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SUMMARY

The recently reported Middle East respiratory syn-
drome coronavirus (MERS-CoV) is phylogenetically
closely related to the bat coronaviruses (BatCoVs)
HKU4 and HKU5. However, the evolutionary pathway
of MERS-CoV is still unclear. A receptor binding do-
main (RBD) in the MERS-CoV envelope-embedded
spike protein specifically engages human CD26
(hCD26) to initiate viral entry. The high sequence iden-
tity in theviral spikeproteinpromptedus to investigate
if HKU4 and HKU5 can recognize hCD26 for cell entry.
We found that HKU4-RBD, but not HKU5-RBD, binds
to hCD26, and pseudotyped viruses embedding
HKU4 spike can infect cells via hCD26 recognition.
The structure of the HKU4-RBD/hCD26 complex re-
vealed a hCD26-binding mode similar overall to that
observed for MERS-RBD. HKU4-RBD, however, is
less adapted to hCD26 than MERS-RBD, explaining
its loweraffinity for receptorbinding.Ourfindingssup-
port a bat origin for MERS-CoV and indicate the need
for surveillance of HKU4-related viruses in bats.

INTRODUCTION

Coronaviruses (CoVs) are a group of enveloped, single-stranded

RNA viruses taxonomically affiliated with the Coronaviridae fam-
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ily (Lai et al., 2007). Based on genotypic and serological charac-

teristics, coronaviruses are further classified into four species:

Alpha, Beta, Gamma (King et al., 2012), and Deltacoronavirus

(Woo et al., 2009). Both alpha (alphaCoVs) and betacoronavi-

ruses (betaCoVs) can cause human diseases (Lai et al., 2007).

Most human infections related to alpha and betaCoVs, such as

coronaviruses NL63, 229E, OC43, and HKU1 (reviewed in We-

vers and van der Hoek, 2009), which commonly manifest as

self-limiting common cold-like illnesses, though more severe

diseases can develop in children, the elderly, and immunocom-

promised patients (Chiu et al., 2005; Gorse et al., 2009; Jean

et al., 2013; Jev�snik et al., 2012). BetaCoVs, however, can also

be life threatening and have pandemic potential (Ksiazek et al.,

2003; Zaki et al., 2012). In 2003, the severe acute respiratory syn-

drome coronavirus (SARS-CoV), a lineage B betaCoV (Lu and

Liu, 2012), caused >8,000 infections and >800 deaths worldwide

(WHO, 2004). In 2012, another lineage C betaCoV named the

Middle East respiratory syndrome coronavirus (MERS-CoV)

(King et al., 2012) initially emerged in Saudi Arabia (Bermingham

et al., 2012; Zaki et al., 2012) and then spread to other countries

in the Middle East, Europe, Asia, and the US, leading to 701

confirmed cases as of June 16th, 2014 (WHO, 2014) with a fatality

rate of approximately 35%. These unexpected outbreaks high-

light the public health significance of betaCoVs, especially those

in lineages B and C.

In addition to MERS-CoV, lineage C betaCoVs include two

other important members: the bat coronaviruses (BatCoVs)

HKU4 and HKU5 (Lu and Liu, 2012). These viruses were

first identified as genomes in 2006 in lesser bamboo bats
sevier Inc.

mailto:gaof@im.ac.cn
http://dx.doi.org/10.1016/j.chom.2014.08.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chom.2014.08.009&domain=pdf


Cell Host & Microbe

Human CD26 Is a Cellular Receptor for BatCoV HKU4
(Tylonycteris pachypus) and Japanese pipistrelles (Pipistrellus

abramus), respectively (Woo et al., 2006), and remain circulating

in bats (Lau et al., 2013). Bats have been implicated as the largest

reservoir of alpha and betaCoVs (Li et al., 2005b; Woo et al.,

2012) and play pivotal roles in interspecies transmission of coro-

naviruses. This is best exemplified by SARS-CoV, which was

recently shown to originate from Chinese horseshoe bats (Ge

et al., 2013) and likely transmitted directly to humans (Ge et al.,

2013) or through an intermediate host such as the palm civet

(Guan et al., 2003). The emergent MERS-CoV might also be of

bat origin, with gene fragments being identified in bats from

both Saudi Arabia (Memish et al., 2013) and Africa (Ithete et al.,

2013) that are nearly identical to those of MERS-CoV in

sequence. Despite the fact that the BatCoVs HKU4 and HKU5

are bat derived, the potential of both viruses evolving for human

adaptation cannot be excluded because of their close phyloge-

netic relationship with MERS-CoV (Lau et al., 2013; Lu and Liu,

2012; van Boheemen et al., 2012). Nevertheless, such presump-

tions are largely based on their genomic features and phyloge-

netic status (Lau et al., 2013; Woo et al., 2006, 2007).

Virus infections initiate with the binding of viral particles to host

surface cellular receptors. Identification of the functional recep-

tors represents a central issue in studying viral pathogenesis.

