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Abstract: Regulatory T (Treg) cells play an important role in immune tolerance and contribute to
the prevention of autoimmune diseases, including rheumatoid arthritis (RA). The differentiation,
function and stability of Treg cells is controlled by members of the Ikaros zinc finger transcription
factor family. In this study, we aimed to reveal how the expression of Ikaros transcription factors is
affected by disease activity in RA. Therefore, we analyzed the ex vivo expression of Ikaros, Helios,
Aiolos and Eos in Treg cells, Th17 cells and Th1 cells from RA patients by flow cytometry. We found
significantly reduced expression of Helios, Aiolos and Eos in Treg cells from RA patients as compared
to healthy controls. Moreover, Helios and Aiolos levels correlated with disease activity, as assessed
by DAS28-CRP. In addition, Ikaros, Helios and Aiolos were significantly downregulated in Th1 cells
from RA patients, while no difference between healthy individuals and RA was observed in Th17
cells. In summary, Helios and Aiolos expression in Treg cells correlates with disease activity and the
expression levels of Ikaros transcription factors are diminished in Treg cells from RA patients. This
observation could explain the reduced stability of Treg cells in RA.

Keywords: rheumatoid arthritis; regulatory T cells; Ikaros; Helios; Aiolos; Eos; Th1 cells; Th17 cells;
disease activity; DAS28-CRP

1. Background

The Ikaros family of transcription factors consists of five zinc finger proteins: Ikaros
(encoded by IKZF1), Helios (IKZF2), Aiolos (IKZF3), Eos (IKZF4) and Pegasus (IKZF5) [1–3].
The transcription factors Ikaros, Helios, Aiolos and Eos are implicated in the differentiation
of B cells and T cells [4,5]. So far, no specific role of Pegasus has been identified in
hematopoietic cells. Aiolos and Helios regulate the development and the stability of
Treg cells. Deficient or altered expression of Aiolos in T or B cells is found in various
diseases, including chronic lymphocytic leukemia, pneumocystis pneumonia, systemic
lupus erythematosus and rheumatoid arthritis (RA) [6–9]. Aiolos promotes Th17 cell
induction by directly silencing IL2 [10]. Interestingly, deficiency of Aiolos inhibits Th17 cell
development and drives the expansion of Th1 cells [10]. Furthermore, Aiolos is associated
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with IL-10 expression in tumor necrosis factor-α (TNF-α) inhibitor-exposed Th17 cells [11].
However, Aiolos is not sufficient for IL-10 production by CD4+ T cells, which is inhibited
by degradation of Aiolos but not increased by overexpression of Aiolos [12]. In addition to
its role in Th17 cell differentiation, Aiolos is required for induction of functional FoxP3+
iTreg cells [13,14]. These induced Treg cells express the interleukin-1 receptor RI (IL-1RI)
and the L-phenylalanine IL4I1, but not Helios [13,15].

Ikaros acts as a negative regulator of Th1 cells by silencing T-bet and inhibiting IFN-γ
production [16]. Moreover, Ikaros has been linked to Treg cell differentiation [17]. Mice
with Ikaros deficiency have reduced numbers of natural Treg cells as compared to wildtype
mice [17]. Remarkably, Ikaros deficiency can be induced by the drug iberdomide [18].
Helios and Eos have been reported to stabilize the suppressive phenotype of FoxP3+ Treg
cells and to determine their suppressive capacity [15,19–23]. The role of Eos in Treg cells
has been demonstrated by selective deletion in Treg cells, which leads to loss of suppressive
functions and to the development of autoimmune diseases [24]. Eos−/− mice develop more
severe experimental autoimmune encephalomyelitis (EAE) as compared to wildtype (WT)
mice, underlying its role as an immune suppressor [25]. However, a certain redundancy
of Eos has been postulated because Treg cells from Eos−/− mice show the same ability to
suppress effector T cells as Treg cells from WT mice [25]. Interestingly, downregulation of
Eos is mechanistically required in order for Treg cells to undergo reprogramming, while
FoxP3 expression remains stable in reprogrammed Treg cells [21]. The suppression of Eos
in Treg cells has been reported to be mediated by IL-6, a key player in the pathogenesis of
RA [21]. IL-6 and soluble IL-6 receptor (IL-6R) levels are elevated in the serum of patients
with RA and correlate with disease activity [26].

RA is a common systemic autoimmune disease with a complex pathogenesis. The
activation status of T cells in RA is modified by various environmental and genetic fac-
tors [27–30]. Dysfunction of Tregs is one of the proposed mechanisms underlying the
breakdown of self-tolerance in RA [31]. The balance between Treg cells and Th17 cells
is disturbed in RA, resulting in a shift towards Th17 cells and increased Th17 cell fre-
quencies in the peripheral blood [32,33]. Furthermore, the migratory capacity of Treg
cells is reduced in RA [32,34]. Studies about the frequency of Treg cells in the periph-
eral blood of RA patients have reported contradictory results, showing either increased
or decreased Treg cell numbers in RA [31,35]. The discrepancy between these results
can be explained by different strategies used to identify human Treg cells. Most studies
using the CD25highCD127lowFoxP3+ phenotype to characterize Treg cells have reported de-
creased Treg cell frequencies in RA [35]. Importantly, treatment with classical or biological
disease-modifying anti-rheumatic drugs (DMARD) can restore Treg cell frequencies in the
peripheral blood of patients with RA [36].

The expression and function of Helios and Eos in Treg cells from patients with RA
have been studied recently. Helios has been suggested as a marker for functional Treg
cells in patients with RA [37,38]. Moreover, Helios enhances the function of induced Treg
cells from RA patients in cooperation with FoxP3 [39]. A positive correlation between
the frequency of Helios+ Treg cells in the peripheral blood and disease activity has been
observed in patients with systemic lupus erythematosus (SLE) [40,41]. In this study, we
analyzed the expression of Ikaros transcription factors in Treg cells, Th1 cells and Th17 cells
from patients with RA and we explored possible associations between their expression
levels and disease activity.

