this neural network, an instantaneous mathematical model
of the uncertain system can be obtained, and a singularity-
free feedback linearization control law is developed in such
a way that the system state is compelled to follow a bounded
reference trajectory. Once again, by using Lyapunov analysis,
the exponential convergence of the tracking error to a
bounded zone can be shown. Likewise, the boundedness of
all closed-loop signals can be guaranteed.

2. Preliminaries

2.1. Notation. Throughout this paper, we will use the follow-
ing notation.
𝐼
𝑛×𝑛

represents the identity matrix of dimension 𝑛. Given
ℎ(𝑡) ∈ R𝑛, |ℎ(𝑡)| denotes the Euclidean norm of ℎ(𝑡); that
is, |ℎ(𝑡)| := √ℎ𝑇(𝑡)ℎ(𝑡). Given the following vector norm:
‖ℎ(𝑡)‖

∞
:= sup

𝑡≥0
|ℎ(𝑡)|, we will say that ℎ(𝑡) ∈ 𝐿

∞
when

‖ℎ(𝑡)‖
∞

is finite.

2.2. Description of the System. In this study, the system to
be controlled consists of an unknown multi-input nonlinear
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plant in which each input is preceded by an unknown
symmetric deadzone; that is,

PLANT: �̇� (𝑡) = 𝑓 (𝑥 (𝑡)) + 𝑔 (𝑥 (𝑡)) 𝑢 (𝑡) + 𝜉 (𝑡) (1)

DEADZONE:

𝑢
𝑖
(𝑡) = 𝐷𝑍

𝑖
(V
𝑖
(𝑡))

=

{{

{{

{

𝑚
𝑖
(V
𝑖
(𝑡) − 𝑏

𝑖,𝑟
) V
𝑖
(𝑡) ≥ 𝑏

𝑖,𝑟

0 𝑏
𝑖,𝑙
< V
𝑖
(𝑡) < 𝑏

𝑖,𝑟

𝑚
𝑖
(V
𝑖
(𝑡) − 𝑏

𝑖,𝑙
) V
𝑖
(𝑡) ≤ 𝑏

𝑖,𝑙
,

(2)

where 𝑥(𝑡) ∈ R𝑛 is the measurable state vector for 𝑡 ∈
R+ := {𝑡 : 𝑡 ≥ 0}, 𝑓 : R𝑛 → R𝑛 is an unknown but
continuous nonlinear vector function, 𝑔 : R𝑛 → R𝑛×𝑛

is an unknown but continuous nonlinear matrix function,
𝜉(𝑡) ∈ R𝑛 represents an unknown but bounded deterministic
disturbance, the 𝑖th element of the vector 𝑢(𝑡) ∈ R𝑛, that
is, 𝑢
𝑖
(𝑡), represents the output of the 𝑖th deadzone, V

𝑖
(𝑡) is

the input to the 𝑖th deadzone, 𝑏
𝑖,𝑟
and 𝑏
𝑖,𝑙
represent the right

and left constant breakpoints of the 𝑖th deadzone, and 𝑚
𝑖
is

the constant slope of the 𝑖th deadzone. In accordance with
[30, 31], the deadzone model (2) is a static simplification of
diverse physical phenomena with negligible fast dynamics.

Note that V(𝑡) ∈ R𝑛 is the actual control input to
the global system described by (1) and (2). Hereafter, it is
considered that the following assumptions are valid.

Assumption 1. The plant described by (1)-(2) is controllable.

Assumption 2. The 𝑖th deadzone output, that is, 𝑢
𝑖
(𝑡), is not

available for measurement.

Assumption 3. Although the 𝑖th deadzone parameters 𝑏
𝑖,𝑟
, 𝑏
𝑖,𝑙
,

and 𝑚
𝑖
are unknown constants, we can assure that 𝑏

𝑖,𝑟
> 0,

𝑏
𝑖,𝑙
< 0, and𝑚

𝑖
> 0 for ∀𝑖 ∈ {1, 2, . . . 𝑛}.

2.3. Deadzone Representation as a Linear Term and a
Disturbance-Like Term. The model of the 𝑖th deadzone (2)
can alternatively be described as follows [34, 42]:

𝑢
𝑖
(𝑡) = 𝑚

𝑖
V
𝑖
(𝑡) + 𝑑

𝑖
(𝑡) , (3)

where 𝑑
𝑖
(𝑡) is given by

𝑑
𝑖
(𝑡) =

{{

{{

{

−𝑚
𝑖
𝑏
𝑖,𝑟

V
𝑖
(𝑡) ≥ 𝑏

𝑖,𝑟

−𝑚
𝑖
V
𝑖
(𝑡) 𝑏

𝑖,𝑙
< V
𝑖
(𝑡) < 𝑏

𝑖,𝑟

−𝑚
𝑖
𝑏
𝑖,𝑙

V
𝑖
(𝑡) ≤ 𝑏

𝑖,𝑙
.

(4)

Note that (4) is the negative of a saturation function. Thus,
although 𝑑

𝑖
(𝑡) could not be exactly known, its boundedness

can be assured. Consider that the positive constant 𝑑
𝑖
is an

upper bound for 𝑑
𝑖
(𝑡); that is, ‖𝑑

𝑖
(𝑡)‖
∞
≤ 𝑑
𝑖
.

Based on (3), in [43], the relationship between 𝑢(𝑡) and
V(𝑡) can be expressed as

𝑢 (𝑡) = 𝑀V (𝑡) + 𝑑 (𝑡) , (5)

where 𝑀 := diag(𝑚
1
, 𝑚
2
, . . . 𝑚

𝑛
) and 𝑑(𝑡) ∈ 𝑅𝑛 is given

by 𝑑(𝑡) := [𝑑
1
(𝑡), 𝑑
2
(𝑡), . . . , 𝑑

𝑛
(𝑡)]
𝑇. Clearly, 𝑑(𝑡) ∈ 𝐿

∞
.

Consider that the positive constant 𝑑 is an upper bound for
𝑑(𝑡).

3. Identification Process with Guaranteed
Invertibility of 𝑆(𝑡)𝜙(𝑥(𝑡))

In this section, the identification problem of the unknown
global dynamics described by (1) and (2) using a recurrent
neural network is considered.

