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Abstract. Expression of the Semliki Forest virus 
p62/E2 protein was studied in the polarized epithelial 
cell line Madin-Darby canine kidney (MDCK). After 
infection this transmembrane protein, together with the 
other spike subunit El, accumulates at the basolateral 
surface of MDCK cells (Fuller, S. D., C.-H. von 
Bonsdorff, and K. Simons, 1985, EMBO (Eur. Mol. 
Biol. Organ.) J., 4:2475-2485). The cDNAs encoding 
truncated forms of the protein were used to stably 
transform MDCK cells to examine the role of (a) 
subunit oligomerization (El-E2) and (b) the cytoplas- 
mic domain of p62/E2 in directed transport to the 

basolateral surface. The biochemical characteristics 
and polarity of the expressed proteins were studied 
using cell monolayers grown on nitrocellulose filters. 
A wild-type form of p62/E2, in the absence of El, 
and two forms having either 15 or 3 of the wild-type 
31-amino acid carboxyl cytoplasmic domain were all 
localized to the basolateral surface. These results indi- 
cate that the cytoplasmic domain of E2 does not con- 
tain the information essential for directed transport to 
the plasma membrane, and imply that this information 
resides in eitherthe lumenal and/or membrane- 
spanning segments of this transmembrane protein. 

I 
N eukaryotes, the biosynthesis of proteins destined for the 
diverse array of cellular compartments is restricted to a 
few sites (e.g., cytosol, endoplasmic reticulum [ER]I; 

for review see Sabatini et al., 1982). This implies that sorting 
mechanisms must exist which ensure the transport of mole- 
cules to their site of function. For secretory proteins and in- 
tegral membrane proteins of the ER, Golgi complex, en- 
dosomes, lysosomes, and plasma membrane, it has been 
established that the first sorting event occurs at the time the 
nascent polypeptide is targeted to the membrane of the ER 
(Blobel and Dobberstein, 1975a; b; Hortsch, M., and D. I. 
Meyer, manuscript submittecl, for publication). The specific- 
ity of this event is a consequence of the expression of the sig- 
nal sequence(s) of the polypeptide and the subsequent inter- 
action of the signal recognition particle (Walter and Blobel, 
1980) and docking protein (Meyer and Dobberstein, 1980). 
Further compartmentalization requires other processing 
events and most likely involves additional sorting signals. 

The specific targeting of a number of enzyme activities and 
receptors to either the apical or basolateral surface of epithe- 
lial cells is reflected in the morphological and biochemical 

1. Abbreviations used in this paper: endo H, endo-13-N-acetylglucosidase 
H; ER, endoplasmic reticulum; LAP, leucine aminopeptidase; PNS, post- 
nuclear supernate; TX-100 and TX-I14, Triton X-100 and Triton X-I14, 
respectively. 

polarity of this cell type (Rodriguez-Boulan, 1983; Simons 
and Fuller, 1986). We have used the epithelial Madin- 
Darby canine kidney (MDCK) cell line to examine the struc- 
tural features of plasma membrane proteins involved in their 
sorting into a specific surface domain. The usefulness of this 
cell line for these studies stems from the observation of 
Rodriguez-Boulan, Sabatini, and others (Fuller et al., 1984, 
1985; Matlin and Simons, 1983; Misek et al., 1984; Rindler 
et al., 1984, 1985; Rodriguez-Boulan, 1983; Rodriguez- 
Boulan and Sabatini, 1978) that MDCK cells infected with 
enveloped viruses display a polarized distribution of the viral 
spike glycoproteins as illustrated for apical influenza hemag- 
glutinin, basolateral Semliki Forest virus (SFV) E1 and E2, 
and vesicular stomatjtus virus (VSV) G-protein. It has been 
demonstrated that the carbohydrate moieties of the viral pro- 
teins are not directly involved in this segregation (Roth et al., 
1979; Green et al., 1981). Therefore some other feature lo- 
cated in one of the three topological domains of transmem- 
brane proteins must be recognized by the sorting machinery. 
Recently, the introduction and expression in eukaryotic cells 
of cloned genes that encode for foreign or altered forms of 
membrane proteins has allowed a more precise evaluation of 
the peptide signals involved in traffic to the plasma mem- 
brane (Doyle et al., 1985; Florkiewicz et al., 1983; Garoff 
et al., 1983; Gething and Sambrook, 1982; Kondor-Koch et 
al., 1983, 1985; Poruchynsky et al., 1985; Rose and Berg- 

© The Rockefeller University Press, 0021-9525/86/12/2607/12 $1.00 
The Journal of Cell Biology, Volume 103 (No. 6, Pt. 2), Dec. 1986 2607-2618 2607 



mann, 1982, 1983; Roth et al., 1983; Stephens et al., 1986; 
Zuniga et al., 1983; Zuniga and Hood, 1986). The expres- 
sion of wild-type influenza hemagglutinin and VSV G-pro- 
tein in MDCK cells has shown that the information neces- 
sary for polar transport to the cell surface is contained within 
the amino acid sequence of the membrane protein examined; 
i.e., no other viral proteins are required (Roth et al., 1983; 
Stephens et al., 1986). 

In this study we have used the cDNA encoding for a viral 
membrane protein to examine the role of putative peptide sig- 
nals in the transport of the p62 spike glycoprotein (E2 and 
E3 precursor) of SFV to the basolateral surface of MDCK 
cells. This protein is a transmembrane glycoprotein having 
an ectoplasmic domain with two N-linked sugar groups, a 
transmembrane segment (anchor) and a 31-amino acid cyto- 
plasmic domain (tail). During infection all of the structural 
proteins of SFV (capsid-p62-E1) are derived from a poly- 
protein precursor through co-translational cleavage events 
(Garoff et al., 1977). The membrane proteins p62 and E1 
form a complex in the ER which is efficiently transported to 
the plasma membrane (Ziemiecki et al., 1980); cleavage of 
p62 to E2 and E3 is a late, post-Golgi event. In nonpolar baby 
hamster kidney (BHK) cells it has been demonstrated that 
p62 expressed from cDNA is transported to the plasma 
membrane in the absence of El, whereas E1 alone failed to 
leave the ER (Garoffet al., 1983; Kondor-Koch et al., 1983). 
Furthermore it was shown that the cytoplasmic domain of 
p62 was not essential for movement to the cell surface in 
BHK cells. The present study examines whether p62/E1 
oligomerization and the cytoplasmic domain of p62 are in- 
volved in the targeting of this protein to the basolateral do- 
main of MDCK cells. To address these questions, lines of po- 
lar MDCK cells that stably express various forms of p62 
were established. A preliminary report of this data has been 
presented in abstract form (Roman and Garoff, 1985). 

