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Abstract: The aim of this investigation was to evaluate predictive CT imaging features and clinical
parameters to distinguish infected from sterile fluid collections. Detection of infectious agents by
advanced microbiological analysis was used as the reference standard. From April 2018 to October
2019, all patients undergoing CT-guided drainages were prospectively enrolled, if drainage material
volume was at least 5 mL. Univariate analysis revealed attenuation (p = 0.001), entrapped gas
(p < 0.001), fat stranding (p < 0.001), wall thickness (p < 0.001) and enhancement (p < 0.001) as imaging
biomarkers and procalcitonin (p = 0.003) as clinical predictive parameters for infected fluid collections.
On multivariate analysis, attenuation > 10 HU (p = 0.038), presence of entrapped gas (p = 0.027) and
wall enhancement (p = 0.028) were independent parameters for distinguishing between infected and
non-infected fluids. Gas entrapment had high specificity (93%) but low sensitivity (48%), while wall
enhancement had high sensitivity (91%) but low specificity (50%). CT attenuation > 10 HU showed
intermediate sensitivity (74%) and specificity (70%). Evaluation of the published proposed scoring
systems did not improve diagnostic accuracy over independent predictors in our study. In conclusion,
this prospective study confirmed that CT attenuation > 10 HU, entrapped gas and wall enhancement
are the key imaging features to distinguish infected from sterile fluid collections on CT.

Keywords: CT; drainage; attenuation; gas entrapment; wall enhancement; abscess; infection

1. Introduction

Percutaneous drainage of infected fluid collections is recommended and generally
accepted as the preferred treatment in eligible patients [1]. Percutaneous abscess drainage
has a high therapeutic success rate and should be the therapy of choice because it is less
invasive and less expensive than surgical drainage [2–4]. Technical improvements in
computed tomography (CT) and ultrasound resulted in the increased use of this reliable
and minimally invasive procedure. In addition to the therapeutic importance of CT, its role
in diagnosing abscesses and other processes of infection is promising.
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CT imaging parameters with predictive values for the presence of infected fluid ac-
cumulations include gas entrapment, fluid attenuation, fat stranding, wall enhancement,
wall thickness and internal septa [5–9]. The sensitivity and specificity of these imaging
findings are limited, making it difficult to distinguish sterile from non-sterile fluid collec-
tions. In CT-guided drainage of postoperative abdominal fluid collections, the detection
rate for microorganisms is 48–78% [7–9]. Studies on image-guided drainage in suspected
spondylodiscitis describe a lower detection rate of 27–65% [10–13]. Magnetic resonance
imaging (MRI) is also gaining importance in the diagnosis of infectious foci. Thereby, better
detection of pancreatic fluid [14], hepatic abscess [15], early spondylodiscitis [16] and brain
abscess [17] can be shown for diffusion-weighted MRI.

Microbiological analysis is mandatory for diagnosis of deep-seated infections. The
detection of microorganisms within the invasively obtained body fluids can either be
associated with infection, i.e., with etiopathological relevance, or with colonization, and
therefore questionable etiological relevance. In this study, we jointly investigated proof of
replicable microbial pathogens either colonizing or infecting the invasively assessed body
compartment. There is currently no gold standard for the pre-analytic parameters that are
needed to obtain CT-guided drainage material. The culture approach in the case of clinical
suspicion of intra-abdominal infection includes seeding on aerobic and anaerobic solid and
liquid media [18]. For ascites, it has been shown that the detection rate can be increased
by additional inoculation and incubation in blood cultures [19–21]. The same applies to
the detection of bacteria in primary sterile materials [22–24]. The importance of molecular
biological tests in microbiological diagnostics is also increasing due to their high sensitivity
in the detection of microorganisms [25–27]. In order to estimate the true predictive value of
imaging parameters, it seems essential to optimize the detection rate of microorganisms by
means of suitable microbiological diagnostic approaches. Therefore, it seems reasonable
to assume that the combination of several prediction criteria can increase the accuracy of
diagnoses compared to a single criterion for differentiating infected from sterile collections.