Note that an alternative representation for (1) is given by

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝑊
∗

1
𝜎 (𝑥 (𝑡)) + 𝑊

∗

2
𝜙 (𝑥 (𝑡)) 𝑢 (𝑡)

+ 𝜔 (𝑥 (𝑡) , 𝑢 (𝑡)) + 𝜉 (𝑡) ,

(6)

where 𝐴 ∈ R𝑛×𝑛 is a Hurwitz matrix which can be selected
for simplicity as𝐴 = −𝑎𝐼

𝑛×𝑛
, 𝑎 is a positive constant proposed

by the designer,𝑊∗
1
∈ R𝑛×𝑚 and𝑊∗

2
∈ R𝑛×𝑛 are unknown

constant weight matrices, 𝜎(⋅) is an activation vector function
with sigmoidal components, that is, 𝜎(⋅) := [𝜎

1
(⋅), . . . , 𝜎

𝑚
(⋅)]
⊤

𝜎
𝑗
(𝑥 (𝑡)) : =

𝑎
𝜎𝑗

1 + exp (−∑𝑛
𝑖=1
𝑐
𝜎𝑗,𝑖
𝑥
𝑖
(𝑡))

− 𝑑
𝜎𝑗

for 𝑗 = 1, . . . , 𝑚,

(7)

where 𝑎
𝜎𝑗
, 𝑐
𝜎𝑗,𝑖

, and 𝑑
𝜎𝑗
are positive constants which can be

specified by the designer, 𝜙(⋅) : R𝑛 → R𝑛×𝑛 is a sigmoidal
function selected as 𝜙(⋅) := diag(𝜙

11
(⋅), 𝜙
22
(⋅), . . . , 𝜙

𝑛𝑛
(⋅))

𝜙
𝑖𝑖
(𝑥 (𝑡)) :=

𝑎
𝜙𝑖𝑖

1 + exp (−∑𝑛
𝑙=1
𝑐
𝜙𝑖𝑖,𝑙
𝑥
𝑙
(𝑡))

+ 𝑑
𝜙𝑖𝑖

for 𝑖 = 1, . . . , 𝑛,

(8)

where 𝑎
𝜙𝑖𝑖
, 𝑐
𝜙𝑖𝑖,𝑙

, and 𝑑
𝜙𝑖𝑖

are positive constants which can be
specified by the designer, and 𝜔 : R𝑛 × R𝑛 → R𝑛 is the
unmodeled dynamics which can be defined simply as

𝜔 (𝑥 (𝑡) , 𝑢 (𝑡)) := 𝑓 (𝑥 (𝑡)) + 𝑔 (𝑥 (𝑡)) 𝑢 (𝑡) − 𝐴𝑥 (𝑡)

− 𝑊
∗

1
𝜎 (𝑥 (𝑡)) − 𝑊

∗

2
𝜙 (𝑥 (𝑡)) 𝑢 (𝑡) .

(9)

Remark 4. Note that the structure for the sigmoidal function
𝜙(𝑥(𝑡)) was selected in such a way that its invertibility can
always be guaranteed.

Remark 5. Typically, 𝑊∗
1

and 𝑊∗
2

are considered as the
optimal values of theweights whichminimize the unmodeled
dynamics𝜔(𝑥(𝑡), 𝑢(𝑡)). Although procedures to find such val-
ues are presented in [44, 45], in this study the aforementioned
values are not required anymore. Thus, the design process is
considerably simplified.

Assumption 6. On a compact set Ω ⊂ R𝑛, unmod-
eled dynamics 𝜔(𝑥(𝑡), 𝑢(𝑡)) is bounded by 𝜔; that is,
‖𝜔(𝑥(𝑡), 𝑢(𝑡))‖

∞
≤ 𝜔. The disturbance 𝜉(𝑡) is also bounded;

that is, ‖𝜉(𝑡)‖
∞
≤ Υ. Both 𝜔 and Υ are positive constants not

necessarily a priori known.
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Assumption 7. The input signal V(𝑡) is bounded; that is,
‖V(𝑡)‖

∞
≤ V, where V is a positive constant (not necessarily

known).

By substituting (5) into (6), we get

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝑊
∗

1
𝜎 (𝑥 (𝑡)) + 𝑊

∗

2
𝜙 (𝑥 (𝑡))𝑀V (𝑡)

+ 𝑊
∗

2
𝜙 (𝑥 (𝑡)) 𝑑 (𝑡) + 𝜔 (𝑥 (𝑡) , 𝑢 (𝑡)) + 𝜉 (𝑡) .

(10)

Remark 8. It can be observed that by using the model (5),
the actual control input V(𝑡) appears now directly into the
dynamics.

Since, by construction, 𝜙(𝑥(𝑡)) is bounded, the term
𝑊
∗

2
𝜙(𝑥(𝑡))𝑑(𝑡) must also be bounded. Let us define the

following expression: 𝜁(𝑡) := 𝑊∗
2
𝜙(𝑥(𝑡))𝑑(𝑡) + 𝜔(𝑥(𝑡), 𝑢(𝑡)) +

𝜉(𝑡). Clearly, this expression is bounded. Let us denote
an upper bound for 𝜁(𝑡) as 𝜁. This bound is a positive
constant not necessarily a priori known. Now, note that
the term 𝑊∗

2
𝜙(𝑥(𝑡))𝑀V(𝑡) can be alternatively expressed as

𝑆
∗

𝜙(𝑥(𝑡))V(𝑡)where 𝑆∗ ∈ R𝑛×𝑛 is an unknownweightmatrix.
In view of the above, (10) can be rewritten as

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝑊
∗

1
𝜎 (𝑥 (𝑡)) + 𝑆

∗

𝜙 (𝑥 (𝑡)) V (𝑡) + 𝜁 (𝑡) . (11)

Now, consider the following series-parallel structure for a
continuous-time recurrent neural network