Materials and Methods 

Materials 
Restriction endonucleases, DNA polymerase I (Klenow), Sal 1 linkers, and 
calf alkaline phosphatase were purchased from Boehringer Mannheim Bio- 
chemicals (Mannheim, FRG) and T4 ligase was from New England Biolabs 
(Schalbach/Taunus, FRG). [35S]Methionine (1,070 Ci/mmol) was from 
Amersham Buchler GmbH (Braunschweig, FRG); [3H]palmitic acid and 
~C-methylated protein mixture (0.027 gCi/Itg) were obtained from New 
England Nuclear (Buckinghamshire, England). Acrylamide, N,N'methy- 
lene bis acrylamide, and low melting agarose were purchased from Bethes- 
da Research Laboratories (Gaithersburg, MD); N,N,N',N'-tetramethyl- 
ethylenediamine, ammonium persulfate, and molecular weight standards 
were from Bio-Rad Laboratories GmbH (Munich, FRG); and antipain, 
aprotinin, benzamidine, leupeptin, pepstatin, phenylmethylsulfonyl fluo- 
ride (PMSF), 3,Ydiaminobenzidine, calf skin gelatin, chloroquine, and cy- 
cloheximide were from Sigma Chemie GmbH (Diresenhofen, FRG). Pan- 
sorhin was obtained from Calbiocbem-Behring Corp. (LaJolla, CA); 
endo-13-N-acetylglucosidase H (endo H) was from Seikagaku Kogyo Co. 
Ltd. (Tokyo, Japan); and Geneticin G-418 sulfate was from Gibco Europe 
Ltd. (Paisley, Scotland). Horseradish peroxidase-conjngated antibodies and 
fluorescein- and rhodamine-conjngated antibodies were from BioSys (Com- 
pi~gne, France). All other chemicals were of reagent grade. 

General DNA Manipulations 
Cleavage of DNA with restriction enzymes, isolation of fragments from 
agarose gels, ligations, filling-in, and linker addition reactions were per- 
formed by standard methods (Maniatis et al., 1982). Transformation of 
Escherichia coli, strain HB101 (Bolivar and Backman, 1979), was per- 
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Figure 1. Express ion  plasmids.  The  construct ion of  the pSV-SFV 
plasmids  containing the t runcated forms of  E2 is descr ibed in 
Garoff  et al. (1983). Cons t ruc t ion  of  the d4 mutant  in the 
pMTSFVd/SVneo vector is under  the control  of  the human  metal- 
lothionein p romoter  as detailed in Materials  and Methods.  The  
functional regions of  the plasmids  are indicated as follows: 
(hatched) SV-40 early promoter ,  t-splice site, and polyadenylat ion 
signals; (cross-hatching) the neo sequence encoding for G-418 re- 
sistance; (dots) the metal lothionein  promoter ;  (stippling) SFV- 
cDNA;  (unshaded) pBr322 ampici l l in  resistance and origin of  
replication.  Arrowheads  indicate the act ion of D N A  polymerase.  

formed as in Hanahan (1983). Preparation of DNA was as described in 
Garoff et al. (1983) and Kondor-Koch et al. (1983). 

Construction of Plasmids Con tainingp62 Proteins 

pSV-SFV-dg,dl, and d5 are from the series of deletion mutants described 
by Garoff et al. (1983). An example of one of these vectors is seen in Fig. 
1. To construct the plasmid pMT/SVneo (no E2 insert), the Pvu 1-Barn H1, 
4.1-kb fragment from the plasmid 19/1 (POther et al., 1985; a generous girl 
of U. Riither) containing the DNA sequences for the SV-40 early promoter, 
neo, and the human metallothionein II^ promoter, was ligated to a 33-bp 
fragment from the polylinker region ofpGEM-1 (Promega Biotec, Madison, 
WI; Barn HI-Hind HI) and the Hind III-Pvu 1 fragment from pSV-SFV 
which contains the termination and polyadenylation signals. To construct 
the plasmid pMT-SFV-d4/SVneo (pMTNd4), the plasmid pL1-SFVd4 (Cut- 
ler and Garoff, 1986; Cutler et al., 1986) was digested with Bam H1 and 
the 2.3-kb fragment containing SFV sequences isolated from an agarose gel. 
The ends of this fragment were repaired with DNA polymerase I (Klenow) 
and ligated to Sal 1 linkers. After chromatography over an S-300 column 
and digestion with Sal 1, the DNA was ligated to the plasmid pMT/SVneo 
that had been digested with Sal I and treated with calf alkaline phosphatase. 

Cells 
MDCK ceils, strain II (Louvard, 1980; Richardson et al., 1981) were grown 
in MEM with Earle's salts supplemented with 10 mM Hepes, pH 7.3, 2 mM 
glutamine, 10% FCS, penicillin (100 U/mi), and streptomycin (100 I~g/ml). 
When grown on filters, the cells were seeded onto 0.45-gm pore size 
nitrocellulose filter (HATF 02500, Millipore S.A., Molsheim, France) 
clamped into mini Marbrook chambers (Hendley Engineering, London, 
England) as described by Fuller et al. (1984). The electrical resistance was 
measured using a device similar to that described by Perkins and Handler 
(1981) applying a current of 100 I.tA in Hank's balanced salt solution contain- 
ing Ca ++ and Mg ++ at 25°C. 

Virus 

A prototype of SFV was grown in BHK cells and purified as previously de- 
scribed (Kffiiri/iinen et al., 1969). 

Immunological Reagents 
LAP. The purification of dog kidney leucine aminopeptidase (LAP) was 
based on the protocol of Roman and Hubbard (1983). Antibodies to LAP 
(G-200 fraction, >87 % pure by Coomassie Blue staining) were raised in rab- 
bits according to the immunization program of Louvard et al. (1982). 

SFV. Antibodies to SFV proteins were raised in rabbits. Briefly, 150 ~tg 
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of purified virus was mixed with 1 x 106 cpm of [35S]methionine-labeled 
SFV and electrophoresed on a 10 % acrylamide gel under nonreducing con- 
ditions. After electrophoresis, El, E2, and capsid were located using the au- 
toradiogram and cut from the unfixed, dried gel. The proteins were eluted 
from the gel by the procedure of Bravo et al. (1983) and mixed with complete 
Freund's adjuvant. A portion of this mixture (25-50 ~tg/0.5 ml) was injected 
into the popliteal lymph nodes of anesthetized rabbits and an equal portion 
injected intradermally. The rabbits were subsequently boosted according to 
the schedule outlined by Louvard et al. (1982). The specificity of the anti- 
bodies was confirmed by Western blot analysis using extracts from SFV- 
infected and control cell lysates. 

Protein A was iodinated by the chloramine-T procedure of Greenwood 
et al. 0963) to a specific activity of 3.6-6.8 × 107 cmp/~tg. 

DNA Transfection of MDCK Cells and 
Selection of Transformed Clones 
Transfection of MDCK strain II cells was by a modification of the calcium 
phosphate procedure described by Kondor-Koch et al. (1985). The ratio of 
selectable-to-nonselectable DNA (rico/E2) used in these studies was 1:10. 
For the pMTNd4 plasmid, which also contained the selectable neo gene, 
co-transfection was not required. Briefly, 0.5 ml of calcium phosphate- 
DNA precipitates formed using 10-50 ~tg plasmid DNA was added to a sus- 
pension of MDCK cells (0.5-1.0 × 106) in a 10-cm dish. After a 30-rain 
incubation at room temperature, 3.5 ml of MEM containing 10% FCS and 
200 ~tM chloroquine were added and the cells were incubated for 6 h at 37°C 
under 5% COz. The cells were then treated for 2 rain at 37°C with a 15% 
(wt/vol) glycerol solution, washed, and then incubated for 72 h at 37°C in 
5 % CO2 atmosphere before being split 1:6 into culture medium containing 
10% FCS and 200-400 ttg/rnl G-418 (amount dependent upon the purity of 
the batch of G-418). After 8-10 d under selection, the individual colonies 
were picked, transferred to 24-well multiplates (NUNC, Algade, Denmark), 
and screened for the expression of E2 protein by indirect immunofluores- 
cence. The cells transformed with the pMTNd4 vector were incubated for 
3 h in l0 [tM CdC12 before analysis. 

