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Abstract: Within the last century, human lifestyle and dietary behaviors have changed dramatically.
These changes, especially concerning hygiene, have led to a marked decrease in some diseases,
i.e., infectious diseases. However, other diseases that can be attributed to the so-called ‘Western’
lifestyle have increased, i.e., metabolic and cardiovascular disorders. More recently, multifactorial
disorders, such as autoimmune and neurodegenerative diseases, have been associated with changes
in diet and the gut microbiome. In particular, short chain fatty acid (SCFA)-producing bacteria
are of high interest. SCFAs are the main metabolites produced by bacteria and are often reduced
in a dysbiotic state, causing an inflammatory environment. Based on advanced technologies,
high-resolution investigations of the abundance and composition of the commensal microbiome
are now possible. These techniques enable the assessment of the relationship between the gut
microbiome, its metabolome and gut-associated immune and neuronal cells. While a growing
number of studies have shown the indirect impact of gut metabolites, mediated by alterations of
immune-mediated mechanisms, the direct influence of these compounds on cells of the central
nervous system needs to be further elucidated. For instance, the SCFA propionic acid (PA) increases
the amount of intestine-derived regulatory T cells, which furthermore can positively affect the central
nervous system (CNS), e.g., by increasing remyelination. However, the question of if and how PA can
directly interact with CNS-resident cells is a matter of debate. In this review, we discuss the impact of
an altered microbiome composition in relation to various diseases and discuss how the commensal
microbiome is shaped, starting from the beginning of human life.

Keywords: multiple sclerosis; microbiome; neurodegeneration; gut–brain-axis; short chain fatty
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1. Introduction

In recent years, the implications of the gut microbiome and its metabolites in the development
and progression of various diseases has gained increasing attention. Therefore, in this review we aim
to give an insight into the current research regarding microbiome alterations as a possible cause for
the increase in autoimmune and neurodegenerative diseases. Environmental factors are frequently
discussed as triggers or even causes of various diseases. Although understanding the direct connection
between environmental factors and disease incidence is still a matter of debate, nutrition and the
continuously varying dietary habits in Western society are already established as a causative link to
disease accumulation.

In humans, the microbiome of the gut, particularly of the colon, harbors the largest number of
microorganisms [1]. Within the colon, among other functions, the bacterial population processes
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indigestible components of food by bacterial-derived enzymes, optimizing the uptake of nutritive
sources [2,3]. During this process, gut bacteria produce a vast amount of bioactive compounds that
are crucial for health and disease in the host [4]. This symbiosis comprises pivotal developmental
advantages in eukaryote evolution, not only based on the improved fermentation of food, but also on
the direct interaction between the microbiome and the innate and adoptive immune system. Therefore,
a so-called dysbiosis, i.e., an imbalance in the microbiome composition, exerts deleterious consequences
on human health and immunity [5]. A dysbiotic microbiome composition can be the result of several
external and internal factors, e.g., treatment with antibiotics, stress, or diet [6–8]. However, not only
external factors, but also the host’s genetics have an impact on the gut microbiome composition [9].

Various chronic disorders are considered to be associated with an altered microbiome.
In inflammatory bowel disease (IBD), a compositional shift in the commensal microbiome is caused
by a chronic inflammation of the gastrointestinal tract [10,11]. In addition, the expansion of
potentially harmful bacteria, the so-called pathobionts, is discussed as an underlying cause of
IBD, namely in Crohn’s disease [12]. Besides the main bacterial phyla, i.e., Firmicutes, Bacteroidetes,
and Actinobacteria [13], pathobionts in low abundance also normally occur in a healthy individual,
but only tend to expand under pathological conditions, as is the case in the dysbiotic state [12,14].
The chronic auto-immune disease celiac disease (CD) is triggered by the consumption of gluten and
affects the gastrointestinal system. Recently, the impact of the gut microbiome as a modulator of
the disease-associated immunopathology was discussed [15]. CD patients are mostly positive for
HLA-DQ2 or HLA-DQ8 [16], but not every person with this susceptibility necessarily develops the
disease [15]. Therefore, the investigation of additional disease-associated factors is on the rise. Various
alterations of the gut microbiota in CD have been found, and so far it has been demonstrated that
patients with active CD show a decrease in the abundance of Firmicutes [17], as well as a decrease in the
proportion of Bifidobacterium [18–21], Lactobacillus spp. [20], and Enterococcus [20]; instead, patients have
an increase in the abundance of Proteobacteria [17,22], and increased levels of Bacterioides [19] [20,23],
E. coli [19,23], Staphylococcus [19,20], and Clostridium [19]. The symptomatology of CD does not
only comprise gastrointestinal problems, but also neurological impairments. The most common
neurological manifestation of CD is cerebellar ataxia, followed by peripheral neuropathy, as well
as many other neurological symptoms, e.g., epilepsy and cognitive impairment [24]. Results from
electroencephalography (EEG), somatosensory evoked potentials (SEPs), and transcranial magnetic
stimulation (TMS)—which show epileptic discharges, dysfunctional somatosensory conduction,
disinhibition and hyperfacilitation of the motor cortex—lead to the introduction of a so-called
“hyperexcitable celiac brain” [24].