̇̂𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑊
1
(𝑡) 𝜎 (𝑥 (𝑡)) + 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡) , (12)

where 𝑥
𝑡
∈ R𝑛 is the state of the neural network, V(𝑡) ∈

R𝑛 is the control input as in (10), and 𝑊
1
(𝑡) ∈ R𝑛×𝑚 and

𝑆(𝑡) ∈ R𝑛×𝑛 are the time-varying weight matrices. In order
to solve the problem of identifying system (1)-(2) based on
the recurrent neural network (12), given the measurable state
𝑥(𝑡) and the input V(𝑡), we should be able to adjust on line
the weights𝑊

1
(𝑡) and 𝑆(𝑡) by proper learning laws such that

the identification error Δ(𝑡) := 𝑥(𝑡) − 𝑥(𝑡) can be reduced
to a bounded zone around zero and, at the same time, the
invertibility of 𝑆(𝑡)𝜙(𝑥(𝑡)) can be guaranteed. Specifically, we
employ in this study the following learning laws:

⋅

𝑊
1
(𝑡) = −𝛾 (𝑡) (𝑘

1
Δ (𝑡) 𝜎

𝑇

(𝑥 (𝑡)) + ℓ
1
𝑊
1
(𝑡)) , (13)

⋅

𝑆 (𝑡) = −𝛾 (𝑡) (𝑘
2
Δ (𝑡) V𝑇 (𝑡) 𝜙𝑇 (𝑥 (𝑡)) + ℓ

2
𝑆 (𝑡)) , (14)

where 𝑘
1
, ℓ
1
, 𝑘
2
, and ℓ

2
are positive constants which can be

selected by the designer,

𝛾 (𝑡) = {
1, if |det (𝑆 (𝑡))| ≥ 𝜇,
0, otherwise,

(15)

and 𝜇 is a positive constant adjustable by the designer.
Based on the learning laws (13) and (14), we can establish

here the following result.

Theorem 9. If Assumptions 2, 3, 6, and 7 are satisfied, the
constant 𝑎 is selected greater than 1.5, and the weight matrices
𝑊
1
(𝑡), 𝑆(𝑡) of the neural network (12) are adjusted by the

learning laws (13) and (14), respectively, then

(a) the identification error and the weights of the neural
network (12) are bounded as follows:

Δ (𝑡) ,𝑊
1
(𝑡) , 𝑆 (𝑡) ∈ 𝐿

∞
, (16)

(b1) when 𝛾(𝑡) = 1, the norm of the identification error, that
is, |𝑥(𝑡) − 𝑥(𝑡)|, converges exponentially fast to a zone
bounded by the term

√
2𝛽
1

𝛼
1

, (17)

where 𝛼
1
:= min{(2𝑎 − 1), ℓ

1
, ℓ
2
} and

𝛽
1
:=
1

2
𝜁
2

+
ℓ
1

2𝑘
1

tr {𝑊∗𝑇
1
𝑊
∗

1
} +
ℓ
2

2𝑘
2

tr {𝑆∗𝑇𝑆∗} , (18)

(b2) when 𝛾(𝑡) = 0, the identification error is uniformly
ultimately bounded with respect to the set

𝑌 = {𝑥 (𝑡) − 𝑥 (𝑡) := |𝑥 (𝑡) − 𝑥 (𝑡)| ≤ √
𝛽
2

𝛼
2

} , (19)

where 𝛼
2
:= 𝑎 − (3/2) and 𝛽

2
is an upper bound for the

term
1

2

(𝑊1(𝑡) − 𝑊
∗

1
) 𝜎 (𝑥(𝑡))



2

+
1

2

(𝑆 (𝑡) − 𝑆
∗

) 𝜙 (𝑥 (𝑡)) V (𝑡)
2

+
1

2
𝜁.

(20)

Proof of Theorem 9. First, let us determine the dynamics of
the identification error. The first derivative of Δ(𝑡) is simply

Δ̇ (𝑡) = ̇̂𝑥 (𝑡) − �̇� (𝑡) . (21)

Substituting (12) and (11) into (21) yields the following:

Δ̇
𝑡
= 𝐴𝑥 (𝑡) + 𝑊

1
(𝑡) 𝜎 (𝑥 (𝑡)) + 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡)

− 𝐴𝑥 (𝑡) − 𝑊
∗

1
𝜎 (𝑥 (𝑡)) − 𝑆

∗

𝜙 (𝑥 (𝑡)) V (𝑡) − 𝜁 (𝑡)

= 𝐴Δ (𝑡) + �̃�
1
(𝑡) 𝜎 (𝑥 (𝑡)) + 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡) − 𝜁 (𝑡) ,

(22)

where �̃�
1
(𝑡) := 𝑊

1
(𝑡) − 𝑊

∗

1
and 𝑆(𝑡) := 𝑆(𝑡) − 𝑆∗.

Consider the following Lyapunov function candidate:

𝑉 (𝑡) =
1

2
Δ
𝑇

(𝑡) Δ (𝑡) +
1

2𝑘
1

tr {�̃�𝑇
1
(𝑡) �̃�
1
(𝑡)}

+
1

2𝑘
2

tr {𝑆𝑇 (𝑡) 𝑆 (𝑡)} .
(23)

The first derivative of 𝑉(𝑡) is
⋅

𝑉 (𝑡) = Δ
𝑇

(𝑡) Δ̇ (𝑡) +
1

𝑘
1

tr { ̇̃𝑊
𝑇

1
(𝑡) �̃�
1
(𝑡)}

+
1

𝑘
2

tr { ̇̃𝑆
𝑇

(𝑡) 𝑆 (𝑡)} .

(24)
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Substituting (22) into (24) and taking into account that 𝐴 =
−𝑎𝐼
𝑛×𝑛

yield

⋅

𝑉 (𝑡) = − 𝑎|Δ(𝑡)|
2

+ Δ
𝑇

(𝑡) �̃�
1
(𝑡) 𝜎 (𝑥 (𝑡))

+ Δ
𝑇

(𝑡) 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡) − Δ𝑇 (𝑡) 𝜁 (𝑡)

+
1

𝑘
1

tr { ̇̃𝑊
𝑇

1
(𝑡) �̃�
1
(𝑡)} +

1

𝑘
2

tr { ̇̃𝑆
𝑇

(𝑡) 𝑆 (𝑡)} .