I m m u n o f l u o r e s c e n c e  

Indirect immunofluorescent screening of MDCK transformants grown on 
microchips (3 × 3 mm, Tecnomara Deutschland GmbH, FRG) was as de- 
scribed by Ash et al. (1977). This procedure was modified to facilitate the 
screening of a large number of clones by placing the antibody solution (5 
~tl) directly on top of the coverchip. 

Immunofluorescence of MDCK cells grown on filters was carried out by 
the technique of Fuller et al. (1984) with the following modifications: (a) 
10 % new born calf serum was used in place of gelatin; (b) all solutions were 
filtered through a 0.45-~tm Millipore filter before use; (c) antibody incuba- 
tions were for 30 rain; and (d) all washes were for 10 min. 

Indirect immunofluoreseent staining of 0.5-~tm frozen sections of MDCK 
monolayers grown of collagen-coated filters (Chambard et al., 1981) was as 
described in Roman and Hubbard (1983). 

Lysis and Carbonate Extraction of MDCK Cells 

Lysis. MDCK cells (1.0 × 106 cells) were harvested using a rubber police- 
man in ice-cold Dulbecco's phosphate buffered saline (PBS) and washed 
once in this buffer (2,000 rpm, 5 rain, 4°C). They were then resuspended 
in 5 ml 10 mM Tris-HC1, pH 8.0, 1 mM MgCI2, containing a protease in- 
hibitor cockiail (1 Ixg/ml antipain, leupeptin, and pepstatin, 10 ~tM benzami- 
dine, 20 kU aprotinin, and 0.2 I~M PMSF), and immediately centrifuged 
(3,000 rpm, 5 rain, 4°C). The pellet (50 I~1) was resuspended in 0.5 ml of 
this buffer and incubated for 15 rain on ice. The cells were further 
homogenized by 20 passes through a 25-gauge needle and immediately 
diluted 1:1 with 50 mM sucrose, 20 mM Tris-HC1, pH 7.4, 2 mM MgC12; 
and the nuclei and unbroken cells were removed by sedimentation (3,000 
rpm, 10 rain, 4°C). The postnuclear supernates (PNSs) were then either 
concentrated by TCA precipitation and processed for SDS PAGE or further 
extracted with alkaline buffer. 

Alkaline Extraction. The PNS fraction was divided in half. To one por- 
tion (initial), Triton X-100 (TX-100) and TCA were added to a final concen- 
tration of 1% and 10%, respectively; this sample was then stored on ice at 
4°C until the other samples were prepared. The other half of the lysate was 
mixed with an equal volume of 100 mM sodium carbonate, pH 11.0, and in- 
cubated at 0°C for 15 min (Fujiki et al., 1982). The suspensions were cen- 
trifuged at 4°C for 1 h at 50,000 rpm in polycarbonate tubes in a Beckman 
75Ti rotor. The supernates were transferred to 1.5-ml Eppendorf tubes on 

ice, and the pellets resuspended in 0.2 ml 50 mM carbonate buffer and 
recentrifuged. The resulting soluble fraction was pooled with the first super- 
nate, and TX-100 and "IV_A were added as described above. The pellets were 
solubilized in 0.5 ml 1% TX-100, 10 mM Tris-HC1, pH 7.4, 0.15 M NaC1, 
and then TCA was added (10% final). All samples were incubated on ice for at 
least 1 h and then centrifuged 2 min at 4°C in an Eppendorf Microfuge 5414S 
(Eppendorf Ger/itebau, Hamburg, FRG). The pellets were washed once in 
-20°C methanol (70%) and prepared for electrophoresis followed by im- 
munoblotting as previously described (Roman and Hubbard, 1984). The 
recovery and distribution of antigen between the supernate and pellet frac- 
tions was quantitated by direct scanning (Desaga Densitometer, Heidelberg, 
FRG) of the autoradiograms of the immunoblots or by the silver grain elu- 
tion technique of Suissa (1983). 

Immunological Analysis of Radioactively 
Labeled E2 Proteins 

Pulse-Chase Experiments. Subconfluent monolayers (5.0 x 10 ~ cells) 
were infected for 4 h at 37°C with 100-200 pfu/cell in MEM containing 
0.2% BSA, 10 mM Hepes, pH 7.3 (Matlin and Simons, 1983). Before label- 
ing, the cells (infected and transformed cell lines) were incubated at 37°C 
with 0.5 ml/dish warm MEM lacking methionine and containing 10 mM 
Hepes, pH 7.3, and 2 mM glutamine. After the labeling period (10 min, 100 
ktCi/dish [35S]methionine, except where stated in text), the radioactivity 
was removed and 5 ml/dish warm chase medium (MEM, 10% FCS, 10x 
methionine (150 mg/liter), 100 Ixg cycloheximide) was added. Samples were 
taken at various times by placing individual dishes on a metal plate fitted 
over an ice bath, and washing three times with ice-cold PBS. The cells were 
extracted with cold extraction buffer (1% TX-100, 0.5% deoxycholate, 
0.05% SDS, in 20 mM Tris-HC1, pH 7.4, 0.15 M NaCI, 2 mM EDTA, 1 
mM iodoacetic acid, and the protease inhibitor cocktail described above 
[TDS buffer]). Immunoprecipitation was essentially as described by 
Balcarova-St~nder et al. (1984) except that 60 ~tl of a 10% Pansorbin slurry 
was used instead of protein A-Sepharose, antibody incubations were carried 
out overnight at 4°C, and the bacterial pellets were washed additionally with 
10 mM Tris-HC1, pH 7.4, 0.5 M NaCI (2x), and 10 mM Tris-HCI, pH 
7.4 (2x). The samples were eluted from the bacteria by heating (5 rain, 
95°C) in sample buffer (60 mM Tris-PO4, pH 6.7, 4.5 mM EDTA, 18 mM 
dithiothreitol (DTT), 3.6% SDS, 8.8% sucrose). 

For endo H treatment, the washed bacterial pellets were suspended in 0.2 
ml autoclaved 0.2 M citrate buffer, pH 5.5, with a protease inhibitor cocktail. 
Each fraction was divided; to one half 10 ~tU of endo H was added. The 
samples were incubated at 37°C for 8-12 h with constant rotation. The tubes 
were centrifuged for 1 min in a microfuge, the supernates discarded, the 
pellets washed twice with 10 mM Tris-HCl, pH 7.4, and finally resuspended 
in 60 tzl sample buffer. 

FattyAcylation. Cells (1 × 106) were labeled with 0.5 I~Ci [3H]palmitic 
acid in MEM with Earle's salts containing 1% FCS, glutamine, and Hepes, 
pH 7.3, for 4 h at 37°C. The cells were then washed, extracted with the TDS 
extraction buffer, and processed for immunoprecipitation as described 
above. 