Several host peptidases, including aminopeptidase N (Delmas

et al., 1992; Yeager et al., 1992) and angiotensin converting

enzyme 2 (hACE2) (Hofmann et al., 2005; Li et al., 2003), are uti-

lized by coronaviruses for cell entry. A timely study on MERS-

CoV identified a third peptidase recognized by coronaviruses:

dipeptidyl peptidase 4 (DPP4 or CD26) (Raj et al., 2013). This

enzyme is a type II transmembrane protein contributing to the

regulation of various physiological processes (Gorrell et al.,

2001) and is ‘‘hijacked’’ by MERS-CoV to infect humans. This

work pioneered the study on lineage C betaCoVs for potential

cellular receptors. However, it remains unknown which mole-

cules can be recognized by BatCoVs HKU4 and HKU5.

The receptor binding of coronaviruses is mediated by the

spike (S) protein embedded in the viral envelope (Lai et al.,

2007). In most cases, S is further cleaved by host proteases

into S1 and S2 subunits that function to engage receptors and

mediate membrane fusion, respectively (Lai et al., 2007). High

sequence identities (>50%) in S have been observed between

BatCoV HKU4/HKU5 and MERS-CoV (Lau et al., 2013), raising

the possibility that these two viruses may use human CD26

(hCD26) as a receptor.

We previously delineated the molecular basis of MERS-CoV

binding to hCD26. The S1 domain responsible for hCD26 recog-

nition is located in a C-terminal 240-residue receptor binding

domain (RBD) that is composed of a core and an external subdo-

main (Lu et al., 2013). The latter engages the receptor and is

therefore also designated as the receptor binding motif (RBM)

(Lu et al., 2013). Despite the overall high sequence identities in

S, amino acid variance in the RBD region, especially in the

RBM region, is still obvious among BatCoV HKU4, HKU5, and

MERS-CoV. Investigation of the hCD26-binding potential of Bat-

CoVs HKU4 and HKU5 is therefore a key to understanding the

biology of these bat-derived viruses, their potential threat to

human health, and the evolutionary pathway of MERS-CoV.

In this study, we demonstrated that the RBD domain of Bat-

CoV HKU4 (HKU4-RBD), but not the equivalent domain of Bat-
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CoV HKU5 (HKU5-RBD), can bind to hCD26. The binding affinity

between HKU4-RBD and hCD26 was determined by surface

plasmon resonance (SPR) to be within the micromolar range.

Despite the observed lower affinity compared to that between

the MERS-CoV RBD (MERS-RBD) and hCD26, we found that

pseudoviruses containing BatCoV HKU4 S can infect human

Huh7 cells via hCD26. The findings provided solid evidence

that BatCoVHKU4 recognizes hCD26 as a cellular receptor, indi-

cating its potential for adaptation to infect humans. We further

solved the complex structure of HKU4-RBD bound to hCD26

to delineate the basis of receptor recognition. Our structural

analysis and mutagenesis also demonstrated a similar hCD26-

binding mode between BatCoV HKU4 and MERS-CoV, but the

details of variant amino acid interactions responsible for the dif-

ferences in binding affinity are distinct. Our work also supports

the notion that MERS-CoV most likely originated from bats.

RESULTS

HKU4-RBD, but Not HKU5-RBD, Binds to hCD26
Our previous study determined the hCD26-interacting region as

an RBD spanning amino acids 367–606 of the MERS-CoV S (Lu

et al., 2013). The phylogenetic relatedness between BatCoV

HKU4/HKU5 and MERS-CoV (Figure 1A) prompted us to further

investigate the equivalent RBD regions (S amino acids 372–611

for BatCoV HKU4, HKU4-RBD; and 375–604 for BatCoV HKU5,

HKU5-RBD) in these bat-derived viruses for their potential to

bind hCD26. A recent phylogenetic analysis of 13 BatCoV

HKU4 and 15 BatCoV HKU5 strains revealed that the S gene

of MERS-CoV is more closely related to BatCoV HKU4 than to

BatCoV HKU5 (Lau et al., 2013). Using only the RBD amino

acids, a concise phylogenetic tree was constructed, and a

sequence alignment comparison was performed among BatCoV

HKU4, HKU5, MERS-CoV, and SARS-CoV. Consistently, Bat-

CoV HKU4 clustered with MERS-CoV with high bootstrap sup-

port, together joining BatCoV HKU5 to form an evolutionary

branch distant from SARS-CoV (Figure 1A). At the sequence

level, MERS-RBD exhibits identity to HKU4-RBD slightly higher

than HKU5-RBD does (54.4% versus 52.9%). Nevertheless,

the pairwise alignment clearly showed two marked deletions

located in a region corresponding to the external subdomain of

MERS-RBD in HKU5-RBD, but not in HKU4-RBD (Figure 1B).

According to our previous study (Lu et al., 2013), this subdomain

is responsible for receptor recognition. Therefore, we hypothe-

sized that BatCoV HKU4 stands a better chance than BatCoV

HKU5 of engaging hCD26.

Thus, we prepared the individual Fc fusion RBD proteins and

tested their binding avidities to human hepatoma Huh7 cells

(CD26-expressing) via flow cytometry. Consistent with previous

reports (Raj et al., 2013), Huh7 cells express abundant hCD26

protein on their membrane surface (Figure 2A). MERS-RBD, as

a natural viral ligand of hCD26, avidly binds to Huh7 cells.