(25)

Since �̃�
1
(𝑡) := 𝑊

1
(𝑡) − 𝑊

∗

1
and 𝑆(𝑡) := 𝑆(𝑡) − 𝑆∗, the first

derivatives for ̇̃
𝑊
1
(𝑡) and ̇̃𝑆(𝑡) are clearly ̇̃

𝑊
1
(𝑡) = �̇�

1
(𝑡) and

̇̃
𝑆(𝑡) = ̇𝑆(𝑡), respectively. However, �̇�

1
(𝑡) and ̇𝑆(𝑡) are given

by the learning laws (13) and (14). Therefore, by substituting
(13) into ̇̃

𝑊
1
(𝑡) = �̇�

1
(𝑡) and (14) into ̇̃𝑆(𝑡) = ̇𝑆(𝑡) and the

corresponding expressions into the right-hand side of (25), it
is possible to obtain

⋅

𝑉 (𝑡) = − 𝑎|Δ(𝑡)|
2

+ Δ
𝑇

(𝑡) �̃�
1
(𝑡) 𝜎 (𝑥 (𝑡))

+ Δ
𝑇

(𝑡) 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡) − Δ𝑇 (𝑡) 𝜁 (𝑡)

+ 𝛾 (𝑡) tr {−𝜎 (𝑥 (𝑡)) Δ𝑇 (𝑡) �̃�
1
(𝑡)}

− 𝛾 (𝑡)
ℓ
1

𝑘
1

tr {𝑊𝑇
1
(𝑡) �̃�
1
(𝑡)}

+ 𝛾 (𝑡) tr {−𝜙 (𝑥 (𝑡)) V (𝑡) Δ𝑇 (𝑡) 𝑆 (𝑡)}

− 𝛾 (𝑡)
ℓ
2

𝑘
2

tr {𝑆𝑇 (𝑡) 𝑆 (𝑡)} .

(26)

It is easy to show that

−Δ
𝑇

(𝑡) 𝜁 (𝑡) ≤
1

2
|Δ (𝑡)|

2

+
1

2

𝜁 (𝑡)


2

≤
1

2
|Δ (𝑡)|

2

+
1

2
𝜁
2

. (27)

Substituting (27) into (26) yields

⋅

𝑉 (𝑡) ≤ − 𝑎|Δ(𝑡)|
2

+ Δ
𝑇

(𝑡) �̃�
1
(𝑡) 𝜎 (𝑥 (𝑡))

+ Δ
𝑇

(𝑡) 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡) +
1

2
|Δ(𝑡)|
2

+
1

2
𝜁
2

+ 𝛾 (𝑡) tr {−𝜎 (𝑥 (𝑡)) Δ𝑇 (𝑡) �̃�
1
(𝑡)}

− 𝛾 (𝑡)
ℓ
1

𝑘
1

tr {𝑊𝑇
1
(𝑡) �̃�
1
(𝑡)}

+ 𝛾 (𝑡) tr {−𝜙 (𝑥 (𝑡)) V (𝑡) Δ𝑇 (𝑡) 𝑆 (𝑡)}

− 𝛾 (𝑡)
ℓ
2

𝑘
2

tr {𝑆𝑇 (𝑡) 𝑆 (𝑡)} .

(28)

Let us consider the two possible cases for 𝛾(𝑡) separately.

Case I (when 𝛾(𝑡) = 1). On this condition, taking into account
that

tr {−𝜎 (𝑥 (𝑡)) Δ𝑇 (𝑡) �̃�
1
(𝑡)} = − tr {𝜎 (𝑥 (𝑡)) Δ𝑇 (𝑡) �̃�

1
(𝑡)}

= − tr {Δ𝑇 (𝑡) �̃�
1
(𝑡) 𝜎 (𝑥 (𝑡))}

= −Δ
𝑇

(𝑡) �̃�
1
(𝑡) 𝜎 (𝑥 (𝑡))

tr {−𝜙 (𝑥 (𝑡)) V (𝑡) Δ𝑇 (𝑡) 𝑆 (𝑡)}

= − tr {𝜙 (𝑥 (𝑡)) V (𝑡) Δ𝑇 (𝑡) 𝑆 (𝑡)}

= − tr {Δ𝑇 (𝑡) 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡)}

= −Δ
𝑇

(𝑡) 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡)
(29)

if (29) is substituted into (28) and reducing the like terms, we
can get

⋅

𝑉 (𝑡) ≤ − 𝑎|Δ(𝑡)|
2

+
1

2
|Δ(𝑡)|
2

+
1

2
𝜁
2

−
ℓ
1

𝑘
1

tr {𝑊𝑇
1
(𝑡) �̃�
1
(𝑡)} −

ℓ
2

𝑘
2

tr {𝑆𝑇 (𝑡) 𝑆 (𝑡)} .
(30)

Besides, it can be proven [46] that

tr {𝑊𝑇
1
(𝑡) �̃�
1
(𝑡)} =

1

2
tr {𝑊𝑇
1
(𝑡)𝑊
1
(𝑡)}

+
1

2
tr {�̃�𝑇
1
(𝑡) �̃�
1
(𝑡)}

−
1

2
tr {𝑊∗𝑇
1
𝑊
∗

1
} ,

tr {𝑆𝑇 (𝑡) 𝑆 (𝑡)} = 1
2
tr {𝑆𝑇 (𝑡) 𝑆 (𝑡)}

+
1

2
tr {𝑆𝑇 (𝑡) 𝑆 (𝑡)} − 1

2
tr {𝑆∗𝑇𝑆∗} .