Two scoring systems for postoperative abdominal fluid collections have been pub-
lished. Gnannt et al. [6] proposed a system, hereinafter referred to as the “Gnannt score”,
which includes the imaging parameters gas entrapment and CT attenuation and the clinical
parameters diabetes and C-reactive protein (CRP) value, in order to differentiate between
infected and non-infected postoperative fluid accumulation. Radosa et al. [7] also proposed
a system, hereinafter referred to as the “Radosa score”, that improved the accuracy of
differentiating fluid accumulations regarding the three CT imaging parameters (CT attenu-
ation, gas entrapment and wall enhancement) and the clinical parameter C-reactive protein
(CRP) value. For the development of a score, the gold standard used in these studies was
microscopic or cultural detection of microorganisms [6,7]. From a radiological point of
view, a scoring system that is common and easy to use is preferable.

The aim of our study was to evaluate CT images and clinical parameters in terms
of their ability to differentiate between microorganisms containing abdominal and extra-
abdominal fluids by an advanced microbiological approach. In addition, both existing
scoring systems were applied to our study group with regard to their value for differen-
tiating infected from non-infected fluid collections on the basis of clinical and imaging
findings.

2. Materials and Methods
2.1. Study Design, Informed Consent and Institutional Review Board Approval

Approval was obtained from the responsible institutional review board (Ethics Com-
mittee, Faculty of Medicine, University of Rostock, Registration number A 2018-0138).
Written informed consent was obtained from all participants prior to enrollment.

This prospective study was conducted between April 2018 and October 2019, and
included 100 consecutive CT-guided drainages from foci suspicious for infection. Drainages
were performed at the DIN EN ISO 9001-certified Institute of Diagnostic and Interventional
Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center,
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Rostock, Germany. Patients were eligible for this study if they were referred for a clinically
indicated CT-guided aspiration or drainage of one or more suspected infection foci. Ex-
clusion criteria were an aspiration volume less than 5 mL (since this would not allow for
reliable microbiological analysis using an extended approach) and patients under 18 years
of age.

2.2. CT Imaging Prior to Drainage

All CT studies were performed on a 64-detector CT scanner (Aquilion 64, Canon,
Neuss, Germany). The contrast medium (iomeprol, Imeron 400 mg/mL, Bracco Imaging,
Konstanz, Germany) was injected at a flow rate of 2.5 mL/s. CT data acquisition began
in the portal venous phase of enhancement. Image reconstruction was performed using a
medium-smooth soft tissue convolution kernel at a slice thickness of 0.5 mm. CT images
were assessed using a picture archiving and communication system (PACS; IMPAX EE;
Agfa, Moertel, Belgium). Based on previous scoring systems [6,7], the following imaging
parameters were determined (Figures 1 and 2):

• CT attenuation of the suspected fluid collection (in Hounsfield units (HU));
• Gas entrapment: the presence of superficial bubbles or air–fluid levels;
• Wall enhancement: contrast enhancement of the wall due to hypervascularization;
• Wall thickness: in case of encapsuled fluid collection, wall thickness was measured in

millimeters;
• Fat stranding: increase in the attenuation of the surrounding adipose tissue.
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Figure 1. An 83-year-old woman with chambered pleural effusion (→) and CT attenuation of 8 HU.
After percutaneous drainage, no pathogen was detected by microbiological approach.

CT data were analyzed by a radiologist with 5 years of experience in diagnostic
radiology. Imaging parameters were recorded prospectively on the day of CT-guided
drainage before microbiological results were available.
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Figure 2. A 63-year-old man with presacral abscess (*), demonstrating gas entrapment (→), wall
enhancement (>), fat stranding and CT attenuation of 29 HU. Microbiology after percutaneous
drainage confirmed infection.