HKU4-RBD, but not HKU5-RBD, also bound to Huh7 cells (Fig-

ure 2B). Compared toMERS-RBD, however, an evidently smaller

fluorescence shift was observed for HKU4-RBD, indicating a

lower binding potency than MERS-RBD. An hCD26-specific

antibody rather than an isocontrol immunoglobulin G (IgG)

blocked theHuh7 surface attachment byHKU4-RBD (Figure 2C).

The observed Huh7 binding was also inhibited by the soluble
icrobe 16, 328–337, September 10, 2014 ª2014 Elsevier Inc. 329



Figure 1. Comparison of the HKU4-RBD, HKU5-RBD, MERS-RBD, and SARS-RBD Sequences

(A) Phylogenetic tree generated using MEGA (Tamura et al., 2013) with the indicated RBD sequences.

(B) Structure-based sequence alignment. The secondary structure elements are defined based on an ESPript (Gouet et al., 1999) algorithm and are labeled as in a

previous report on theMERS-RBD structure (Lu et al., 2013). Spiral lines indicate a or 310 helices, while arrows represent b strands. Helices a1 and h4 and strands

b2 and b11 are not preserved in the HKU4-RBD structure and are marked in red. The element equivalent to the MERS-RBD helix a3 exhibits characteristics of a

310 helix in HKU4-RBD and is therefore labeled as h0. The external subdomain is highlighted by enclosure with a red box. The two deletions in HKU5-RBD are

marked with blue lines. The Arabic numerals 1–4 indicate cysteine residues that pair to form disulfide bonds. See also Figure S3.
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ectodomain protein of hCD26, but not by the extracellular frag-

ment of the SARS-CoV receptor hACE2 (Figure 2D). We also

utilized the hCD26-negative BHK cell line in the binding assay.

As expected, surface binding to BHK cells could only be

observed for HKU4-RBD and MERS-RBD after transfection of

the cells with an hCD26-expressing plasmid (Figures 2E–2H).

Taken together, these results clearly demonstrated that BatCoV

HKU4, unlike its close relative BatCoV HKU5, is capable of bind-

ing to hCD26 via the spike-RBD region.

The Interaction between HKU4-RBD and hCD26 Is
Specific but of Low Affinity
We next set out to characterize the interaction between HKU4-

RBD and hCD26 using real-time biophysical binding assays.

The proteins prepared from insect cells were purified to homoge-

neity (Figure S1, available online) and subjected to SPR experi-

ments. As assay controls, MERS-RBD and SARS-RBD were

found to bind potently to their respective canonical receptors

(Figures 3A and 3B). HKU4-RBD interacted with hCD26, but

not with hACE2 (Figures 3C and 3D). However, in contrast to
330 Cell Host & Microbe 16, 328–337, September 10, 2014 ª2014 El
the control pairs showing slow on and off rates, the Biacore

binding profile between HKU4-RBD and hCD26 revealed fast

association/dissociation kinetics. The equilibrium dissociation

constant (KD) of HKU4-RBD binding to hCD26 was calculated

to be 35.7 mM (Figures 3C and S2), which is approximately three

orders of magnitude lower than that of MERS-RBD to hCD26 (Lu

et al., 2013). Though HKU5-RBD behaved similarly to its HKU4

homolog protein by gel filtration (Figure S1), no hCD26 binding

was observed (Figure 3E), which is consistent with our flow cyto-

metric assays (Figures 2B and 2F).

Cell Infection of BatCoV HKU4 Pseudoviruses Is
Mediated by hCD26
With evidence of binding between HKU4-RBD and hCD26, we

then tested the potential of this human surface molecule to

function as a receptor for BatCoV HKU4. Lentiviral particles

pseudotyped with either the BatCoV HKU4 or the MERS-CoV

S were individually prepared in 293T cells. The successful incor-

poration of the viral S protein into the pseudovirus envelope was

ascertained by western blotting using a monoclonal antibody
sevier Inc.



Figure 2. Characterization of Binding between HKU4-RBD and hCD26 by Flow Cytometry

(A) Huh7 cells stained with an anti-hCD26 antibody.

(B) Huh7 cells stained with MERS-RBD, HKU4-EBD, or HKU5-RBD.

(C) Huh7 cells stained with HKU4-RBD in the presence of an anti-hCD26 antibody or an isocontrol antibody.

(D) Huh7 cells stained with HKU4-RBD in the presence of hCD26 (hCD26-ecto) or hACE2 (hACE2-ecto) ectodomain protein.

(E) BHK cells stained with an anti-hCD26 antibody.

(F) BHK cells stained with MERS-RBD, HKU4-RBD, or HKU5-RBD.

(G) hCD26-transfected BHK cells stained with an anti-hCD26 antibody.

(H) hCD26-transfected BHK cells stained with MERS-RBD, HKU4-RBD, or HKU5-RBD.
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recognizing a FLAG epitope engineered at the S C terminus (Fig-

ure 4A). In accordance with a previous report (Gierer et al., 2013),

the majority of the MERS-CoV S protein was proteolytically

cleaved (Figure 4A). In marked contrast, however, BatCoV

HKU4 S remained largely intact (Figure 4A), displaying a pattern

similar to that of SARS-CoV (Moore et al., 2004; Simmons et al.,

2004).