(31)

Substituting (31) into (30) yields

⋅

𝑉 (𝑡) ≤ − 𝑎|Δ(𝑡)|
2

+
1

2
|Δ(𝑡)|
2

+
1

2
𝜁
2

−
ℓ
1

2𝑘
1

tr {𝑊𝑇
1
(𝑡)𝑊
1
(𝑡)} −

ℓ
1

2𝑘
1

tr {�̃�𝑇
1
(𝑡) �̃�
1
(𝑡)}

+
ℓ
1

2𝑘
1

tr {𝑊∗𝑇
1
𝑊
∗

1
} −
ℓ
2

2𝑘
2

tr {𝑆𝑇 (𝑡) 𝑆 (𝑡)}

−
ℓ
2

2𝑘
2

tr {𝑆𝑇 (𝑡) 𝑆 (𝑡)} +
ℓ
2

2𝑘
2

tr {𝑆∗𝑇𝑆∗}

(32)
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or

⋅

𝑉 (𝑡) ≤ − (2𝑎 − 1) {
1

2
|Δ(𝑡)|
2

}

− ℓ
1
(
1

2𝑘
1

tr {�̃�𝑇
1
(𝑡) �̃�
1
(𝑡)})

− ℓ
2
(
1

2𝑘
2

tr {𝑆𝑇 (𝑡) 𝑆 (𝑡)})

+
1

2
𝜁
2

+
ℓ
1

2𝑘
1

tr {𝑊∗𝑇
1
𝑊
∗

1
} +
ℓ
2

2𝑘
2

tr {𝑆∗𝑇𝑆∗} .

(33)

In view of

𝛼
1
:= min {(2𝑎 − 1) , ℓ

1
, ℓ
2
} ,

𝛽
1
:=
1

2
𝜁
2

+
ℓ
1

2𝑘
1

tr {𝑊∗𝑇
1
𝑊
∗

1
} +
ℓ
2

2𝑘
2

tr {𝑆∗𝑇𝑆∗} ,
(34)

the following bound as a function of 𝑉(𝑡) can finally be
determined for

⋅

𝑉 (𝑡):

⋅

𝑉 (𝑡) ≤ −𝛼
1
𝑉 (𝑡) + 𝛽

1
. (35)

This implies that the following bound for 𝑉(𝑡) can be
established (the demonstration of this intermediate result can
be consulted in [43])

𝑉 (𝑡) ≤ 𝑉 (0) exp (−𝛼
1
𝑡) +
𝛽
1

𝛼
1

(1 − exp (−𝛼
1
𝑡)) . (36)

Since by definition 𝛼
1
and 𝛽

1
are positive constants, the right-

hand side of the inequality (36) can be bounded by 𝑉(0) +
(𝛽
1
/𝛼
1
). Thus, 𝑉(𝑡) ∈ 𝐿

∞
and since by construction 𝑉(𝑡)

is a nonnegative function, the boundedness of Δ(𝑡), �̃�
1
(𝑡),

and 𝑆(𝑡) can be guaranteed. Because𝑊∗
1
and 𝑆∗ are bounded,

𝑊
1
(𝑡) = �̃�

1
(𝑡)+𝑊

∗

1
and 𝑆(𝑡) = 𝑆(𝑡)+𝑆∗must be bounded too

and the first part ofTheorem 9 has been proven.With respect
to the second part of this theorem, from (23), it is evident that
(1/2)|Δ(𝑡)|

2

≤ 𝑉(𝑡). Taking into account this fact and from
(36), we get

|Δ (𝑡)| ≤ √2𝑉 (0) exp (−𝛼
1
𝑡) +
2𝛽
1

𝛼
1

(1 − exp (−𝛼
1
𝑡)). (37)

By taking the limit as 𝑡 → ∞ of the inequality (37), we
can guarantee that |Δ(𝑡)| converges exponentially fast to a
zone bounded by the term √2𝛽

1
/𝛼
1
and the part (b1) of the

Theorem 9 has been proven.

Case II (when 𝛾(𝑡) = 0). Under this condition, (28) becomes
simply

⋅

𝑉 (𝑡) ≤ − 𝑎|Δ(𝑡)|
2

+ Δ
𝑇

(𝑡) �̃�
1
(𝑡) 𝜎 (𝑥 (𝑡))

+ Δ
𝑇

(𝑡) 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡) +
1

2
|Δ (𝑡)|

2

+
1

2
𝜁
2

.

(38)

It is easy to show that

Δ
𝑇

(𝑡) �̃�
1
(𝑡) 𝜎 (𝑥 (𝑡)) ≤

1

2
|Δ (𝑡)|

2

+
1

2


�̃�
1
(𝑡) 𝜎 (𝑥 (𝑡))



2

,

Δ
𝑇

(𝑡) 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡) ≤
1

2
|Δ(𝑡)|
2

+
1

2


𝑆(𝑡)𝜙 (𝑥(𝑡)) V(𝑡)



2

.

(39)

Substituting (39) into (38) yields

⋅

𝑉 (𝑡) ≤ − (𝑎 −
3

2
) |Δ(𝑡)|

2

+
1

2


�̃�
1
(𝑡)𝜎 (𝑥(𝑡))



2

+
1

2


𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡)



2

+
1

2
𝜁
2

.

(40)

Now, from the learning laws (13) and (14), the condition
𝛾(𝑡) = 0 implies that

⋅

𝑊
1
(𝑡) = 0 and

⋅

𝑆 (𝑡) = 0.Thismeans that
𝑊
1
(𝑡) and 𝑆(𝑡) become constant matrices and consequently

they are bounded. From the above and taking into account
Assumption 7, we can conclude the boundedness of the term

1

2


�̃�
1
(𝑡)𝜎 (𝑥(𝑡))



2

+
1

2


𝑆(𝑡)𝜙 (𝑥(𝑡)) V(𝑡)



2

+
1

2
𝜁. (41)

Consider that a bound for such term is the constant (not
necessarily known)𝛽

2
and given𝛼

2
:= 𝑎−(3/2), (40) becomes

⋅

𝑉 (𝑡) ≤ −𝛼
2
|Δ (𝑡)|

2

+ 𝛽
2
. (42)

Note that if |Δ(𝑡)| > √𝛽
2
/𝛼
2
, then �̇�(𝑡) < 0. This means that

𝑉(𝑡) < 𝑉(0) for ∀𝑡 ≥ 0 and consequently |Δ(𝑡)| ∈ 𝐿
∞
. If

|Δ(𝑡)| ≤ √𝛽
2
/𝛼
2
clearly |Δ(𝑡)| is bounded. Thus, the uniform

ultimate boundedness of |Δ(𝑡)| with respect to the set

𝑌 = {𝑥 (𝑡) − 𝑥 (𝑡) := |𝑥 (𝑡) − 𝑥 (𝑡)| ≤ √
𝛽
2

𝛼
2

} (43)

can be guaranteed and the proof is completed.