~eq-Protein A Binding Assay of E2 and LAP Proteins 

The assay was adapted from that described by Pfeiffer et al. (1985). Three 
binding parameters were measured for each sample: "apical; "surface; and 
"total" (surface + internal). To assay antigens in the apical plasma mem- 
brane, MDCK cells grown on filters were fixed directly, and antibody was 
applied to the apical side of the filter. To assay "surface" and "total" antigen, 
the basolateral surface was first made accessible by incubating the filters for 
5 min at 37°C with 2 mM EGTA in PBS(-)  before fixation (opened). "Total" 
filters were subsequently treated with 0.2% TX-100 to expose internal anti- 
gens. For "surface" and "total" samples, antibodies were applied to both the 
apical and basolateral sides of the filter. Fixation was in 3% formaldehyde, 
freshly prepared from paraformaldehyde overnight at 4°C; all solutions 
used for these experiments were filtered through a 0.45-11m Millipore filter 
before use. For the binding assay, wedges equivalent to one-eighth the filter 
were cut, the basolateral surface was marked, and the filters quenched for 
1 h in 50 mM NI-L,C1 in PBS(+). This, and all subsequent treatments, 
were carried out at room temperature and all washes were in 2 ml in 6-well 
multi-dished (NUNC) with gentle agitation. The filters were then washed 
with PBS(+) and the "total" sample was made permeable by incubation with 
0.2 % TX-100 for 5 min. All filters were then washed twice with 0.2 % gelatin 
in PBS(+), and then incubated with either anti-E2, anti-LAP, or control 
antibodies applied to either the apical, or both sides of the filter as described 
above. The filters were washed three times with PBS-gelatin and then 
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Figure 2. The deletion mutants of SFV p62/E2 glycoprotein. Schematic representation of the SFV polyprotein synthesized by infected and 
the established lines of MDCK cells. During infection the structural proteins of SFV are synthesized as a polyprotein (NH2-Capsid-E3- 
E2-6K-E1-COOH). Cleavage between capsid/E3, E2/6K, and 6K/E1 occur co-translationaUy, while processing of the E3/E2 precursor (p62) 
is a late Golgi event/plasma membrane event. In the mutants the entire gene region coding for E1 and variable amounts of the 6K peptide 
and the cytoplasmic domain (stippled) of E2 were deleted. The number of amino acids in E2, as deduced from the DNA sequence, is 
given on the right. In all of the constructs the coding region is terminated by a stop translation codon present in all three reading frames. 
This oligonucleotide together with the Cla 1 linker add 5-7 amino acids to the truncated proteins (hatched). Note that in the d9 construct 
the entire p62/E2 coding region is preserved. This DNA is expected to yield a wild-type form since the E2/6K junction is maintained. 
The d4 construct encodes for a form of p62/E2 with only half of the cytoplasmic domain while with dl a protein with only three amino 
acids of the wild-type tail is generated. The d5 mutant lacks both the cytoplasmic and membrane-spanning domains (solid box). The exact 
nucleotides present in each of these truncated forms has been confirmed by sequencing analysis (Garoff et al., 1983). 

probed with ~25I-protein A (0.5-1.0 x 107 cpm) diluted in PBS-gelatin 
containing 50 ng cold protein A for 30 min in a hydrated chamber. The sam- 
pies were washed twice with PBS-gelatin and three times with PBS(+), and 
then standardized by punching a circle (4 mm) with a cork bore. Samples 
were counted in a gamma counter (Nuclear Enterprises Ltd., Edinburgh, 
Scotland). Two sets of controls were analyzed in parallel: transformed or 
infected filters probed with a nonimmune antibody, and uninfected or neo- 
transformed filters probed with the specific antibodies. The control values 
(see Table II) were subtracted from the experimental values. The amount 
of antigen at the basolateral surface was calculated by subtracting the 
specific "apical" radioactivity from the specific "surface" value; the amount 
of "internal ~ antigen was estimated by subtracting the specific "surface" ra- 
dioactivity from the specific "total" radioactivity. 

Analytical Procedures 

SDS PAGE. Gel electrophoresis was performed by the method of Maizel 
(1971). Gels were fixed, soaked in EN3HANCE (New England Nuclear), 
dried, and fluorographed at -70°C using pre-flashed Kodak X-Omat x-ray 
film as described by Laskey and Mills (1975). 

Iraraunoblot. Transferred samples were incubated with immune or non- 
immune whole serum followed by 125I-protein A (0.5-1.0 x l0 s cpm/ml, 
10 ml) or goat anti-rabbit horseradish peroxidase as previously described 
(Roman and Hubbard, 1984) except that the antibody and protein A dilu- 
tions were in PBS(-)  containing 0.2 % TX-100 and 2 % newborn calf serum. 

Assays. Protein determinations were carried out by the method of Lowry 
et al. 0951) with BSA as the standard, or Bradford (1976) using a standard 
of bovine gamma globulin and Bio-Rad dye reagent. 

Results 

cDNA Probes Coding for Altered Forms 
of SFV-p62/E2 
The specific questions we asked were as follows: (a) would 
wild-type p62/E22 in the absence of E1 be segregated into 

2. Since we usually observed partial processing of p62 to the mature E2 in 
MDCK cells, we will refer to these proteins as p62/E2. Application of anti- 
bodies to the surface of the MDCK lines at 4°C, followed by immuno- 
precipitation, demonstrated that there was no correlation between surface 
expression of the antigen and precursor processing (data not shown). The 
major form of the protein precipitated from each of the cell lines in these 
experiments migrated as the p62 form; variable amounts of processing were 
detected. The reduced efficiency of p62 processing to E2 and E3, in the ab- 
sence of El, has previously been repor~d (Kondor-Koch et al., 1983). 

the basolateral domain of polarized epithelial cells; and, if 
so, (b) would truncation of the E2 cytoplasmic domain affect 
this distribution? 

The specific probes that we used to address these questions 
are shown in Fig. 2 and described below. To study the p62/E2 
phenotype in the absence of El, the construct d9 was used. 
In d9, the Semliki-coding sequence terminates at the 3' end 
with the codon for Ala 24 of the 6-kD peptide, designated 
6K, which separates p62/E2 and E1 in the polyprotein; eight 
aberrant amino acids have been introduced by the stop trans- 
lation linker. Since the cleavage site between p62/E2 and 6K 
has been retained, this construct should generate a wild-type 
p62/E2 protein. The role of the cytoplasmic domain was ana- 
lyzed with two constructs (d4 and dl) in which nucleotides 
encoding the COOH-terminal cytoplasmic domain have been 
deleted. IM encodes for a protein which lacks half of the 
cytoplasmic tail of wild-type p62/E2, terminating at Ala 406 
of the E2 sequence and containing seven aberrant amino 
acids from the stop linker; in dl the cDNA encodes for a 
form of the protein which has only three of the wild-type 
amino acids of the tail (terminates at the 3' end with the 
codon for Lys 394) and is followed by eight aberrant amino 
acids. Lastly, with the d5 form we wanted to examine 
whether removal of sequences encoding the cytoplasmic and 
transmembrane segments would generate a secreted form of 
p62/E2. D5 terminates at Pro 334 and is followed by five 
aberrant amino acids) 

Establishment of MDCK Lines 
Expressing p62/E2 Variants 
The DNA encoding for various forms of p62/E2 were en- 
gineered into expression vectors downstream of either the 