The viral infection mediated by BatCoV HKU4 S was then

tested in Huh7 cells. With a pseudotyped vector encoding lucif-

erase, the infection efficiency was determined by quantifying

luciferase activities in the cell lysates. As a positive control, pseu-

doparticles bearing the MERS-CoV S protein robustly infected

Huh7 cells, showing an �400-fold increase in the luciferase

signal as compared to particles bearing no S protein. However,

no evident cell infection was observed for the BatCoV HKU4

pseudoviruses (Figure 4B).

According to previous studies on other coronaviruses (re-

viewed in Simmons et al., 2013), proteolytic separation of the S

protein into functional S1 and S2 subunits by host cell proteases

is a prerequisite to subsequent membrane fusion. Noting the

inefficient S proteolysis in the BatCoV HKU4 pseudoviruses

above, we hypothesized that in vitro treatment of the virus parti-

cles with proteases such as trypsin might activate the S protein,

enabling viral entry into the cells upon receptor recognition.
Cell Host & M
Therefore, the harvested BatCoV HKU4 pseudovirus particles

were treated with various concentrations of trypsin (2.5–40 mg/

ml), incubated with fetal bovine serum to inactivate the trypsin,

and then used to infect Huh7 cells. Proteolysis of the S protein

was observed in a concentration-dependent manner for the

pseudoviruses (Figure 4A). Accordingly, significant increases

(>150-fold) in the luciferase activity were recorded for pseu-

doviruses pretreated with 10, 20, and 40 mg/ml of trypsin,

demonstrating successful entry into the cells (Figure 4B). Then,

pseudoviruses digested with 10 mg/ml trypsin were used in the

subsequent antibody blocking assays. As expected, a concen-

tration-dependent inhibition of cell infection was observed using

the hCD26 antibody that specifically blocked the Huh7 surface

attachment of HKU4-RBD (Figure 4C). Therefore, we provided

direct evidence that pseudoviruses bearing BatCoV HKU4 S

infect human cells via hCD26 recognition.

Complex Structure between HKU4-RBD and hCD26
We further used cocrystallography to study the molecular basis

of binding between HKU4-RBD and hCD26. The two purified

proteins were mixed in vitro to allow the formation of heterocom-

plexes, and we managed to solve the structure at a resolution of

2.6 Å (Table S1). In the crystallographic asymmetric unit, HKU4-

RBD and hCD26 were observed to form two 1:1 binding
icrobe 16, 328–337, September 10, 2014 ª2014 Elsevier Inc. 331



Figure 3. Specific Interaction between HKU4-RBD and hCD26 Characterized by SPR

(A–H) The indicated wild-type or mutant RBD proteins were immobilized on the chip and tested for binding with gradient concentrations of hCD26 or hACE2. The

binding profiles are shown.

(A) hCD26 binding to MERS-RBD. (B) hACE2 binding to SARS-RBD. (C) hCD26 binding to HKU4-RBD. (D) hACE2 binding to HKU4-RBD. (E) hCD26 binding to

HKU5-RBD. (F) hCD26 binding to HKU4-RBD-K506A. (G) hCD26 binding to HKU4-RBD-E541A. (H) hCD26 binding to HKU4-RBD-SKL, a triple mutant of S540W,

K547R, and L558W. The dissociation constants were calculated to be 35.7 and 0.42 mM for the hCD26/HKU4-RBD and hCD26/HKU4-RBD-SKL pairs,

respectively, and >400 mM for the hCD26/HKU4-RBD-K506A and hCD26/HKU4-RBD-E541A pairs. See also Figures S1 and S2.
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complexes that are related by a two-fold axis (Figure 5A). These

two complexes are of essentially the same structure, showing a

root-mean-square deviation (rmsd) of �0.18 Å for all Ca pairs.

For hCD26, clear electron densities could be traced for 727

amino acids from R40 to P766. As observed in previous reports

(Engel et al., 2003), this human enzyme folds into two structural

domains: an a/b hydrolase domain and an eight-bladed b-pro-

peller domain. hCD26 utilizes its propeller blades IV and V to

recognize HKU4-RBD (Figures 5A and 5B). The two hCD26

molecules in the asymmetric unit were assembled into a dimer

in the structure, with each protomer engaging one HKU4-RBD

via its propeller. This leads to an overall U-shaped structure

very similar to that observed for theMERS-RBD/hCD26 complex

(Lu et al., 2013).

In the complex structure, HKU4-RBD contains 208 consecu-

tive density-traceable residues, spanning T386 to L593. The

folded structure comprises a core subdomain located distally

from the engaging hCD26 and an external subdomain recog-

nizing blades IV and V of the receptor propeller (Figure 5B). The

core subdomain involves a five-stranded b sheet (b1, b3, b4,

b5, and b10) forming a ‘‘nucleus’’ in the center, several helices

(a helices a2 and a4, and 310 helices h1, h0, and h2) decorating

the center sheet on the exterior, and three disulfide bonds

(C388/C412, C430/C483, and C442/C590) stabilizing the subdo-

main structure in the interior. The N and C termini are in close

proximity, extending away from the bound receptor. The external

subdomain is a strand-dominated structurewith four anti-parallel

b strands (b6–b9) and exposes a flat sheet-face for receptor

engagement. An extra disulfide bond (C507/C531) located in

this external region links helixh3 to strandb6 (Figures 1Band5B).