Remark 10. Note that the utilization of 𝛾(𝑡) permits to
guarantee that det(𝑆(𝑡)) ̸= 0 for ∀𝑡 ≥ 0. Hence, 𝑆(𝑡) is an
invertible matrix for ∀𝑡 ≥ 0. Certainly, the designer should
select 𝑆(0) in such a way that this condition can be fulfilled.

4. Tracking Controller

In this section, an appropriate control law V(𝑡) will be
determined in such a way that the state 𝑥(𝑡) of system (1)-
(2) follows a given reference trajectory 𝑥

𝑟
(𝑡), and, at the same

time, all closed-loop signals stay bounded.

Assumption 11. The reference trajectory 𝑥
𝑟
(𝑡) and its first

derivative �̇�
𝑟
(𝑡) are continuous and bounded. Besides, these

variables are available for the design.
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By simultaneously adding and subtracting the terms
𝑊
1
(𝑡)𝜎(𝑥(𝑡)) and 𝑆(𝑡)𝜙(𝑥(𝑡))V(𝑡) into (11), we can get

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝑊
1
(𝑡) 𝜎 (𝑥 (𝑡)) + 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡)

+ 𝑊
∗

1
𝜎 (𝑥 (𝑡)) − 𝑊

1
(𝑡) 𝜎 (𝑥 (𝑡)) + 𝑆

∗

𝜙 (𝑥 (𝑡)) V (𝑡)

− 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡) + 𝜁 (𝑡)

= 𝐴𝑥 (𝑡) + 𝑊
1
(𝑡) 𝜎 (𝑥 (𝑡)) + 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡)

− �̃�
1
(𝑡) 𝜎 (𝑥 (𝑡)) − 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡) + 𝜁 (𝑡) .

(44)

Let us define the term 𝛿(𝑡) as

𝛿 (𝑡) := −�̃�
1
(𝑡) 𝜎 (𝑥 (𝑡)) − 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡) + 𝜁 (𝑡) . (45)

According to this definition, (44) can be expressed simply as

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝑊
1
(𝑡) 𝜎 (𝑥 (𝑡)) + 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡) + 𝛿 (𝑡) .

(46)

Note that if the learning laws (13) and (14) are used to adjust
the weights 𝑊

1
(𝑡) and 𝑆(𝑡), respectively, then according to

Theorem 9 �̃�
1
(𝑡) and 𝑆(𝑡) belong to 𝐿

∞
. As �̃�

1
(𝑡)𝜎(𝑥(𝑡)) and

𝑆(𝑡)𝜙(𝑥(𝑡))V(𝑡) are known and bounded terms and 𝜁(𝑡) is an
unknown but bounded term, from (45), we can conclude
that 𝛿(𝑡) is an unknown but bounded term. Consider that
the positive constant (not necessarily known) 𝛿 is an upper
bound for 𝛿(𝑡); that is, ‖𝛿(𝑡)‖

∞
≤ 𝛿.

Now, let us define the tracking error 𝜀(𝑡) as

𝜀 (𝑡) := 𝑥 (𝑡) − 𝑥
𝑟
(𝑡) . (47)

The first derivative of (47) is simply

̇𝜀 (𝑡) = �̇� (𝑡) − �̇�
𝑟
(𝑡) . (48)

Substituting (46) into (48) yields

̇𝜀 (𝑡) = 𝐴𝑥 (𝑡) + 𝑊
1
(𝑡) 𝜎 (𝑥 (𝑡)) + 𝑆 (𝑡) 𝜙 (𝑥 (𝑡)) V (𝑡)

+ 𝛿 (𝑡) − �̇�
𝑟
(𝑡) .

(49)

By using the principle of feedback linearization, we propose
the following control law:

V (𝑡) = (𝑆(𝑡)𝜙 (𝑥(𝑡)))−1

× {−𝐴𝑥 (𝑡) − 𝑊
1
(𝑡) 𝜎 (𝑥 (𝑡)) + �̇�

𝑟
(𝑡) + 𝐶𝜀 (𝑡)} ,

(50)

where 𝐶 is a Hurwitz matrix which can be selected by
simplicity as 𝐶 = −𝑐𝐼

𝑛×𝑛
, 𝑐 is a positive constant proposed

by the designer such that 𝑐 > 0.5. If (50) is substituted into
(49), we can get

̇𝜀 (𝑡) = 𝐶𝜀 (𝑡) + 𝛿 (𝑡) . (51)

We can analyze the dynamics of the tracking error 𝜀(𝑡)
given in (51) by proposing the following Lyapunov function
candidate:

𝑉
2
(𝑡) =

1

2
𝜀
𝑇

(𝑡) 𝜀 (𝑡) . (52)

The first derivative of (52) is

�̇�
2
(𝑡) = 𝜀

𝑇

(𝑡) ̇𝜀 (𝑡) . (53)

Substituting (51) into (53) yields

�̇�
2
(𝑡) = 𝜀

𝑇

(𝑡) 𝐶𝜀 (𝑡) + 𝜀
𝑇

(𝑡) 𝛿 (𝑡) . (54)

It is easy to show that

𝜀
𝑇

(𝑡) 𝛿 (𝑡) ≤
1

2
|𝜀 (𝑡)|
2

+
1

2
|𝛿 (𝑡)|

2

≤
1

2
|𝜀 (𝑡)|
2

+
1

2
𝛿
2

. (55)

Taking into account (55) and given 𝐶 = −𝑐𝐼
𝑛×𝑛

, (54) becomes

�̇�
2
(𝑡) ≤ −𝑐|𝜀(𝑡)|

2

+
1

2
|𝜀(𝑡)|
2

+
1

2
𝛿
2 (56)

or

�̇�
2
(𝑡) ≤ − (2𝑐 − 1)

1

2
|𝜀 (𝑡)|
2

+
1

2
𝛿
2

. (57)

By defining the following positive constants 𝛼
3
:= 2𝑐 − 1 and

𝛽
3
:= (1/2)𝛿

2

, (57) can be expressed as

�̇�
2
(𝑡) ≤ −𝛼

3
𝑉
2
(𝑡) + 𝛽

3
. (58)