The commensal microbiome is essential for the regulation of immune tolerance [25]. Regulatory
immune components, such as regulatory T cells (Treg), ensure the sufficient establishment of immune
tolerance, not only towards endogenous components, but also more specifically towards the enteric
microbiota [26]. The immune system directly influences the commensal microbiome and vice versa.
Therefore, it is not surprising that autoimmune diseases have been shown to be associated with a
dysbalanced microbiome. For instance, recent studies discovered alterations in the microbiome of
patients suffering from the autoimmune disease multiple sclerosis (MS) [27]. In MS, distinct bacterial
phyla, which are supposed to be involved in the induction of intestinal Treg, were decreased in
comparison to healthy controls [28].

Also, in psychiatric disorders, including autism spectrum disorder (ASD) and depression,
associations with gut microbiome alterations were found [29,30]. In ASD, gastrointestinal disruption
correlates with disease severity [31]. Additionally, a reduction in microbiome diversity, characterized
by reduced abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae, was
observed [29]. ASD-dependent behavioral as well as gastrointestinal symptoms could be ameliorated
by fecal microbiota transplantation [32]. However, interventions with fecal transplantations or
probiotics are still a matter of debate, due to a lack of temporal and causal relationship between
microbial alterations [33]. It is not known whether these interventions actually have the ability to
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reverse already established metabolic or immunological deficits. Additionally, it requires to be further
investigated which microbial composition specifically cures or even worsens a certain disease [33].

Furthermore, a dysbiotic state is also discussed in relation to primary and secondary
neurodegenerative diseases. Most neurodegenerative disorders have been associated with a genetic
predisposition. Although the involvement of environmental factors in disease pathogenesis has been
investigated for decades, currently, the impact of diet and its consequences on the microbiome have
only recently been appreciated.

2. The Role of Diet in Dysbiosis Onset

The symbiotic relationship between eukaryotes and prokaryotes started early in evolution. One of
the earliest and most impressive examples are the mitochondria, which originate from endosymbiotic
prokaryotes [34–36]. Furthermore, to date, the human body is in a symbiotic relationship with trillions
of bacteria, which have remained autonomously. These bacteria colonize the skin and the mucosal
sites, i.e., the pulmonary system, and the gastrointestinal tract where they ensure the digestion of
complex food components, protection from pathogens, and the establishment of a healthy immune
system [37]. In humans, colonization with bacteria is assumed to occur during or shortly after
birth. However, currently a possible pre-birth colonization has also been discussed, supported by the
observation that bacterial DNA is present in the placenta [38–40]. Already during birth, delivery via
caesarean section (C-section) or via natural birth significantly determines the abundance and amount
of gut bacteria [41,42]. In addition, whether newborns are breast-fed or nursed with formula milk
contributes to their microbial composition later on [43,44]. The microbiome composition evolves
within the first three years of life and remains until adulthood [44,45]. In addition, the implication
of the microbiome in neurodevelopmental processes has already been shown. In a mouse model,
a maternal high-fat diet caused alterations in the offspring’s social behavior, based on a reduction of
oxytocin-immunoreactive neurons, along with reduced long-term potentiation of dopaminergic neurons
within the ventral tegmental area [46]. On the contrary, a diet containing omega-3 polyunsaturated
fatty acids beneficially influences stress resistance and depressive-like behavior mediated by the
hypothalamic–pituitary–adrenal (HPA) axis [47].