As expected, this BatCoV HKU4 viral ligand exhibits signifi-

cant structural homology to its MERS-CoV homolog, in agree-
332 Cell Host & Microbe 16, 328–337, September 10, 2014 ª2014 El
ment with the >50% sequence identity between the two mole-

cules (Figure 1). Superimposition of the HKU4-RBD structure

onto a previously reported MERS-RBD structure (Protein Data

Bank [PDB]: 4KQZ) revealed an rmsd of �1.1 Å for 194 equiva-

lent Ca atoms. In comparison to MERS-RBD, the majority of

the secondary structure elements are well preserved in HKU4-

RBD. The latter, however, lacks an a helix (a1) and two small

strands (b2 and b11) in its core subdomain and is devoid of a

310 helix (h4) in the external subdomain. In addition, the helix pre-

ceding strand b3 exhibits characteristics of a 310 helix (h0) in
HKU4-RBD, rather than being a-helical (a3) as in MERS-RBD

(Figures 1 and S3).

Atomic Details at the Binding Interface between
HKU4-RBD and hCD26
In the complex structure, large surface areas (968.7 Å2 in HKU4-

RBD and 1,033.9 Å2 in hCD26) are buried by the two binding en-

tities. Therefore, we scrutinized this extended buried surface to

identify key amino acids involved in complex formation. Resi-

dues located within the van der Waals (vdw) contact distance

(4.5 Å resolution cutoff) between HKU4-RBD and hCD26 were

selected (Table S2), and a series of hydrophilic amino acids

located along the interface were found to form a solid network

of H bond and salt bridge interactions (Figures 5B and 5C). These

strong polar contacts include the HKU4-RBD residue K506 inter-

acting with the receptor amino acids T288 and A289, N514 and

Q515with R317, D516with Y322, E541 andD542with K267, and

K547 with I295 (Figure 5C). In addition, several residues (such as

Y460 located in helix h2 of the RBD core subdomain) were

further shown to contribute to the receptor binding by providing

multiple vdw contacts (Table S2). It is notable that K506 and

E541 of the viral ligand afforded both side-chain H bond and
sevier Inc.



Figure 4. Huh7 Infection by Lentiviral Particles Pseudotyped with BatCoV HKU4 S

(A) Proteolytic processing of the embedded BatCoV HKU4 S by trypsin. The HKU4 pseudovirus was treated with trypsin at the indicated concentrations and

characterized with an antibody recognizing a FLAG epitope engineered at the S C terminus. The untreated MERS pseudovirus was included as a reference

control.

(B) A Huh7 cell infection assay with the indicated pseudoviruses.

(C) An antibody blocking assay using HKU4 pseudoviruses treated with 10 mg/ml trypsin and an anti-hCD26 antibody. The recorded fluorescence intensities were

plotted as histograms, and the error bars represent ± SD for triplicate experiments.
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multi-vdw interactions in this network (Table S2). Thus, these

residues were individually mutated to alanine, and the resultant

HKU4-RBD mutants were tested for receptor binding using

SPR assays. The calculated KDs for the two mutants binding to

hCD26 were >400 mM, which is an �10-fold decrease in binding

affinity compared to that of the wild-type protein (Figures 2F, 2G,

and S2), demonstrating their important roles in receptor recogni-

tion. Interestingly, these two amino acids are conserved be-

tween HKU4-RBD and MERS-RBD (Figure 1B) and are also

involved in the binding of the MERS-CoV ligand to hCD26 (Lu

et al., 2013).

In addition to the aforementioned contact network, extra

HKU4-RBD/hCD26 interactions involve a small hydrophobic

patch (Figure 5D) and a sugar-mediated engagement (Figure 5E).

The former is located in the proximity to a bulged hCD26 helix,

which packs amino acids A291, L294, and I295 against RBD res-

idues L510 and I560; the latter consists of a carbohydrate moiety

linked to hCD26 N229 and amino acids E541 and Q544 in HKU4-

RBD, which together form two H bonds.

Variant Amino Acid Interaction Details with hCD26
between HKU4-RBD and MERS-RBD
Overall, the HKU4-RBD/hCD26 structure solved in this study is

very similar to the previously reported structure of MERS-RBD

bound to hCD26. The two complex structures can be superim-

posed onto each other well, except for two interstrand loops

(the b6/b7 and b8/b9 loops) in the RBD, which are distinctly ori-

ented between the two viral ligands (Figure 6A). Despite variance

in sequence, HKU4-RBD and MERS-RBD engage the same IV

and V blades of the hCD26 b-propeller, demonstrating an overall

similar recognition mode for hCD26 between BatCoV HKU4 and

MERS-CoV.

We next compared the receptor binding details between the

two viruses by characterizing the vdw contacts for each RBD

residue along the binding interface. In both HKU4-RBD and

MERS-RBD, a limited number of intermolecule contacts are

contributed by the core subdomain residues, such as those

located in the h2 (e.g., HKU4-Y460 and MERS-D455) and a4

(e.g., HKU4-N468 and MERS-P463) helices. These amino acids

are adapted for hCD26 in HKU4-RBD slightly better than for that

in MERS-RBD. For example, both HKU4-Y460 and HKU4-N468
Cell Host & M
provide more vdw contacts than the equivalent residues in

MERS-RBD (Figures 6B and 6C).