3. It should be noted that all of the cDNA probes used in these studies also 
encoded for the capsid protein at the 5' end. This protein is an autoprotease 
which has been shown to be efficiently cleaved from the rest of the poly- 
protein in vivo and in vitro (Garoff et al., 1978; Aliperti and Schlessinger, 
1978; Cutler and Garoff, 1986; Cutler et al., 1986). By indirect immuno- 
fluorescence using anti-capsid antibodies, all of the stable MDCK cell lines 
showed faint cytoplasmic staining; however, no correspondence with the 
p62/E2 pattern was ever observed. 
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Table L Efficiency of Transformation* 

Line Promoter* Efficiency§ Positivel[ Inducibility 

MDCK-neo - 1 colony/5.0 × 104 cells - NA 
d9 SV-40 1 colony/2.5 × 105 cells 3-5 NA 
d4 MT l colony/1.6 x 10 ~ cells 50-70 3 - 5 x  
dl SV-40 1 colony/5.0 x l05 cells 7-15 NA 
d5 SV-40 1 colony/5.0 x 10 ~ cells 15-20 NA 

* The plasmids (pSV + pSVneo or pMTN) were linearized with Pvu I which cuts all three DNA molecules within the portion of the plasmid coding for the 
resistance to ampicillin. MDCK H ceils (0.5-1.0 × 106 cells) were transfected in suspension using 10 ~.g DNA. The ratio of selectable/nonselectable DNA for 
the pSV vectors was 1 : 10. Colonies resistant to the antibiotic G418 were analyzed for the expression of p62/E2 by indirect immunofluorescence staining of cells 
grown on coverslips. 
* The DNA encoding for the d9, dl, and the d5 forms of p62/E2 were placed downstream of the SV-40 early promoter, while in d4 the p62/E2 coding sequences 
were placed downstream of the human metallothionein II promoter. After incubation of the d4 line with 10 I~M CdCI2 (3 h at 37°C) a three- to fivefold induction 
of the protein was achieved as assayed by both Northern blots and immunoblotting techniques. No induction was seen after similar treatment of the SV-40 con- 
structs. 
§ The number of p62/E2 expressing colonies is given per cells used in the transfection. 
II In all cases, the clones obtained were mixed; that is, while all of the cells were neo positive only the percent given were also positive for p62/E2. These numbers 
were determined at the microscope by counting the number of p62/E2 + cells in a given field and expressing this value as a percent of the number of cells in that 
field. 
NA, Not applicable. 

SV-40 early promoter or the inducible human metallo- 
thionein IIA promoter. MDCK cells were transfected in sus- 
pension with this DNA along with a selectable marker con- 
ferring resistance to the antibiotic G-418 provided in trans 
or cis, respectively (Fig. 1). G-418-resistant colonies were 
then screened for the presence of p62/E2 by indirect im- 
munofluorescence. G-418-resistant colonies were obtained 
with an efficiency of one clone per 5 x 104 cells per ~tg 
DNA (Table I); and 6-30 % of the G-418-resistant clones co- 
expressed the nonselectable DNA. By immunofluorescence, 
these clones were mixed, that is, while all the cells were 
G-418-resistant, they were not all reactive for p62/E2 pro- 
tein. The percent p62/E2-positive cells ranged from 3-70% 
depending upon the clone examined (Table I; see Discussion 
for possible reasons for this mixed phenotype). 

Biochemical Characterization of the Established Lines 

The p62/E2 proteins synthesized by SFV-infected MDCK 
cells and the transformed cell lines were analyzed by SDS 
PAGE followed by immunoblotting. The pattern obtained 
(Fig. 3 a) indicates that the proteins expressed by the stable 
lines were of the size predicted relative to the number of 
amino acids deleted. The cleavage between p62 and the trun- 
cated 6K peptide seems to have occurred since d9 migrates 
with the p62 band from infected cells; the uncleaved product 
is expected to migrate 3,500 D larger. The loss of nine amino 
acids (~1,000 D) in the d4 mutant is not resolved. The 
removal of 20 amino acids in dl ('~2,500 D) and 82 residues 
in d5 ('~10,000 D) generated proteins with slightly faster mo- 
bilities than wild-type p62. The level of expression in the d4 
clones could be enhanced three- to fivefold by adding Cd ++ 
to the culture medium (Fig. 3 c). Northern blot analysis (data 
not shown) demonstrated that this induction occurred at the 
transcriptional level as expected for the metallothionein pro- 
moter (Riither et al., 1985). 

The biochemical properties of the p62 protein and its mu- 
tants were further characterized by alkali treatment and par- 
titioning into the detergent phase after Triton X-114 ex- 
traction. 

Alkaline Extraction. Treatment with 0.1 M NazCOs at 
0°C has been used as an assay to operationally define 
membrane-bound proteins (Steck and Yu, 1973; Davis and 

Model, 1985; Fujiki et al., 1982). For these studies, half of 
the PNS was mixed with 0.1 M Na2CO2, pH 11.0, whereas 
the other portion of the PNS served as the "initial" fraction. 
After sedimentation, the pellet was re-extracted with car- 
bonate, the supernates from both extractions were pooled, 
and the distribution of p62/E2 between the membrane pellet 
and the supernate fractions was examined by immunoblot- 
ting (Fig. 3 b). Greater than 95 % of the proteins expressed 
by the d9, d4, and dl cell lines was found associated with the 
membrane fraction (the recovery in these experiments [ini- 
tial = supernate + pellet] was 90-100%). D5 however was 
quantitatively recovered in the supernate fraction (>97 %). 

Partitioning in TX-114. To further characterize the pro- 
teins synthesized by the established cell lines, we used phase 
separation in the detergent Triton X-114 (TX-114). Partition- 
ing of a protein between the aqueous and the TX-114 deter- 
gent phase has been proposed as a means to distinguish pe- 
ripheral from membrane-bound proteins (Bordier, 1981). For 
these experiments, the cells were extracted with TX-114, sub- 
jected to three rounds of phase partitioning, and the resulting 
supernate and detergent phase was examined by immuno- 
blotting. The results obtained (data not shown) agreed with 
those of the carbonate extraction. That is, >90% of the 
membrane-bound forms of p62/E2 synthesized by SFV-in- 
fected cells and the cell lines partitioned into the detergent 
phase while >97 % of the d5 form was recovered in the su- 
pernate. 