The diversity of the gut microbiome can be influenced by several factors. It has been shown
that the phylogenetic composition of fecal microbiota differs between human populations of different
countries, under non-pathological conditions. A comparison of United States (US) residents with
Malawian and Amerindian cohorts showed that in US adults the fecal microbiota was observed to
be the least diverse. This variance, beside differences in geography, can be due to diet, hygiene and
lifestyle in general [45]. A factor of increasing interest is diet. For instance, long-lasting dietary
alterations even alter enterotype states. Investigations of microbiome-associated nutrients displayed
distinct correlations between certain diets and the occurrence of bacterial phyla. Predominantly,
the phyla Bacteroidetes and Actinobacteria are positively associated with fat, but negatively associated
with fiber; however, the opposite association was discovered for Firmicutes and Proteobacteria [48]. Since
short chain fatty acids (SCFAs) are the major metabolites produced by bacteria in the gut, a dysbiosis
is mostly associated with a decreased abundance of SCFA-producing bacteria. Reduced amounts
of SCFAs are associated with a rather inflammatory environment and a disrupted gut epithelial
integrity [49]. In a viscous circle, alterations in diet cause imbalances in bacterial communities, which
in turn change metabolic processes within the microbiome, thereby causing a bias in metabolites, which
are made available for the human organism. These metabolites include not just SCFAs but also bile
acids, lipids and vitamins. SCFAs, for instance, manipulate the host´s gene expression by acetylation
and methylation, thereby intervening in cellular and metabolic processes [50]. Most interestingly,
diet directly influences histone acetylation and methylation of multiple host tissues, whereby low
abundances of SCFAs are associated with a lesser degree of acetylation, representing changes in
chromatin remodeling [51].
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Our main food components consist of carbohydrates, proteins, and fats. The main end products
after bacterial fermentation are SCFAs [52], micronutrients such as vitamins [53], and secondary
bile acids [54]. Organic acids, emerging from the fermentation of carbohydrates, are used as an
energy source by the resident bacteria. After passing through the gastrointestinal tract endothelia,
either by active transport or passing passively, the metabolites enter the blood circulation [4]. Once
systemically available, these metabolites have a crucial impact on various physiological processes.
For instance, the consumption of high amounts of dietary fibers has been shown to reduce the risk
for coronary heart disease [55] and type II diabetes [56], for example, by lowering total cholesterol
and low-density lipoprotein cholesterol [57] and by reducing fasting blood glucose and glycosylated
hemoglobin [58], respectively. SCFAs exert various functions, mainly by directly regulating the immune
response [4]. Besides diverse dietary interventions, in other studies, SCFAs have been shown to
directly regulate the immune response, thereby rather favoring an anti-inflammatory environment. For
instance, butyrate and propionate have the ability to induce apoptosis of neutrophils [59]. Additionally,
it was shown that SCFAs increase the amount of colonic Treg [60]. In an animal model of colitis,
microbe-derived butyrate was found to be relevant for the induction of the extrathymic generation
of Treg [61], and ameliorated the disease course by inducing the differentiation of colonic Treg [62].
Butyrate also exerts immunomodulatory effects on intestinal macrophages, causing a reduction in
the production of pro-inflammatory cytokines, which is mediated by histone deacetylase (HDAC)
inhibition [63].

Moreover, SCFAs are important drivers of metabolic processes. In a fecal microbiota transplantation
study, the infusion of intestinal microbiota from lean donors to patients with metabolic syndrome
resulted in an increased insulin sensitivity coupled with elevated levels of butyrate-producing
bacteria [64]. Additionally, both propionate and butyrate have been shown to positively modulate
body weight and glucose homeostasis by activating intestinal gluconeogenesis [65].

Since an un-physiologic diet is one of the main issues in large areas of the world today, the term
Western diet has evolved into a paradigm for this kind of diet, based on the diet-dependent accumulation
of chronic disorders and obesity [66,67]. The Western diet is characterized by high amounts of animal
proteins, simple sugars and fats, and mostly lacks the consumption of fibers [4].