In contrast to the core subdomain, with only limited contribu-

tions to hCD26 engagement, the majority of the ligand/receptor

intermolecule contacts are provided by the amino acids located

in the RBD external subdomain. Most HKU4 residues in this

region contact hCD26 less efficiently than the corresponding

MERS-RBD amino acids. Among these, the S540/W535 and

K547/R542 pairs in the b8 strand and the L558/W553 pair in

the b9 strand are most evident, each showing �20–30 contact

differences (Figures 6B and 6C). Reminiscent of the low binding

affinity of HKU4-RBD to hCD26, these three residues in HKU4-

RBD were mutated to the MERS-RBD amino acids, and the

resultant mutant protein was tested for receptor binding by

SPR. The calculated dissociation constant for this triple mutant

was 0.42 mM, indicating that its binding affinity is �100-fold

greater than that of the wild-type parental protein. In addition,

the mutation also shifted the binding kinetics from a fast-on/

fast-off mode, as observed for the wild-type HKU4-RBD, to a

slow-on/slow-off mode, as observed for the MERS-RBD (Fig-

ures 2H and S2). We believe that the resultant introduction of ex-

tra vdw contacts and hydrophobic interactions by substituting

these three residues in HKU4-RBD with more hydrophobic

amino acids (e.g., tryptophan) led to the change in the binding

kinetics. A similar phenomenon of altered Kon and/or Koff rates

resulting from changes in hydrophobic interaction has also pre-

viously been observed in other protein interactions (Weihofen

et al., 2004).

DISCUSSION

Entry into susceptible host cells is the first step in the virus life cy-

cle, and each entry process starts with receptor recognition.

Identification of the cellular receptors for a virus is therefore a

key question in viral pathogenesis studies. The BatCoVs HKU4

and HKU5 represent two important bat-derived coronaviruses

closely related to MERS-CoV (Lau et al., 2013; van Boheemen

et al., 2012). In this study, we performed a functional assay to

identify potential receptors for these viruses. We found that

HKU4-RBD, a protein domain spanning residues 372–611 of

the BatCoV HKU4 S, but not the equivalent S region of BatCoV
icrobe 16, 328–337, September 10, 2014 ª2014 Elsevier Inc. 333



Figure 5. The Complex Structure of HKU4-RBD Bound to hCD26

(A) The overall structure. The two 1:1 complexes related by a two-fold axis (vertical arrow) are shown in cartoon and surface representations, respectively. The

core and external subdomains of HKU4-RBD and the b-propeller and hydrolase domains of hCD26 are individually labeled and highlighted in orange, cyan,

magenta, and green, respectively. The propeller blades (I–VIII) and the protein N/C termini are marked.

(B) Amagnified view of the HKU4-RBD structure and the ligand/receptor interface. The secondary structure elements are specified by ESPript and labeled for the

viral ligand. Yellow sticks marked with Arabic numbers indicate disulfide bonds. For the receptor, only propeller blades IV and V that engage HKU4-RBD are

shown, using a surface representation.

(C–E) The important contact sites aremarked with boxed letters A–E and are further delineated for interaction details as follows. (C) A solid network of H bond and

salt bridge interactions. (D) A small patch of hydrophobic interactions. (E) Extra H bond contacts contributed by a carbohydrate moiety linked to hCD26N229. The

residues involved and the carbohydrates referred to are shown and labeled. See also Tables S1 and S2.
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HKU5, binds to hCD26. In addition, the complex structure of

HKU4-RBD bound to hCD26 was solved, demonstrating a re-

ceptor recognition mode similar to that observed for MERS-

RBD, though with variant amino acid interaction details and a

low binding affinity. We further showed that lentivirus particles

pseudotyped with BatCoV HKU4 S could infect Huh7 cells via

engagement of hCD26. Taken together, we provide the compre-

hensive data showing that hCD26 is also a functional receptor for

the bat-derived HKU4 coronavirus. In support of this, a similar

study of the functional reactivity of BatCoV HKU4 S for hCD26

was recently reported online (Yang et al., 2014) during the revi-

sion of our manuscript.

Coronavirus S proteins are among the typical class I mem-

brane fusion proteins (Gao, 2007; Harrison, 2008; Xu et al.,

2004a, 2004b). Activation of the subsequent membrane fusion

process requires, in most cases, proteolysis of the fusion pro-

teins by host cell proteases. This proteolytic process either oc-

curs during or after maturation of the viruses, such as with

murine hepatitis virus (MHV) (Frana et al., 1985) and MERS-

CoV (Gierer et al., 2013), or occurs during viral entry, such as

with SARS-CoV (Simmons et al., 2013). When we analyzed the

lentivirus particles, the pseudotyped BatCoV HKU4 S was pre-

dominantly uncleaved. Accordingly, we initially were unable to

observe any infection of Huh7 cells by the HKU4 pseudoviruses.

However, by mimicking the maturation process of MERS-CoV,

we showed that treatment of the pseudoviruses with trypsin

enabled hCD26-mediated Huh7 infection. These results demon-

strated that engagement of a receptor by, and proteolytic activa-

tion of, the envelope S protein remain two prerequisite factors for

BatCoV HKU4 infection, as with other coronaviruses (Simmons

et al., 2013). By identifying hCD26 as a functional receptor for

BatCoV HKU4, the spatiotemporal processing of its S protein
334 Cell Host & Microbe 16, 328–337, September 10, 2014 ª2014 El
to allow subsequent membrane fusion remains an unresolved

issue that should be further explored in the future.