Hence,

𝑉
2
(𝑡) ≤ 𝑉

2
(0) exp (−𝛼

3
𝑡) +
𝛽
3

𝛼
3

(1 − exp (−𝛼
3
𝑡)) . (59)

According to (52) and (59), it can be established that

|𝜀 (𝑡)| ≤ √|𝜀 (0)|
2 exp (−𝛼

3
𝑡) +
2𝛽
3

𝛼
3

(1 − exp (−𝛼
3
𝑡)). (60)

From this last inequality, the boundedness of |𝜀(𝑡)| can be
concluded. From the above and taking into account that
𝜀(𝑡) = 𝑥(𝑡)−𝑥

𝑟
(𝑡) and as, according to Assumption 11, 𝑥

𝑟
(𝑡) is

bounded, 𝑥(𝑡)must also be bounded.This implies, according
to (50), that V(𝑡) belongs to 𝐿

∞
and this last result agrees

with Assumption 7. Finally, by taking the limit as 𝑡 → ∞ in
both sides of the inequality (60), we can guarantee that |𝜀(𝑡)|
converges exponentially fast to a zone bounded by the term
√2𝛽
3
/𝛼
3
. In this way, the following theorem has been proven.

Theorem 12. If Assumptions 1–11 are satisfied, the constant 𝑐 is
selected greater than 0.5, the weight matrices𝑊

1
(𝑡), 𝑆(𝑡) of the

neural network (12) are adjusted by the learning laws (13) and
(14), and the control law (50) is applied to the system formed
by (1)-(2), then

(a) the tracking error and the state of system (1) are
bounded

𝜀 (𝑡) , 𝑥 (𝑡) ∈ 𝐿
∞
, (61)

(b) the norm of the tracking error, that is, |𝑥(𝑡) − 𝑥
𝑟
(𝑡)|,

converges exponentially fast to a zone bounded by the
term

√
2𝛽
3

𝛼
3

, (62)

where 𝛼
3
:= 2𝑐 − 1 and 𝛽

3
:= (1/2)𝛿

2

.
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Figure 1: Tracking process: reference trajectory 𝑥
𝑟,1
(𝑡), solid line;

system state 𝑥
1
(𝑡), dashed line.

5. Numerical Example

In order to illustrate the strategy proposed in this paper, a
simulation example is presented in this section. A second
order nonlinear system (see (63)) is used as the unknown
plant. Consider

�̇�
1
(𝑡) = − 2𝑥

1
(𝑡) + 𝑥

2
(𝑡) + 𝑥

1
(𝑡) 𝑥
2
(𝑡)

+ 𝑥
2
(𝑡) exp (−2𝑥

1
(𝑡))

+ (sin (𝑥
1
(𝑡) + 𝑥

2
(𝑡)) + 2) 𝑢

1
(𝑡) ,

�̇�
2
(𝑡) = − 3𝑥

2
(𝑡) + 𝑥

1
(𝑡) cos (𝑥

2
(𝑡))

+ (𝑥
2

1
(𝑡) + 𝑥

2

2
(𝑡) + 0.5) 𝑢

2
(𝑡) .

(63)

The initial condition for system (63) is 𝑥
1
(0) = 1, 𝑥

2
(0) = 0.

Each input of this system is preceded by a deadzone. The
parameters of each deadzone are as follows:𝑚

1
= 1.3, 𝑏

1,𝑟
= 2,

𝑏
1,𝑙
= −1.5, 𝑚

2
= 0.8, 𝑏

2,𝑟
= 1.5, and 𝑏

2,𝑙
= −1. The

states of the reference trajectory 𝑥
𝑟
(𝑡) are selected as 𝑥

𝑟,1
(𝑡) =

sin(𝑡) − 1.5 sin(2𝑡) + sin(5𝑡) and 𝑥
𝑟,2
(𝑡) = cos(𝑡) − 0.5 sin(3𝑡).

The parameters of the neural identifier and the control law
are selected by trial and error as 𝑎 = 5, 𝑥

1
(0) = 1, 𝑥

2
(0) = 0,

𝑘
1
= 100, ℓ

1
= 10, 𝑘

2
= 120, ℓ

2
= 5, 𝜎

1
(𝑥(𝑡)) = 2/(1 +

exp(−𝑥
1
(𝑡)))−1,𝜎

2
(𝑥(𝑡)) = 2/(1+exp(−𝑥

2
(𝑡)))−1,𝜙

11
(𝑥(𝑡)) =

1/(1+exp(−𝑥
1
(𝑡)))+0.3, 𝜙

22
(𝑥(𝑡)) = 1/(1+exp(−𝑥

2
(𝑡)))+0.3,

and 𝑐 = 1500.The results of the tracking process are presented
in Figures 1 and 2 for the first 10 seconds. In Figure 1, the state
𝑥
1
(𝑡) of the nonlinear system (63) is represented by dashed

line whereas the reference trajectory 𝑥
𝑟,1
(𝑡) is represented

by solid line. The state 𝑥
2
(𝑡) (dashed line) and the reference

trajectory 𝑥
𝑟,2
(𝑡) (solid line) are presented in Figure 2 for

comparison. The control signals V
1
(𝑡) and V

2
(𝑡) are shown in

Figures 3 and 4, respectively.