Biochemical Analysis of Transport 
to the Plasma Membrane 

After core glycosylation, newly synthesized glycoproteins 
are processed (e.g., carbohydrate modification, fatty acyla- 
tion, sulfation, etc.). These modifications begin in the ER 
and are completed in the Golgi complex. A number of the 
enzymes involved in these events have been identified and 
localized to specific intracellular compartments (Kornfeld 
and Kornfeld, 1985; Berger and Schmidt, 1985). Thus the 
extent of processing at any point in the biosynthesis of a gly- 
coprotein reflects, in part, the compartments it has been 
transported through. We have used two such processing 
events, the acquisition of complex carbohydrates and fatty 
acylation, as an attempt to monitor transport of the p62/E2 
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Figure 3. Immunoblot analysis of the 
transformed MDCK lines. (a) Cells (5 
x lO s) were extracted with Triton X-100, 
nuclei removed by sedimentation, and 
the samples prepared for electrophore- 
sis. After transfer to nitrocellulose, the 
samples were incubated with rabbit an- 
ti-E2 antibodies and then tzSI-protein 
A. As a control, 1 × lOs SFV-infected 
MDCK cells were treated in parallel. 
(Lane 1) Infected cells; (lane 2) d9; 
(lane 3) d4; (lane 4) dl; and (lane 5) d5. 
The position of the molecular weight 
standards (Mr x 10 -3) is indicated on 
the right and that of p62 by the arrow- 
head (lej~). (b) Carbonate extraction. 
Cells (1 x 106) were hypotonically 
lysed and the nuclei removed by sedi- 
mentation. The PNS was divided, and 
half was extracted twice with 0.1 M so- 
dium carbonate as detailed in Materials 
and Methods. The initial (i), carbonate 
supernate (s), and the membrane pellet 
(p) were prepared for electrophoresis 
followed by immunoblotting as in a. The 
MDCK cell lines examined are indicated 
by 9 (d9), 4 (d4), 1 (dl), and 5 (d5). (c) 
Cadmium induction of MDCK-d4. Cells 
(5 x los) were incubated in 10 IxM 
CdCl2 in MEM with Earle's salts, 10% 
FCS for 3 h before extraction (+); ( - )  
untreated MDCK-d4 cells. The samples 
were analyzed by immunoblotting with 
anti-E2 antibodies as described in a. 

proteins from the ER to the plasma membrane. In addition, 
we have examined the medium for the secreted d5 form of 
p62/E2. 

Analysis of the Culture Medium for Secreted Forms of 
p62/E2. In other viral systems, removal of the cytoplasmic 
and membrane-spanning segments has resulted in the secre- 
tion of hemagglutinin, G-protein, and the rotovirus VP7 
(Florkiewicz et al., 1983; Gething and Sambrook, 1982; and 
Poruchynsky et al., 1985). Since our d5 construct partitioned 
as a peripheral protein, we examined the apical and basolat- 
eral medium for the secreted protein. However, under all 
conditions tested, released p62/E2 was never detected. By 
indirect immunofluorescence a strong reticular pattern was 
observed suggesting that the antigen was concentrated in the 
ER (data not shown). The exact reason why d5 failed to be 
transported is not known. Since the polarity of secretion 
could not be examined, we focused on the membrane-bound 
forms of p62/E2. 

Carbohydrate Processing. The acquisition of resistance to 
the enzyme endo H (Tarentino and Maley, 1974), indicative 
of the addition of complex oligosaccharides, has been used 
to monitor the transport of newly synthesized glycoproteins 
from the ER to the Golgi complex. To assess the rate at 
which the various forms of p62/E2 were transferred to the 
Golgi complex, pulse-chase experiments were carried out 
on the established MDCK lines and SFV-infected cells. For 
all time points examined (0 min to 6 h chase), p62/E2 from 
infected and the stable MDCK lines was found to be sensitive 
to endo H, whereas the E1 synthesized by the infected cells 

did become partially endo H resistant (data not shown). 
While the simplest explanation for these observations is that 
our mutants do not leave the ER, other data (see below) indi- 
cated that the proteins are transported to the plasma mem- 
brane. The presence of endo H-sensitive forms of mature 
p62/E2 has previously been reported (K~ri~iinen and Peso- 
nen, 1982). The failure of our mutant p62/E2 proteins to be 
converted to an endo H-resistant form precluded our use of 
this assay to measure their transport kinetics from the ER to 
the Golgi complex and from the Golgi complex to the plasma 
membrane. 

Attachment of Fatty Acids. The addition of fatty acids to 
newly synthesized proteins is believed to be a late ER event 
(Berger and Schmidt, 1985). Berger and Schmidt (1985) have 
shown that the glycoproteins of SFV contain covalently at- 
tached fatty acids which are detected after labeling infected 
cells with [3H]palmitic acid. To determine if fatty acids 
were added to the p62/E2 proteins expressed by the various 
MDCK lines, SFV-infected MDCK-neo and the transformed 
lines were labeled with [3H]palmitic acid or [3SS]methio- 
nine, and the p62/E2 protein was precipitated and analyzed 
by SDS PAGE. The E2 synthesized by SFV-infected MDCK- 
neo cells contained the palmitate label as did the membrane- 
bound forms of p62/E2 expressed by the stable lines (d9, 
d4, dl; Fig. 4). D5, however, which lacks the membrane- 
spanning segment, was not fatty acylated. Evidence that the 
amount of d5 protein present was equivalent to the other 
MDCK lines was obtained from parallel experiments carried 
out on [35S]methionine-labeled samples. 
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Figure 4. Fatty acylation of p62/E2 proteins in transformed and in- 
fected MDCK cells. Cells (1 × 106) were labeled for 4 h at 37°C 
with [3H]palmitic acid. The lysates were incubated with anti-E2 
antibodies, and the immunoprecipitate analyzed by SDS PAGE 
followed by fluorography (40 d). Equal volumes from the immu- 
noprecipitated samples were loaded. (Lane 1) SFV-infected cells 
immunoprecipitated with anti-E2 antibodies; (lane 2) MDCK-d9; 
(lane 3) MDCK-d4; (lane 4) MDCK-dl; (lane 5) MDCK-dl, from 
[35S]methionine-labeled dl cells; (lane 6) MDCK-d5, palmitate la- 
bel; (lane 7) MDCK-d5, methionine label. The arrows indicate the 
positions of p62 and E2; the mobilities of the molecular weight 
standards are given on the right. The membrane-bound forms of 
the viral proteins are acylated while the d5 mutant lacking the 
membrane-spanning segment is not labeled with [3H]palmitic 
acid. Comparison of lanes 4 and 5 and lanes 6 and 7 confirm that 
our failure to detect acylation of d5 is not the result of there being 
a lower amount of this protein in this cell line relative to the other 
MDCK-transformed cell lines. The methionine-labeled samples 
were electrophoresed on the same gel as the samples described 
above; exposure 21 d. Note that some processing of d4-p62/E2 to 
the mature E2 form is evident. 

Truncated Forms of p62/E2 Are Expressed at the 
Basolateral Surface of Filter-grown MDCK Cells 

For the analysis of polarity of the p62/E2 expression by the 
established cell lines, MDCK cells were seeded onto nitro- 
cellulose filters fitted into mini-Marbrook chambers at a den- 
sity of 1 × 106 cells/filter. For all of the cell lines, tight 
monolayers with electrical resistances of 150-200 ohms/cm 2 
were formed. These resistance values were identical to those 
of the untransformed parental MDCK II line demonstrating 
the tightness of the junctions between individual cells (Ceri- 
jido et al., 1978). The filter system is particularly amenable 
to localization studies since antibodies can be used to selec- 
tively probe one cell surface or the other. This permits the 

basolateral cell surface to be visualized without interference 
from apical staining. 

Immunofluorescence. Fig. 5 shows the characteristic 
staining pattern of SFV-infected cells. Immunofluorescent 
staining of the cell surface reveals that the p62/E2 protein is 
expressed at the basolateral surface in agreement with the 
results obtained by Fuller et al. (1985). When antibodies 
were applied to the apical surface of SFV-infected cells, 
staining was never observed (data not shown). In contrast, 
LAP, an apical membrane protein, was only detected when 
antibodies were applied to the apical side of the filter (com- 
pare LAP-A and LAP-B). Examination of the transformed 
cell lines grown on filters confirmed that the cells formed a 
continuous monolayer (Fig. 5 c). The fluorescent pattern 
seen after application of the anti-E2 antibodies to the apical 
or the basolateral surface is seen in Fig. 5, a and b, respec- 
tively. Only a fraction of the cells in the monolayer is positive 
for p62/E2, in agreement with the results presented in Table 
I. Expression of all three forms ofp62/E2 by the transformed 
cell lines was polar in filter-grown cells; that is, staining of 
the antigen was only observed when the antibodies were ap- 
plied to the basolateral surface (Fig. 5 b). Thus it appears the 
E1 and an intact cytoplasmic domain are not essential for 
directed transport of p62/E2. 