Our results should also shed light on virus isolation. Since the

first identification of the full-length HKU4 genome in bats in 2006

(Woo et al., 2006), culturing of the viruses has been unsuccess-

ful. Further trials should consider cell lines expressing hCD26 but

displaying variant proteases (e.g., cathepsin L, furin/furin-like

proteases, HAT, and TMPRSS2) that are commonly involved in

the processing of coronavirus spikes (Simmons et al., 2013).

Alternatively, including small amounts of trypsin during viral

culturing may facilitate the viral infection and thereby progeny

virus production.

The previous SARS epidemic and the recent emergence of

MERS-CoV in the Middle East serve as a constant reminder of

the importance of identifying potential newly emerging coronavi-

ruses in their natural animal reservoirs. Bats are natural reser-

voirs of many alphaCoVs and betaCoVs, which provide viral

genes for the genesis of newly emerging coronaviruses with

interspecies transmission potential. Phylogenetic dating sug-

gests three suspected interspecies jumps of animal betaCoVs

into humans, two of which (the SARS-CoV and MERS-CoV) are

very likely of bat origin (Ge et al., 2013; Ithete et al., 2013; Li

et al., 2005b; Memish et al., 2013) and were circulating in bats

before they ‘‘jumped’’ to an intermediate host (e.g., civets for

SARS-CoV and dromedary camels for MERS-CoV) and/or to hu-

mans (Ge et al., 2013; Guan et al., 2003; Haagmans et al., 2014;

Reusken et al., 2013). A recent study demonstrates the circula-

tion of BatCoV HKU4 in bats in the past years (Lau et al.,

2013). With the data in this study, we found that BatCoV HKU4

has evolved to utilize hCD26 as a functional receptor and there-

fore gained one of the key factors sufficing for interspecies trans-

mission and human infection. This highlights the necessity for a
sevier Inc.



Figure 6. Comparison of the HKU4-RBD/hCD26 and MERS-RBD/hCD26 Pairs for Their Binding Modes and the Interaction Details

(A) Overall similar receptor binding mode between HKU4-RBD and MERS-RBD. Superimposition of the structure of HKU4-RBD (cyan) bound to hCD26 (green)

and a complex structure of MERS-RBD (orange) with hCD26 (magenta). The loops exhibiting variant conformations are highlighted.

(B) A magnified view of the ligand/receptor (RBD in cartoon and hCD26 in surface) interface in the two binding pairs. The elements located within the vdw contact

distance from the receptor are highlighted for the h2-a4 region (gray) in the core subdomain, and the b6-b7 (tint), b8 (red), and b9 (blue) strands in the external

subdomain. Top: the HKU4-RBD/hCD26 structure. Bottom: the MERS-RBD/hCD26 structure.

(C) Better hCD26 adaptation in MERS-RBD than in HKU4-RBD. For each element specified in (B), the amino acid sequences were aligned between HKU4-RBD

and MERS-RBD. The number pairs listed above the sequence highlight the differences in vdw contacts. For clarity, only those providing R10 intermolecule

contacts are labeled. The S540/W535, K547/R542, and L558/W553 pairs showing the most contact differences are marked with red boxes.
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surveillance program to monitor HKU4 circulation in bats. Spe-

cial attention should be paid to virus variants incorporating mu-

tations in S that would increase their affinity for hCD26 and/or

confer susceptibility to host protease cleavage.

The complex structure presented in this study makes BatCoV

HKU4 the sixth coronavirus in the Coronaviridae family for which

the receptor-recognition mode has been elucidated with com-

plex structures, in addition to SARS-CoV (Li et al., 2005a),

MERS-CoV (Lu et al., 2013; Wang et al., 2013), MHV (Peng

et al., 2011), NL63 (Wu et al., 2009), and porcine respiratory co-

ronavirus (Reguera et al., 2012). Among these, BatCoV HKU4

likely represents a coronavirus suboptimized for receptor adap-

tation, displaying micromolar affinity for hCD26. Compared to

MERS-CoV, which recognizes the same hCD26 molecule as a

receptor (Raj et al., 2013), HKU4-RBD and MERS-RBD form

similar structures and engage hCD26 via similar binding modes.

Nevertheless, the two viral ligands exhibit a difference in recep-

tor binding affinity of three orders of magnitude. We noted that in

the RBM region predominating the ligand binding interface with

the receptor, themajority of the interface residues in MERS-RBD

contribute more vdw contacts than the equivalent amino acids in

HKU4-RBD. This demonstrates a much better adaptation to

hCD26 for MERS-CoV than for BatCoV HKU4, which was further

supported by our mutagenesis data. We therefore presented the

molecular basis for the observed affinity variance and a struc-

tural explanation for the suboptimized hCD26 binding by BatCoV

HKU4. This weak binding also raises the possibility for the

presence of other high-affinity receptors for BatCoV HKU4.

Nevertheless, the physical interaction between HKU4-RBD and

hCD26 seems to favor a scenario in which BatCoV HKU4 has

evolved to adapt to the human receptor. In this sense, we cannot

rule out the possibility that this bat-derived virus has been

exposed, at some stage, to humans or human tissues.