The link between diet, the gut microbiome, and the incidence of chronic multifactorial diseases,
such as neurodegenerative disorders, represents a more complex interplay. In an experimental
model of MS, for instance, we could show that the administration of the SCFA propionic acid (PA),
which is produced by gut bacteria during the fermentation of fiber-rich food compounds, ameliorates
the disease course. Hence, reduced inflammatory processes within the central nervous system
(CNS) are accompanied by less demyelination of the white matter and less axonal loss. In contrast,
the administration of long chain fatty acids (LCFAs), widely found in the diet, exacerbates disease
symptoms. Most interestingly, based on the strong relationship between gut bacteria and the cells of
the gut-associated lymphatic tissue, PA increases the amount of intestine-derived anti-inflammatory
Treg, whereas LCFAs promote the polarization towards pro-inflammatory T-helper (Th) 1 and Th17
cells [60]. Further, regarding the direct interplay between microbial peptides and the gut-associated
immune system, functional observations could show that specific microbial protein-T cell-Receptor
(TCR) interactions lead to the induction of a MS-like disease, including axonal loss, mediated by
epitope mimicry in a humanized mouse model [68]. Besides fatty acids, other studies have also
shown that high salt diet—another crucial component of the Western diet—exacerbates disease
activity of experimental autoimmune encephalomyelitis (EAE) by Th17 induction via the depletion of
Lactobacillus murinus [69].

The use of probiotics to overcome a dysbalanced microbiome may pose a therapeutic option.
Probiotics are “live organisms that, when administered in adequate amounts, confer a health benefit
on the host” [70]. Thus, besides the influence on probiotic species by dietary changes, the gut
microbiota composition could be directly modulated by certain species or a mixture of species to
evoke health benefits. So far, reported benefits include protection against infectious disease, shown
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by reduced sepsis in infants in rural India in a randomized synbiotic trial [71], the prevention of
cardio-metabolic disease, represented by a decrease in glucose, HbA1c, insulin and homoeostasis model
assessment-estimated insulin resistance (HOMA-IR) in patients with diabetes [72], and the alleviation
of gastrointestinal symptoms, reported as an increase in gastrointestinal well-being and decrease in
digestive symptoms [73]. By now, the only approved fecal microbiota transplantation therapy exists for
Clostridium difficile infection and could act as an alternative to antibiotic treatment in primary C. difficile
infection [74]. Probiotics as dietary supplements also show a high degree of controversial findings.
Whereas no positive effects of probiotic use have been reported in Crohn’s disease, in ulcerative colitis,
probiotics are effective as remission induction and maintenance therapy [75]. Probiotic treatment
efficacy is highly context dependent, for instance, it can differentially affect people with the same
health status. In a recent article, it was reported that the gut mucosal colonization of humans, who
consumed a mixture of eleven probiotics, differed inter-personally. The probiotics were found in
the feces, but regarding the mucosal microbiome, there was a person-, strain- and region-specific
colonization resistance, which led to the probiotic’s differentiated ability to affect the resident mucosal
microbiome and its function [76]. This study highlights possible limitations that can occur when
only microbiome analysis from fecal samples are taken into account, instead of combining it with
functional analysis of the mucosal microbiome. Therapeutical interventions addressing the microbiome
by targeting dietary habits seem to be a promising tool to expedite research concerning so-called
precision medicine, comprising diagnostics and treatment. However, standardized protocols for the
collection and isolation of the microbiome, as well as sequencing techniques, are required in order to
ensure a successful applicability [77].