2.3. CT-Guided Drainage

CT-guided drainage was performed using standard techniques [28,29] covered by
internal standard operating procedures. The ideal skin entry site was determined using
planning scans with a radiopaque grid placed on the patient’s skin. The skin was then
disinfected for 60 s according to the hospital hygiene standards using Braunoderm (Braun,
Melsungen, Germany). After local anesthesia, a small nick in the skin was made and a 5 F
Unidwell needle (Bard, Heidelberg, Germany) was advanced for fluid collection under CT
guidance. Depending on the size of the fluid collection and the nature of the fluid, pigtail
catheters with diameters ranging from 10 F to 16 F were chosen. The catheter was placed
after the insertion of a wire and dilatation of the puncture tract to 1–2 F wider than the
diameter of the pigtail catheter (OptiMed, Ettlingen, Germany). The content of the fluid
was aspirated using a sterile syringe (BD Discardit II, Becton Dickinson GmbH, Heidelberg,
Germany), then the drainage catheter was sutured to the skin and connected to a drainage
bag (PFM medical, Köln, Germany).

2.4. Sample Transport and Processing

Blood culture bottles were inoculated on site by the radiologist. Therefore, BACTECTM

Plus Aerobic/F and BACTECTM Lytic/10 Anaerobic/F blood culture media (Becton Dick-
inson GmbH, Heidelberg, Germany) were inoculated with 1 mL of the aspirated fluid
each. The remaining sample material was left in the sterile syringe barrel. Blood culture
bottles and the remaining sample material in the sterile syringe were then transported
within 2 h at room temperature to the DIN EN ISO 15189-accredited Institute of Medical
Microbiology, Virology and Hygiene of the University Medicine Rostock, Germany, for
subsequent microbiological analyses.

2.5. Microbiological Analyses

To optimize the detection rate of microorganisms, we used an extended microbiolog-
ical approach. The blood culture bottles were first added with 2 mL of BD BACTECTM

FOSTM Culture Supplement, then stored and incubated for up to five days in the BACTEC
FX system (Becton Dickinson GmbH, Heidelberg, Germany), according the manufacturer’s
recommendations. Naïve sample material underwent conventional routine culture-based
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growth of microorganisms that comprised incubation on aerobic and anaerobic agar and
liquid media. Negative results in the conventional and blood culture methods were con-
trolled by 16S ribosomal RNA (rRNA)- and 18S rRNA-gene PCR on bacterial and fungal
DNA, respectively, performed from the original sample material. This microbiological
approach was previously described in detail [30].

2.6. Laboratory and Clinical Parameters

Clinical data were retrieved from electronic medical records. Descriptive patients’
characteristics comprised age, sex, focus localization, underlying disease and referring unit.
Laboratory results collected within 72 h of CT-guided intervention included C-reactive
protein (CRP) in milligrams per liter, leukocytes in 103 per microliter and procalcitonin in
nanograms per milliliter. Clinical data were extracted from patient records: diagnosis of
diabetes, current intake of immunosuppressive drugs or antibiotics, previous chemotherapy
(within 6 months), previous operation and the presence of purulent specimen appearance.

2.7. Statistical Assessment

Data collection and statistical analyses were performed using SPSS software version 23
(Armonk, NY: IBM Corp.). Univariate analysis was performed using the χ2-test for categori-
cal variables. The test of normal distribution for continuous variables was performed using
the Shapiro–Wilk test, followed by univariate analysis using the t-test or the Mann–Whitney
U test. The Youden index was used to identify optimal cutoff points for significant (p-value
< 0.05) metric parameters of univariate analysis. After dichotomizing, binary logistic re-
gression of all significant variables was performed, including a Hosmer–Lemeshow test.
Finally, the data were evaluated by published scoring systems. The relevant parameters
were compared using receiver operating characteristics (ROC) analysis with calculation of
the area under the curve (AUC).

3. Results
3.1. Patient Characteristics

A total of 100 CT-guided drainages of 87 patients were included. The mean age was
63.1 years (SD ± 15.78). There were 59 biologically male and 28 biologically female patients.
The most frequent patient characteristics were abdominal puncture localization (69%) with
underlying primary diagnosis of infection or inflammation (41%), referred by general and
visceral surgery (43%). All descriptive parameters of the study group are summarized in
Table 1.