0.5-#m Sections. One of the limitations in the direct stain- 
ing of MDCK cells grown on filters is that the apical and 
basolateral surface of one cell can not be observed simultane- 
ously. To obtain a better view of the polar distribution of the 
mutant forms of p62/E2, semi-thin frozen sections of the cell 
monolayer grown on collagen-coated filters were cut perpen- 
dicular to the plane of the substratum. As a control, the dis- 
tribution of two endogenous proteins, a 58-kD protein which 
in parental MDCK cells is confined to the basolateral plasma 
membrane domain (Balcarova-St~inder et al., 1984), and 
LAP, a marker for the apical surface (Louvard, 1980), were 
examined in the transformed cell line. The results obtained 
with the controls and two of the cell lines (d4 and dl) are seen 
in Fig. 6. The antibody to the basolateral antigen stains the 
basal and lateral surfaces (Fig. 6 a), while anti-LAP anti- 
bodies recognize an antigen at the apical surface as well as 
within an internal compartment (Fig. 6 b). In the MDCK-d4 
cells (Fig. 6 c), the p62/E2 protein is concentrated at the 
basal surface, and staining of the apical surface was never ob- 
served. Occasionally with the d4 cells stained for either the 
basolateral antigen or p62/E2, it appeared that there was in- 
ternal staining of a structure below (basal to) the nucleus. 
While we can not exclude that some of this staining may rep- 
resent an internal pool of antigen, we attribute this pattern 
to the plane of the section examined since other data (see be- 
low) indicated that there was not a large pool of internal anti- 
gen. Similar results were obtained with the dl line (Fig. 6 
e). Reproducible staining of the d9 line was not obtained 
since such a small percent of the cells in the monolayer was 
expressing p62/E2. 

Quantitation orE2 Surface Distribution 
in the Established Cell Lines 

The accumulation of the forms of p62/E2 on the basolateral 
surface of the cell lines grown on filters was quantitated by 
a surface radioimmunoassay (Table II and Fig. 7). As con- 
trols, the distribution of E2 in infected MDCK cells and the 
apical marker LAP were also examined. Of the p62/E2 pro- 
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Figure 5. Polarity of surface p62/E2 expressed by infected and transformed MDCK cells. Cells were grown for 4 d on 0.45-I.tm Millipore 
filters. Before fixation the electrical resistance was measured. All clones had resistances between 150-200 ohms/cm 2. After fixation, 
specific antibodies were applied to either the apical or basolateral side of the filter followed by a second rhodamine-conjugated antibody. 
(Upper left and middle panels: LAP) Antibodies to LAP were applied to the apical surface (LAP-A) or the basolateral surface (LAP-B) 
of control cells (MDCK-neo: MDCK cells that had been transformed with the selectable marker gene neo; see Table I). (Upper right panel: 
SFV) MDCK-neo cells infected with SFV 5 h before fixation, anti-E2 antibodies added to the basolateral surface. The established MDCK 
lines (d9, d4, and dl) were incubated with anti-E2 antibodies applied either to the apical (a) or basolateral (b) side of the filter followed 
by rhodamine-conjugated anti-rabbit second antibodies. (c) Hoechst patterns corresponding to column b. Bar, 20 Ilm. 

tein expressed at the cell surface of both infected and the 
transformed cell lines, 95-98% was on the basolateral side 
compared with 1-5 % found in the apical membrane.  In con- 
trast, 96-99 % of the LAP was concentrated at the apical sur- 
face while only 1-3% was localized to the basolateral do- 
main. When the amount of E2 found at the basolateral 
surface was expressed as a function of the total amount of an- 
tigen present in the cells, 77-92 % was present at that plasma 
membrane domain,  and 7-23% was found to be internal 

(Fig. 7). This was quite different from the results obtained 
with LAP. For this marker, 40-50 % was found to be inter- 
nal. The presence of  a relatively large internal pool of  LAP 
and a small pool of E2 are corroborated by the immuno- 
fluorescent staining of the frozen semi-thin sections. The dis- 
tribution of  p62/E2 and LAP at the apical, basolateral,  and 
internal sites is assessed by this binding assay. However, 
differences in the antibodies do not allow a direct compari-  
son of the antigens. In addition, the low number of  counts, 
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Figure 6. Immunofluorescent 
localization of p62/E2 in 0.5- 
~tm sections. 0.5-1tm sections 
of MDCK-d4 cells grown on 
collagen-coated filters were in- 
cubated with (a) monoclonal 
antibodies to an endogenous 
basolateral antigen (basolater- 
al pattern); (b) anti-LAP (api- 
cal pattern); (c) anti-E2; or 
(d) control (anti-E1) antibod- 
ies. (e) MDCK-dl cells incu- 
bated with anti-E2 antibodies. 
Bar, 10 lam. (f)  Schematic 
representation of the mono- 
layer present in d indicating 
the apical (A) and the bast- 
lateral surface in contact with 
the collagen gel (C). The 
lateral surface is indicated by 
arrows, and the nucleus by N. 

the high background, and the variability of the number of ex- 
pressing cells in the different MDCK lines prevents an ac- 
curate assessment of the amount of antigen present. Despite 
these reservations, we feel that with the reproducibility of the 
relative distribution obtained that these data accurately 
reflect the distribution of p62/E2 and LAP at the apical and 
basolateral surfaces and at internal sites. 

Discussion 

Our results indicate that the expression of the gene encoding 
for wild-type and truncated forms of p62/E2 in the absence 
of E1 is polar in stably transformed lines of MDCK cells. 

Thus the formation of p62/E1 complexes characteristic of the 
viral spikes are not required for polar expression. The oligo- 
meric state of the expressed proteins has not yet been estab- 
lished. As the structure of the cytoplasmic domains of the 
mutated and wild-type proteins differ substantially in length 
and amino acid sequence, it seems unlikely that this domain 
of the E2 protein carries the information for its directed 
transport to the basolateral domain of this polarized epithe- 
lial cell line. The only common structure of the various 
cytoplasmic domains is the basic Arg-Ser-Lys sequence ad- 
jacent to the membrane-spanning segment. The presence of 
basic amino acids on the cytoplasmic side of the membrane- 
spanning segment, however, is common to all single-span- 

Table II. Surface Distribution of p62/E2 and LAP in Infected and Transformed MDCK Cells* 