3. Dysbiosis in Neurodegenerative Disorders

The impact of microbiome dysbiosis in the development of neurodegenerative disorders has
gained increasing attention of the current research. The main challenge here is to breakdown the causal
relationship of cause and consequence—which is by now rarely discussed, due to the intricacy of the
human body and heterogeneity of chronic disorders. First, associations between an altered microbiome
composition and neurodegeneration were provided for primary and secondary neurodegenerative
disorders. For instance, in Parkinson´s disease (PD), the abundance of the genera Prevotellaceae—known
as SCFA-producers—was shown to be reduced [78]. Furthermore, PD patients show reduced levels
of the SCFAs acetate, butyrate, and propionate in fecal samples, in comparison to age-matched
controls [79]. Also, the relative abundance of Enterobacteriaceae could be associated with the severity
of motor dysfunction in PD [80]. More and more studies are describing gastrointestinal microbiome
alterations in PD patients compared to non-PD patients, but the bacterial species altered show a high
variety between these studies [81], possibly based on differences in study population, methodological
implementation, and research focus. In Alzheimer´s disease (AD), 16S ribosomal RNA gene sequencing
of DNA isolated from fecal samples revealed a decreased abundance of Firmicutes and Actinobacteria
and an increased abundance of Bacteriodetes at the phylum level. Furthermore, a correlation between
the altered abundance and biomarkers in the cerebrospinal fluid of AD pathology was observed [82].
Additionally, the Gram-negative bacterium Helicobacter pylori is positively associated with, and seems
to influence the course of, AD [83,84]. It is hypothesized that H. pylori induces blood–brain barrier
(BBB) dysfunction in AD by increasing the blood homocysteine level, followed by hydrogen peroxide
production due to homocysteine auto-oxidation. Hydrogen peroxide subsequently damages vascular
endothelial cells of the BBB, leading to its dysfunction. As a consequence, the Aβ concentration in the
brain increases with a concurrent decrease in its clearance [84].

Microbiome metabolites can modulate the disease severity of neurodegenerative diseases
via two mechanisms: (a) by immune-mediated neurodegeneration, or, (b) by direct effects of
microbiome-derived metabolites on cells of the CNS (Overview of gut-brain interaction in Figure 1).
Concerning indirect effects, it has been shown that Treg are able to exert neuroprotection by increasing
remyelination and oligodendrocyte differentiation [85]. Moreover, interleukin (IL) 10, as a key
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Treg cytokine, is capable to trigger neuroregeneration [86]. In contrast, in EAE it was shown that
pro-inflammatory Th17 cells directly promote neurodegeneration mediated by the direct interaction
between Th17 and neuronal cells, especially during the peak of disease. This interaction causes
severe neuronal damage [87]. The direct effects of microbiome-derived metabolites on the CNS are
currently poorly understood, but no less important. Since it is known that gut microbes produce
neurotransmitters like γ-Aminobutyric acid (GABA) [88], histamine [89], dopamine, noradrenaline
and serotonin [90,91], there is probably a large number of other neuro-active agents produced by gut
bacteria that can directly interact with cells of the CNS. In detail, for the inhibitory neurotransmitter
GABA, it was shown that GABA can be produced by strains of Lactobacillus and Bifidobacterium through
the decarboxylation of l-glutamate by glutamate decarboxylases [88]. This synthesis, from l-glutamate
to GABA, also takes place in inhibitory neurons [92]. Only a few studies have so far discussed the effect
of gut microbiome-produced metabolites and their interaction with the CNS. For example, a chronic
treatment with Lactobacillus rhamnosus induced changes in CNS GABA receptor expression in mice.
The modulation of GABAAα2, GABAAα1 and GABAB1b mRNA expression, as well as a reduction in
anxiety- and depression-related behavior by Lactobacillus rhamnosus, could be reversed by vagotomy [93].
GABA can be transported from the gut lumen into the blood through the hPAT1 H+/amino acid
symporter, which is present in the human gastrointestinal tract [94]. However, the existence of GABA
transporters in the human BBB, and hence the ability of gut-derived GABA to enter the CNS, is
still under evaluation. Since the variety of resident bacterial strains seems to be endless, so are the
microbiome-derived metabolites. The study of these potential neuro-active compounds is still in its
infancy, especially the use of humanized in vitro models, which is more of an exception than a rule.