Table 1. Demographic data of patients with fluid collection.

Characteristics

No. of CT-guided drainages performed (n1) 100

No. of patients (n2) 87

Age, years (±SD) 63 (±16)

Sex, male/female (n2 = 78) 59/28

Localization of fluid collection (n1 = 100)
Thorax 21

Abdomen 69
Musculoskeletal 10

Underlying primary disease (n1 = 100)
Carcinoma 38

Infection or inflammation 41
Vascular 13

Other 8

Referring unit (n1 = 100)
General and visceral surgery 43

Intensive care unit 23
Internal medicine 20

Urology 5
Other surgical departments 8

Other departments 1
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3.2. Univariate Comparison between Infected and Sterile Fluid Collections

In univariate analysis of imaging parameters, attenuation (p = 0.001), entrapped gas
(p < 0.001), wall thickness (p < 0.001), wall enhancement (p < 0.001) and fat stranding
(p < 0.001) differed significantly between the infected and sterile fluid collections. Of
the clinical and laboratory parameters, only procalcitonin showed significant differences
regarding infectious fluid specimens (Table 2).

Table 2. CT imaging findings, laboratory results, and clinical data of patients with fluid collection.

Imaging Parameter All Lesions (n = 100) Infected Fluid
Collection (n = 73)

Sterile Fluid
Collection (n = 27) p-Value

Attenuation, HU Median (IQR) 14 (13) 5 (14) 0.001

Entrapped gas Existent 35 2
<0.001None 38 25

Wall thickness, mm Median (IQR) 2.6 (1.55) 0 (2.2) <0.001

Wall enhancement

Existent 60 10

<0.001
Strong 30 5
Slight 30 5
None 6 10

Scan without contrast 7 7

Fat stranding (without thorax, n = 79) Existent 61 7
<0.001None 7 4

Clinical and laboratory parameters

CRP, mg/L (n = 94) Median (IQR) 161 (145) 107 (187) 0.096

Leukocytes, 103/µL (n = 99) Median (IQR) 12.5 (7.7) 11.7 (7.9) 0.356

Procalcitonin, ng/mL (n = 25) Median (IQR) 3.0 (28.0) 0.4 (0.3) 0.003

Diabetes (n = 27) 20 7 1

Immunosuppressive drugs (n = 15) 13 2 0.23

Chemotherapeutics (n = 14) 10 4 1

Previous antibiotic therapy (n = 95)
0.801yes 50 18

no 19 8

Previous operation (n = 95) 49 18 1

HU—Hounsfield units; CRP—C-reactive protein.

For all numerical variables that showed significant differences between the microorganism-
containing and sterile collections (p < 0.05), we calculated the optimal cutoff points using
the Youden index. This dichotomization was performed in order to calculate and compare
test characteristics. The optimal cutoff value for CT attenuation was 11 HU; for wall
thickness, 1 mm; and for procalcitonin, 0.7 ng/mL. Test characteristics for all parameters
with significant differences on univariate analysis are shown in Table 3. Among imaging
parameters, gas entrapment within the fluid collection demonstrated the highest specificity
(93%) but low sensitivity (48%), while wall enhancement showed high sensitivity (91%) but
low specificity (50%). CT attenuation > 10 HU showed intermediate sensitivity (74%) and
specificity (70%).
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Table 3. Test characteristics for parameters to identify microorganism-containing fluid collections.

Parameter Sens Spec NPV PPV AUC

Fat stranding present (n = 100) 0.90 0.36 0.36 0.90 0.630

Gas entrapment present (n = 100) 0.48 0.93 0.40 0.95 0.703

Wall thickness > 1 mm (n = 100) 0.92 0.56 0.71 0.85 0.737

Wall enhancement present (n = 86) 0.91 0.50 0.63 0.86 0.705

CT attenuation > 10 HU (n = 100) 0.74 0.70 0.50 0.87 0.722
Sens—sensitivity; Spec—specificity; NPV—negative predictive value; PPV—positive predictive value; AUC—area
under the curve.