Cells (n) Antigen Apical¢ Surface§ Totalll 

Infected¶ (4) p62/E2 1,430 + 240 42,500 + 6,730 56,400 + 5,680 
LAP 3,200 + 140 3,580 5 :200  7,400 5- 320 
Control 950 + 30 1,460 5 :210  2,860 5 :100  

d9 (11) p62/E2 900 5 :130  6,460 5- 140 7,450 5 :220  
LAP 5,100 5 :300  5,700 5 :410  10,600 5 :900  
Control 970 5 :150  1,620 5 :150  2,270 + 150 

d4** (3) p62/E2 1,460 5 :60  20,300 5 :1 ,500  22,140 + 2,000 
LAP 5,150 + 450 6,350 ± 430 9,400 5 :500  
Control 1,290 5 :30  2,350 5 :40  2,793 5 :176  

dl  (9) p62/E2 1,120 + 400 8,750 5 :1 ,250  10,600 5 :1 ,550  
LAP 5,040 5 :270  5,500 5 :370  9,760 5 :530  
Control 830 + 80 1,320 5 :200  2,460 5 :320  

* MDCK cells were grown for 4 d on 0.45-~tm nitrocellulose filters. Samples for surface and total labeling were treated with 2 mM EGTA for 5 rain at 37°C 
before fixation. The distribution of antigen was measured by a ~251-protein A binding assay (see Materials and Methods) using 0.5-1 × 107 cpm of ~251-protein 
A per filter wedge. The number of determinations is given in parentheses. The numbers given represent the average cpm + the standard deviation. The control 
samples were the experimental cells probed with nonimmune antibodies. 
;t Antibodies were applied to the apical side of a closed monolayer. 
§ Antibodies were applied to both sides of EGTA-treated filters. 
I1 Antibodies were applied to both sides of EGTA- and Triton X-100-treated filters. 
I Monolayers of filter grown MDCK cells were infected with SFV (70 pfu/cell) 5 h before fixation. 
** MDCK-d4 cells were incubated with 10 laM CdCI2 for 3 h before fixation of the filters. 
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Figure 7. Distribution of p62/E2 and LAP antigens in the apical, 
basolateral, and internal membranes. The histograms presented 
have been derived from the data given in Table II. The specific cpm 
have been determined by subtracting the control values from those 
obtained with the specific antibodies. The amount of antigen at the 
basolateral surface (B) was calculated by subtracting the specific 
apical radioactivity from the specific surface value; the amount of 
internal antigen (I) was estimated by subtracting the specific surface 
radioactivity from the specific total radioactivity. The amount of an- 
tigen found at the apical, basolateral surface and at internal sites 
was then expressed as a percent of the total antigen present. The 
numbers given represent the average percent. A, apical; B, 
basolateral; I, internal. Open bars, LAP; shaded bars, p62/E2. 

ning membrane proteins examined to date (Garoff et al., 
1977; Sabatini et al., 1982) including those expressed exclu- 
sively at the apical surface of polarized epithelial cells. 
While we can not rule out the possibility that these basic 
residues are involved in directed transport, it appears from 
other studies (Cutler and Garoff, 1986; Cutler et al., 1986) 
that their major function is in stabilizing the proteins in the 
bilayer. 

If the structural information for the directed surface trans- 
port of p62/E2 is not localized to the cytoplasmic domain, 
then if such signals exist they must be found in the intramem- 
brane or large ectoplasmic portion of the molecule. Unfortu- 
nately, our construct d5 designed to test this supposition 
failed to move out of the ER. Future studies using other 
p62/E2 constructs and additional probes (e.g., secretory 
forms of hemagglutinin and G-protein) should permit a more 
precise localization of peptide segments involved in protein 
sorting. 

The Use of Stable Transformants To Analyze 
Signals for Polar Transport 
In this work we have used stable transformation as a way 
to introduce the wild-type and mutagenized cDNAs into 

MDCK cells. Recently Stephens et al. (1986) used vaccinia 
virus as a vector to examine the polar expression of several 
viral proteins in MDCK cells. These investigators obtained 
efficient transport of wild-type hemagglutinin to the apical 
surface and G-protein to the basolateral domain in the ab- 
sence of other viral proteins. The major drawback of this sys- 
tem is that the cytopathic effects of viral infection disrupt epi- 
thelial cell polarity and eventually kill the cell. The major 
problem with our system was a relatively low level of protein 
expression. This is partly due to the fact that a fraction of 
the cells in each clone were expressing the p62/E2 protein. 
The mixed nature of the clones was apparent from the initial 
immunofluorescent screening of the colonies. It is possible 
that these colonies arise from aggregates of cells transformed 
with only the neo gene, and cells transformed with both the 
selectable and nonselectable plasmids. Alternatively, the ex- 
pression of the p62/E2 protein or capsid could be toxic to the 
cells. However, the fact that the percent positive cells in each 
of the stable lines did not change significantly over passage 
suggests that the loss of the DNA encoding for p62/E2 could 
not account for the mixed populations. The highest number 
of p62/E2-positive cells were found in the d4 line where the 
selectable marker was present on the same plasmid as the 
DNA encoding for p62/E2. After incubation of MDCK-d4 
with cadmium, a three- to fivefold induction of p62/E2 was 
observed. By immunofluorescence, it was determined that 
the induction reflected an increase in the amount of protein 
made per cell rather than an increase in the number of ex- 
pressing cells. The fact that this construct has the selectable 
marker neo in the same plasmid and leads to a lower basal 
level of viral proteins does not allow us to distinguish be- 
tween aforementioned alternatives. Heterogeneity of cloned 
populations of cells in terms of the number of expressing 
ceils, the level of expression per cell, and the fate of the ex- 
pressed protein have been described by others (Burgess et 
al., 1985; Florkiewicz et al., 1983; Moore et al., 1983; Zun- 
iga and Hood, 1986). Since the proteins expressed by the sta- 
ble lines were polar in their distribution, we feel that this het- 
erogeneity does not affect the interpretation of our results. 

Attempts to enrich the population of p62/E2-positive cells 
by dilution subcloning have only been marginally successful. 
The highly enriched colonies obtained by this approach often 
lost their epithelial morphology and ability to form mono- 
layers with resistances >150 ohms/cm 2. lmmuno-isolation 
techniques used to obtain MDCK transformed lines which 
stably express VSV G-protein at their basolateral surface 
(Roman et al., 1985) could not be used for the p62/E2 lines 
since the trypsin treatment needed to generate a cell suspen- 
sion to present to the immunoadsorbent destroyed the surface 
p62/E2 molecules. 

Possible Functions of the Cytoplasmic Domain 

The results obtained in this and other studies indicate that 
there are no dominant signals within the cytoplasmic domain 
of transmembrane proteins that determines the efficiency, 
rate, or direction of their intracellular transport (for review 
see Discussion of Doyle et al., 1985). It is likely that this do- 
main is functional in other recognition and targeting events. 
For example, it is thought that the viral nucleocapsid recog- 
nizes and binds to the cytoplasmic domain of the spike glyco- 
proteins at the host plasma membrane and thereby surrounds 
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itself with a viral envelope containing only viral-encoded 
proteins (Simons and Warren, 1984). Similarly the cytoplas- 
mic domain of transmembrane proteins may function in en- 
docytic events. For the low density lipoprotein receptor, it 
has recently been shown that mutation of a single cysteine 
residue in the cytoplasmic tail of this membrane protein can 
prevent its internalization (Lehrman et al., 1985). Since a 
number of plasma membrane proteins share the same fate 
(clustering in coated pits --, coated vesicles ~ endosomes ---, 
lysosomes), it will be of interest to determine whether any 
consensus feature(s) can be found in the cytoplasmic domain 
that will indicate the direct involvement of this protein do- 
main in the endocytic process. 
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