The interplay of gut metabolites and the CNS has shaped the term of the gut–brain axis. This
interplay was classically understood to be one-directional, meaning that the CNS exclusively regulates
gastrointestinal functions. The modulation of the gut function, namely the motility or the secretion of
components into the gut lumen, is regulated by the sympathetic and the parasympathetic nervous
system [95]. Besides the sympathetic and parasympathetic nervous system, the vagus nerve together
with the enteric nervous system (ENS) and the hypothalamic–pituitary–adrenal axis (HPA), originally
shaped the term gut–brain axis. These components link the CNS with the visceral organs, including
the gastrointestinal tract [96], referring to the bidirectional communication between the brain and the
gastrointestinal system. The vagus nerve contains 20% efferent fibers, sending signals from the brain
to the body, and 80% afferent fibers, sending signals from the periphery to the brain [97]. Thereby,
different branches of efferent fibers orchestrate the intestinal contraction of smooth muscles and mucosal
secretion within the gut [96] by providing inhibitory and excitatory stimuli [98]. Since afferent fibers of
the vagus nerve are not directly connected to the gut microbiota, the interaction is limited to cells located
in the epithelium or, concerning microbiome-derived signals, to metabolites that diffuse through the
epithelium [99]. Enteroendocrine cells are part of the intestinal epithelial cells, modulating the motility,
secretion and intake of nutrition within the gastrointestinal tract. By the release of several substances,
e.g., serotonin, ghrelin, cholecystokinin, and peptide YY, enteroendocrine cells communicate with
vagal afferent fibers, which express a variety of the relative receptors [100]. The communication of
the ENS with cells of the intestine is mediated by a complex neural network [101], and thereby the
gut functionality is modulated by synaptic transmission. Mechano- and chemoreceptors respond to
various extrinsic stimuli. The motor activity of the stomach and the small intestine are modulated by
serotonin-sensitive vagal mechanoreceptors, present within the afferent fibers [102].
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Figure 1. The gut and the brain—interacting systems. The central nervous system is in direct contact
with the gastrointestinal system through the enteric nervous system and the vagus nerve. Furthermore,
gut microbiome-produced metabolites, like the short chain fatty acid (SCFA) propionic acid (PA) or the
neurotransmitter γ-Aminobutyric acid (GABA), can take the indirect route of the vascular system to
finally reach the central nervous system (CNS).

Only recently has the underlying reciprocal impact of microbiome metabolites on the gut–brain
axis gained increasing attention [103]. In this context, the term gut–brain axis has been extended
to “microbiota–gut–brain axis”. Microbial metabolites are known to directly impact a subset of
enteroendocrine cells in the gut [104]. For instance, gut-derived SCFAs are assumed to exert a variety
of effects on the gut–brain axis. It is already known that SCFAs can affect several cell types [105,106].
These effects are either mediated by the G-protein coupled receptors (GPR) 41 and 43 [107], or by
epigenetic modulation via HDAC inhibition [108–110]. For enteroendocrine cells, it was shown that
these effects were mediated by GPR 41, thereby contributing to the energy balance of the host. More
specifically, in GPR 41 knockout mice, the gut motility is increased due to reduced levels of peptide YY,
resulting in a deficiency in normal weight gain [104]. The link between SCFAs and histone acetylation
needs further investigation concerning the causal connection between environmental factors and
response in gene expression. In graft-versus-host disease, microbiome alterations resulted in a reduced
availability of the SCFA butyrate. A reduction of butyrate was accompanied by a decreased level of
acetylated histones, whereas intragastric administration of butyrate restored histone H4 acetylation
levels [111]. The acetylation of histones is considered to facilitate gene expression by alterations of
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the chromatin status. Therefore, HDAC inhibitors prevent the removal of acetyl groups from lysine
residues of the chromatin structure by HDACs, therefore ensuring a relaxation of the nuclear chromatin
structure. This relaxation promotes the interaction of transcription factors with gene promoters,
which modulates gene expression [112]. There are four classes of HDAC inhibitors: class I inhibitors
include the HDACs 1, 2, 3 and 8; and class II inhibitors, subdivided into class IIa including HDACs
4, 5, 7, 9, and class IIb including HDACs 6 and 10. Class IV HDACs include HDAC 11. Class III
HDACs are differentiated based on their dependence on nicotiamide adenine dinucleotide (NAD+)
and are commonly known as sirtuins, however, class I, II and IV HDACs are zinc finger-dependent
enzymes [112,113]. In addition, acetylation is not exclusively limited to chromatin structures, but
also occurs in various proteins, thereby intervening in various cellular processes, including protein
expression and function, mitochondrial function, intracellular transport, and metabolic processes [114].
Post-translational modifications could play a key role in closing the gap between environmental factors
and genetic disease susceptibility, especially, since imbalances between histone acetyltransferases
(HAT) and HDAC activity are considered to favor neurodegenerative diseases [112]. On the one hand,
it was already demonstrated that an altered HDAC activity causes neuronal damage. A member of the
HDAC Classes I and II, namely HDAC1, induces axonal damage leading to neuronal death, following
nuclear export [115]. On the other, alterations in the histone-acetylation status have been observed in
neurodegenerative conditions. In Huntington´s disease (HD), the polyglutamine-containing domain
of the abnormal huntingtin protein was able to bind to HAT domains, therefore influencing the
acetyltransferase activity [116]. Further, investigating the expression of HDACs in the brains of HD
patients, the loss of acetylated histone H2A, H2B, H3 and H4 within cells in the caudate nucleus
and Purkinje cells of the cerebellum could be observed, while HDAC 5 levels were increased [117].
Additionally, in an animal model of HD, butyrate increased histone acetylation, thereby protecting
against neurotoxicity. In contrast, acetylated histone H3 and H4 levels were significantly increased
in post-mortem brain tissues of AD patients [118]. Correspondingly, in PD patients, alterations in
histone acetylation could be also observed in post-mortem tissues [119]. Therefore, targeting histone
acetylation processes could comprise a promising tool for novel therapeutic strategies.