3.3. Multivariate Logistic Regression Analysis

Multivariate logistic regression analysis was performed to identify independent pre-
dictors of infected fluid collection. Because of the minimal measurable wall thickness as
the cutoff point and the small number of patients with documented procalcitonin values (n
= 25), these parameters were not included in multivariate binary logistic regression. The re-
sults of regression analysis are shown in Table 4. Multivariate regression analysis confirmed
that gas entrapment, wall enhancement and CT attenuation were independent predictors
for infected fluid collections. The Hosmer–Lemeshow test confirmed the goodness of fit for
this logistic regression model (p = 0.990). ROC analysis of predictive parameters is shown
in Figure 3.

Table 4. Multivariate analysis.

Parameter β p-Value OR

Fat stranding
Yes/no 0.906

Gas entrapment
Yes/no 1.830 0.027 6.234

Wall enhancement
Yes/no 1.582 0.028 4.865

CT attenuation
HU > 10
HU ≤ 10

1.343 0.038 3.832

β—regression coefficient; OR—odds ratio.
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3.4. Performance of Published Scoring Systems in Our Patient Cohort

We further applied two published scoring systems for distinguishing infected from
sterile fluid collections by Gnannt et al. [6] and Radosa et al. [7] in order to validate and
compare their diagnostic values in our cohort. The results of sensitivity, specificity, positive
predictive value (PPV) and negative predictive value (NPV) are summarized in Table 5.
Comparing test error results, 12/25 (48%) and 19/29 (65.5%) would have been assessed as
false negative and 11/69 (15.9%) and 7/51 (13.7%) as false positive using the Gannt and
Radosa score, respectively. A score value of ≥3 (Gnannt et al.) and ≥5 (Radosa et al.) as the
cutoff was used for this calculation for the purpose of comparison. Both scores showed an
AUC of 0.656 (95% CI 0.498–0.814) (Gnannt score) and 0.643 (95% CI 0.491–0.795) (Radosa
score) (Figure 4).

Table 5. Comparison of published scoring systems.

Applied Score Sens Spec NPV PPV AUC

Gnannt score 0.84
[CI 0.77; 0.91]

0.47
[CI 0.37; 0.57]

0.44
[CI 0.34; 0.54]

0.86
[CI 0.78; 0.93] 0.656

Radosa score 0.70
[CI 0.60; 0.80]

0.59
[CI 0.48; 0.70]

0.35
[CI 0.24; 0.44]

0.86
[CI 0.79; 0.94] 0.643

Performance of published scoring systems in our patient cohort. Sens—sensitivity; Spec—specificity; NPV—
negative predictive value; PPV—positive predictive value; AUC—area under the curve; CI—confidence interval.
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4. Discussion

This prospective study demonstrated that the imaging parameters gas entrapment,
wall enhancement and CT attenuation are independent predictors of infected fluid collec-
tions. The evaluation of recently published scoring systems by Gnannt et al. [6] and Radosa
et al. [7] did not improve the differentiation between sterile and infected fluid collections
beyond these individual parameters.
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Previous studies by Gnannt et al. [6] and Radosa et al. [7] defined fluid collections as
infected when Gram stain or culture revealed a positive result. This definition bears the
method-inherent risk of false positive results due to artifact-related Gram stains and of false
negative results by missing non-culturable microorganisms or by antibiotic pre-treatment.
Therefore, the detection of an infectious agent by a microbiological diagnostic approach
including cultural and molecular analyses was used as the reference standard in our study.