6. Conclusions

In this paper, the exponential tracking for a class of non-
linear systems with unknown deadzones using recurrent
neural networks was considered. Since physical model is
not available, the neural networks are used to identify the
unknown dynamics. The main novelty in this study is a
systematic procedure for the modification of the learning

0 1 2 3 4 5 6 7 8 9 10
Time (s)

1.5

1

0.5

0

−0.5

−1

−1.5

Figure 2: Tracking process: reference trajectory 𝑥
𝑟,2
(𝑡), solid line;

system state 𝑥
2
(𝑡), dashed line.
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Figure 3: Control signal V
1
(𝑡).

laws of the synaptic weights in such a way that the avoidance
of the control singularity can be guaranteed. This objective
is achieved by continuously monitoring the determinant of
the coupling matrix or more specifically the input weight
matrix. By defining a threshold for the determinant of the
input weight, a “dangerous” region next to the singularity can
be established. When such region is reached, the learning
process is immediately stopped. In this way, the invertibility
of the coupling matrix is guaranteed. The effect of this
modification on the identification error stability is rigorously
studied by means of Lyapunov analysis. On the basis of the
instantaneous mathematical model obtained by the iden-
tification process, a singularity-free feedback linearization
control law is developed in order to compel the system state
to follow a reference trajectory. By means of Lyapunov-like
analysis, the exponential convergence of the tracking error to
a bounded zone can be proven. Likewise, the boundedness
of all closed-loop signals can be guaranteed. Certainly, the
main attractiveness of the suggested approach is its simplicity.
However, it must be mentioned that the turning off of
the learning law could reduce the system performance. In
fact, in such conditions, the control action becomes mainly
proportional.
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Figure 4: Control signal V
2
(𝑡).
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[18] A. Yeşildirek and F. L. Lewis, “Feedback linearization using
neural networks,” Automatica, vol. 31, no. 11, pp. 1659–1664,
1995.

[19] E. B. Kosmatopoulos, “Universal stabilization using control
Lyapunov functions, adaptive derivative feedback and neural
network approximators,” in Proceedings of the 35th IEEEConfer-
ence on Decision and Control (CDC '96), vol. 3, pp. 2444–2449,
Kobe, Japan, December 1996.

[20] R. A. Felix, E. N. Sanchez, and A. G. Loukianov, “Avoiding
controller singularities in adaptive recurrent neural control,” in
Proceedings of the 16th International Federation of Automatic
Control World Congress (IFAC '05), pp. 109–114, July 2005.

[21] R. C. Rodŕıguez andW. Yu, “Robust adaptive control via neural
linearization and compensation,” Journal of Control Science and
Engineering, vol. 2012, Article ID 867178, 9 pages, 2012.

[22] T. Zhang, S. S. Ge, and C. C. Hang, “Adaptive neural network
control for strict-feedback nonlinear systems using backstep-
ping design,” Automatica, vol. 36, no. 12, pp. 1835–1846, 2000.

[23] Y.-J. Liu and W. Wang, “Adaptive neural network control for
nonlinear systems based on approximation errors,” in Advances
in Neural Networks—ISNN 2006, vol. 3972 of Lecture Notes
in Computer Science, pp. 836–841, Springer, Berlin, Germany,
2006.

[24] J. Humberto Pérez-Cruz and A. Poznyak, “Control of nuclear
research reactors based on a generalized Hopfield neural net-
work,” Intelligent Automation and Soft Computing, vol. 16, no. 1,
pp. 39–60, 2010.



10 The Scientific World Journal

[25] J. H. Perez-Cruz, I. Chairez, A. Poznyak, and J. J. de Rubio,
“Constrained neural control for the adaptive tracking of power
profiles in a triga reactor,” International Journal of Innovative
Computing, Information andControl, vol. 7, no. 7, pp. 4575–4788,
2011.

[26] H. Zhou, J.-Y. Hou, Y.-G. Zhao, and Y.-L. Chen, “Model-based
trajectory tracking control for an electrohydraulic lifting system
with valve compensation strategy,” Journal of Central South
University, vol. 19, no. 11, pp. 3110–3117, 2012.

[27] A. C. Valdiero, C. S. Ritter, C. F. Rios, and M. Rafikov, “Non-
linear mathematical modeling in pneumatic servo position
applications,” Mathematical Problems in Engineering, vol. 2011,
Article ID 472903, 16 pages, 2011.

[28] L. Liu, Y.-J. Liu, and C. L. P. Chen, “Adaptive neural network
control for a DC motor system with dead-zone,” Nonlinear
Dynamics, vol. 72, no. 1-2, pp. 141–147, 2013.

[29] G. Xia, X. Shao, A. Zhao, and H. Wu, “Adaptive neural network
control with backstepping for surface ships with input dead-
zone,” Mathematical Problems in Engineering, vol. 2013, Article
ID 530162, 9 pages, 2013.

[30] G. Tao and P. V. Kokotovic, “Adaptive control of plants with
unknown dead-zones,” IEEE Transactions on Automatic Con-
trol, vol. 39, no. 1, pp. 59–68, 1994.

[31] G. Tao and P. V. Kokotovic, Adaptive Control of Systems with
Actuator and Sensor Nonlinearities, John Wiley & Sons, New
York, NY, USA, 1996.

[32] Y.-J. Sun, “Composite tracking control for generalized practical
synchronization of duffing-holmes systems with parameter
mismatching, unknown external excitation, plant uncertainties,
and uncertain deadzone nonlinearities,” Abstract and Applied
Analysis, vol. 2012, Article ID 640568, 11 pages, 2012.

[33] H. Cho and E. R.-W. Bai, “Convergence results for an adaptive
dead zone inverse,” International Journal of Adaptive Control
and Signal Processing, vol. 12, no. 5, pp. 451–466, 1998.

[34] X.-S. Wang, H. Hong, and C.-Y. Su, “Model reference adaptive
control of continuous-time systems with an unknown input
dead-zone,” IEE Proceedings: Control Theory and Applications,
vol. 150, no. 3, pp. 261–266, 2003.

[35] J. Zhou and X. Z. Shen, “Robust adaptive control of nonlinear
uncertain plants with unknown dead-zone,” IET ControlTheory
& Applications, vol. 1, no. 1, pp. 25–32, 2007.

[36] X.-S. Wang, C.-Y. Su, and H. Hong, “Robust adaptive control
of a class of nonlinear systems with unknown dead-zone,”
Automatica, vol. 40, no. 3, pp. 407–413, 2004.

[37] Z. Wang, Y. Zhang, and H. Fang, “Neural adaptive control for
a class of nonlinear systems with unknown dead zone,” Neural
Computing and Applications, vol. 17, no. 4, pp. 339–345, 2008.

[38] Y.-J. Liu and N. Zhou, “Observer-based adaptive fuzzy-neural
control for a class of uncertain nonlinear systemswith unknown
dead-zone input,” ISA Transactions, vol. 49, no. 4, pp. 462–469,
2010.
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