Though with slight differences, the BatCoVs HKU4 and HKU5

exhibit similar sequence identities to MERS-CoV in the RBD re-
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gion (54.4% versus 52.9%). The marked difference between the

HKU4-RBD and HKU5-RBD relative to MERS-RBD, however,

lies in two sequence deletions in the HKU5-RBD. Both deletions

are located in the external subdomain and in two regions corre-

sponding to the scaffold strands b7 and b8 in the MERS/HKU4-

RBD structure. The deletions would therefore alter the fold of

HKU5-RBM and abolish its interaction with hCD26. Similar

amino acid deletions that exclude the viral ligand from interacting

with hACE2 have also been recorded for diverse SARS-like coro-

naviruses identified in bats (Ren et al., 2008). An intact full-length

external subdomain is likely a prerequisite to maintain binding

capacity for hCD26 or hACE2, in addition to preserving key inter-

acting residues, such as K506 and E541 in HKU4-RBD.

EXPERIMENTAL PROCEDURES

Gene Construction and Protein Expression

The coding sequences for target proteins were separately cloned into the

EcoRI and XhoI restriction sites of pFastBac1 vector for baculovirus expres-

sion (Bac-to-Bac baculovirus expression system, Invitrogen). For each pro-

tein, an N-terminal gp67 signal peptide and a C-terminal hexa-His were added

to facilitate protein secretion and purification. Sf9 cells were used to package

and amplify the baculovirus, and High5 cells were used to express the pro-

teins, which were purified by nickel affinity chromatography and gel filtration.

The proteins were then used for crystallization and SPR experiments.

To prepare the Fc chimeric proteins, the fragments were fused 50-terminally

to a fragment coding for mouse Fc domain and ligated into the pCAGGS

expression vector via the EcoRI and XhoI restriction sites. All fusion proteins

were linked to the signal peptide of the MERS-CoV S protein. The proteins

were transiently expressed in human embryonic kidney 293T (HEK293T) cells

and purified by Protein A affinity chromatography and gel filtration. The purified

proteins were then used for fluorescence-activated cell sorting (FACS) exper-

iments (see Supplemental Experimental Procedures for detailed information).

Crystallization, Data Collection, and Structure Determination

For protein crystallization, monomeric HKU4-RBD was mixed with hCD26 at a

1:1 stoichiometry and crystallized by the sitting-drop vapor diffusionmethod at

4�C at 15mg/ml in a buffer consisting of 0.1M sodium citrate (pH 5.5) and 15%
icrobe 16, 328–337, September 10, 2014 ª2014 Elsevier Inc. 335
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PEG 6000. Diffraction data were collected with cryoprotected (in a reservoir

solution containing 20% [v/v] glycerol) crystals at the Shanghai Synchrotron

Radiation Facility (SSRF) BL17U. The complex structure was solved bymolec-

ular replacement using the structure of MERS-RBD/hCD26 (PDB: 4KR0) as the

search model. For details, see Supplemental Experimental Procedures).

Binding Assays

Protein interactions were tested using both SPR analysis and FACS experi-

ments. For theSPRassays, all proteinswere exchanged into a buffer consisting

of 10 mM HEPES (pH 7.4), 150 mM NaCl, and 0.005% v/v Tween 20. The indi-

cated RBD proteins were immobilized onto CM5 chips and analyzed for real-

time binding by flowing through gradient concentrations of hCD26 or hACE2.

For the cell sorting analysis, Huh7 or hCD26-transfected BHK cells were

stained with different RBD-Fc fusion proteins and analyzed by flow cytometry.

For the binding-block assay, Huh7 cells were incubated with an antibody (anti-

hCD26 or anti-Flag; Sigma) or with the purified ectodomain protein (hCD26 or

hACE2) before the addition of HKU4-RBD-mFc, then the cells were analyzed

by cell sorting (for details, see Supplemental Experimental Procedures).

Pseudovirus Infection

BatCoV HKU4 pseudovirus particles were produced in HEK293T cells using a

previously described method (Gao et al., 2013). For the pseudovirus infection,

the virus particles were first treated with trypsin and then used to infect Huh7

cells in the presence or absence of the anti-hCD26 antibody. The luciferase ac-

tivity was determined 48 hr postinfection using a GloMax 96 Microplate lumin-

ometer (Promega) (for details, see Supplemental Experimental Procedures).
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multiple sequence alignments in PostScript. Bioinformatics 15, 305–308.

Guan, Y., Zheng, B.J., He, Y.Q., Liu, X.L., Zhuang, Z.X., Cheung, C.L., Luo,

S.W., Li, P.H., Zhang, L.J., Guan, Y.J., et al. (2003). Isolation and characteriza-

tion of viruses related to the SARS coronavirus from animals in southern China.

Science 302, 276–278.

Haagmans, B.L., Al Dhahiry, S.H., Reusken, C.B., Raj, V.S., Galiano, M.,

Myers, R., Godeke, G.J., Jonges, M., Farag, E., Diab, A., et al. (2014).

Middle East respiratory syndrome coronavirus in dromedary camels: an

outbreak investigation. Lancet Infect. Dis. 14, 140–145.

Harrison, S.C. (2008). Viral membrane fusion. Nat. Struct. Mol. Biol. 15,

690–698.

Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., and
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