In accordance with both scoring systems and recent literature reports, the imaging
parameters gas entrapment and CT attenuation were determined as predictors for the
presence of infectious fluid collections based on our patient population [6–8]. When
considering the proposed CT attenuation cutoff values of 10 to <20 HU (one score point)
and >20 HU (two score points) by Gnannt et al., >20 HU by Radosa et al. and >10 HU from
our patient population, it is noticeable that these values are in the same range. Due to the
infection, cell debris accumulation leads to an increase in density correlated with greater
X-ray absorption, consequently resulting in higher CT attenuation. Other studies confirm
the value of CT attenuation in abscess diagnosis as a predictor for pyonephrosis [31,32].
The additional imaging parameter wall enhancement was not included in the Gnannt
score, but was taken into account in the Radosa score. For the former, the presence of wall
enhancement was able to successfully differentiate sterile from infectious fluid collections
in the univariate analysis, but it was not included in the scoring system [6]. According to a
study by Allen et al., there was no association between wall enhancement and the presence
of infectious fluid [8].

While we found no clinical parameter to be a predictive factor of infected abdominal
fluid collection, diabetes is considered a predictive factor in the Gnannt score [6]. Radosa
et al. noticed the lack of information regarding medical history [7], which is supported
by our data in which the status of pre-existing diabetes was recorded in a minority of
patients. Studies have shown a correlation between diabetes and postoperative abdominal
abscesses [33,34], but its predictive value in CT-guided diagnosis remains to be investigated.

In contrast to both scores by Gnannt et al. [6] and Radosa et al. [7], the CRP values
did not significantly differ between sterile and infectious fluid collections in our patient
population. Yet, in the univariate analysis (p = 0.096), there was a trend toward elevated
CRP values when microorganism-containing fluid collections were detectable. The determi-
nation of CRP values is well-established in routine clinical practice as a marker of bacterial
infections [35]. Studies have shown the predictive value of postoperative CRP measure-
ment for complications in general, and specifically for the severity of complications [36–38].
Our univariate analysis suggested that procalcitonin provides better differentiation of
microorganism-containing fluids (p = 0.003), but it could not be included in multivariate
analysis because procalcitonin levels had only been measured in a minority of patients
(n = 25). Previous studies have also shown an advantage of procalcitonin in comparison to
CRP in bacterial infection diagnosis [39–41], and they may provide important perspectives
in scoring systems.

While the two published scoring systems were established only for postoperative
intra-abdominal abscesses, we extended our inclusion criteria to all suspicious infected
fluid collections regardless of localization (thoracic, abdominal and musculoskeletal) and
clinical setting (also including non-operative cases). Therefore, localization-independent
imaging parameters could be found, simplifying CT-guided diagnosis of infected fluid
collections. In our independent prospective study cohort, the published scoring systems did
not improve diagnostic accuracy over individual CT imaging features alone. Thus, the use
of simple imaging criteria appears to be sufficient and more suitable for routine assessment.

Nevertheless, our prospective study confirms that the diagnostic accuracy of imaging
and laboratory parameters in distinguishing infected from sterile fluid collections remains
imperfect. In particular, the absence of such imaging features does not reliably rule out
infection. Therefore, the decision of whether to drain a fluid collection should not be based
on imaging and/or laboratory parameters alone, but on the overall judgment of the clinical
team, ideally in a multidisciplinary discussion.
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As potential limitations of this study, the simultaneous inoculation of blood culture
bottles might have led to a higher contamination rate. To minimize this risk, a rigorous
hygienic regimen during CT-guided puncture was performed until we completed sampling.
Due to our prospective study design, there was a limited number of included patients
during the study period in comparison to previous retrospective studies. We focused our
analysis on established imaging parameters that have been proposed in the literature as
being helpful for differentiating infected from non-infected collections. Future studies are
warranted to evaluate other imaging parameters such as the size, shape and texture of
fluid collections.

5. Conclusions

In conclusion, the imaging parameters gas entrapment, wall enhancement and CT
attenuation demonstrated their predictive value for the presence of infected fluids in
our study population, including patients with different localization of foci in need of
drainage and using an extended microbiological approach. The diagnostic value of labor
parameters, especially procalcitonin, remains to be investigated in more detail. Pub-
lished scoring systems did not show higher diagnostic accuracy in comparison with single
predictive parameters.
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