In Alzheimer´s disease, targeting chromatin remodeling by using the HDAC inhibitor
sodium 4-phenylbutyrate also exerts beneficial effects [120]. Likewise, sodium butyrate displayed
neuroprotective effects in Huntington´s disease by deacetylase inhibition [121]. In addition, a recent
study has shown that propionate protects against haloperidol-induced neurite lesions, possibly by
modulating the transcription factor cyclic adenosine monophosphate (cAMP) response element-binding
protein (CREB), thus preventing the reduced expression of neuropeptide Y [122]. PA beneficially affects
the blood–brain barrier integrity by protection from oxidative stress via the nuclear factor, erythroid
2 like 2 (Nrf2) signaling pathway [123]. However, there is still a lack of explicit proof for the direct
contribution of gut metabolites to neurodegeneration and neuroregeneration.

In summary, the composition and diversity of our gut microbiome is highly determined by our
everyday life: the geographical sphere we life in, the infectious agents we have been in contact with,
the antibiotics we use, and, probably most important of all, our diet. The interplay of SCFAs with
the gut microbiome and the associated immune system is a highly interesting, but also intensely
studied, topic of current research. Therefore, it is necessary to expand future investigations to the
assessment of the currently unknown metabolites and their potential to directly interact, beyond the
metabolome–immune axis, with cells of the CNS. The suspicion of a connection between various
disorders, like neurodegenerative diseases, and the gastrointestinal milieu, is increasingly being
confirmed. However, the question of to what extent the microbiome contributes to neurodegeneration
is still not fully understood. Targeting the microbiome, either by dietary interventions or the
administration of prebiotics, opens up new therapeutic avenues for the treatment of both systemic
diseases and also neurodegenerative disorders. Even though the immunomodulatory capacity of gut
metabolites provides an explanation for the amelioration of neurodegenerative processes, the direct
interplay of gut metabolites on neurons or glia cells needs to be further investigated.
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Abbreviations

IBD Inflammatory bowel disease
Treg Regulatory T cells
MS Multiple sclerosis
ASD Autism spectrum disorder
HPA Hypothalamic–pituitary–adrenal axis
SCFAs Short chain fatty acids
HDAC Histone deacetylase
PA Propionic acid
CNS Central nervous system
LCFA Long chain fatty acids
Th T-helper
TCR T cell-Receptor
EAE Experimental autoimmune encephalomyelits
PD Parkinson’s disease
AD Alzheimer’s disease
IL Interleukin
GABA γ-Aminobutyric acid
GPR G-protein coupled receptor
HAT Histone acetyltransferase
HOMA- Homoeostasis model assessment-estimated
Nrf2 Nuclear factor, erythroid 2 like 2
IR Insulin resistance
ENS Enteric nervous system
NAD+ Nicotiamide adenine dinucleotide
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