2. Methods
2.1. Blood Samples

Peripheral blood was drawn from RA patients and healthy controls in the outpatient
clinic of the University Hospital Cologne. All patients fulfilled the 2010 ACR/EULAR
classification criteria. Written informed consent was obtained before blood was drawn
in accordance with the Declaration of Helsinki. The study was approved by the Ethics
Committee of the University Hospital Cologne (no. 13-091).
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2.2. Isolation of Primary CD4+ T-Cells

Peripheral blood mononuclear cells (PBMC) were isolated using density gradient
centrifugation (Pan Biotech, Aidenbach, Germany). CD4+ T-cells were isolated using an
MACS T-cell isolation kit (Miltenyi Biotech, Bergisch Gladbach, Germany). Cell numbers
were assessed using the CellCountess (Life Technologies GmbH, Darmstadt, Germany).
CD4+ T cells were purified by negative selection using the CD4+ T cell isolation kit using
the QuadroMACS device (all Miltenyi Biotec, Bergisch Gladbach, Germany) and purity
of cell suspension was at least 96% and was verified by flow cytometry. Viable cells
were counted using the automated cell counter CellCountess (Life Technologies GmbH,
Darmstadt, Germany).

2.3. Flow Cytometry

For intracellular staining, CD4+ T cells were permeabilized using the cytofix-permwash
kit (BD Biosciences, Heidelberg, Germany). Cell viability was assessed by Life-Dead Stain-
ing (ThermoFisher Scientific, Schwerte, Germany). Antibodies against Ikaros, Helios,
Aiolos, Eos, CD4+, CD25, CD127, FoxP3, IFN-γ, anti-IL-17 antibodies were purchased from
BD Biosciences (Heidelberg, Germany). Flow cytometry analysis was performed using the
Gallios 10/3 flow cytometer (Beckman Coulter, Krefeld, Germany). The mean fluorescence
intensity (MFI) ratio was calculated by dividing the MFI of an antigen by the MFI of its
isotype control.

2.4. Statistical Analysis

Statistical analysis was performed using SPSS. Where indicated, data were analyzed
by non-parametric a Mann–Whitney U test or one-way ANOVA with Tukey’s multiple
comparison test and are presented as the median with interquartile ranges (IQR) or mean
+/− SEM. Correlation was calculated using Spearman’s Rho test. p < 0.05 was considered
as statistically significant.

3. Results
3.1. Ikaros Zinc Finger Transcription Factors in Treg Cells from RA Patients

We analyzed the expression of Ikaros zinc finger family members on protein level in
Treg cells, Th1 cells and Th17 cells from RA patients and compared them with expression
levels in healthy individuals. The patients’ characteristics are summarized in Table 1.
PBMCs were isolated from the peripheral blood and CD4+ T cells were purified by MACS
technique. CD4+ T cells were then analyzed ex vivo by flow cytometry. Figure 1A shows
the gating strategy used to identify CD25highCD127lowFoxP3+ Treg cells. A representative
example of Ikaros, Helios, Aiolos and Eos staining in Treg cells is shown in Figure 1B and a
representative example of IFN-γ and IL-17 staining is presented in Figure 1C. We found a
substantial decrease in Helios (41.08% vs. 57.08%, p = 0.0072), Aiolos (20.97% vs. 30.84%,
p = 0.025) and Eos (5.60% vs. 9.75%, p = 0.019) expression in Treg cells from RA patients as
compared to healthy controls (Figure 1D). In Th1 cells from RA patients, the expression
level of Ikaros (2.11% vs. 6.81%, p = 0.0001), Helios (1.17% vs. 2.53%, p = 0.0014) and Aiolos
(2.48% vs. 4.98%, p = 0.0050) were significantly reduced (Figure 1E). In contrast, there
was no difference in Ikaros, Helios, Aiolos or Eos expression between Th17 cells from RA
patients and Th17 cells from healthy individuals (Figure 1F).

3.2. Correlation between Disease Activity and Aiolos or Helios Expression in Treg Cells

To explore how disease activity affects the expression of Ikaros zinc finger proteins
in RA, we compared our flow cytometry results with the DAS28-CRP scores of the pa-
tients. Interestingly, we observed a correlation between Aiolos expression in Treg cells and
disease activity (rs = 0.5518, p(2-tailed = 0.0117)) (Figure 2A). In addition, the mean fluores-
cence intensity ratio (MFIR) of Aiolos was associated with disease activity (rs = 0.4740,
p(2-tailed = 0.0347)) (Figure 2B). Similarly, the frequency of Helios positive Treg cells
(rs = 0.4438, p(2-tailed = 0.0013)) and the MFIR of Helios (rs = 0.5139, p(2-tailed = 0.0004))
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was correlated with disease activity (Figure 2C,D). Interestingly, only Aiolos and Helios
expression in Treg cells were clearly correlated with disease activity. In addition, we found
a weak association between Eos expression in Treg cells and DAS28-CRP (Figure 2E). In
contrast to Treg cells, Ikaros transcription factor expression in Th1 and Th17 cells were not
associated with disease activity.

Table 1. Patients’ characteristics.

RA (n = 20) HC (n = 12)

Age 57.5 ± 6.27 52.9 ± 4.14
Sex (%female) 68.2% 67.5%

Disease duration 1 6.3 ± 4.9 n/a
Treatment 2

cDMARDs 6 n/a
bDMARDs 8
tsDMARDs 5
untreated 1

DAS28-CRP 3.1 ± 2.2 n/a
RF+ 70% n/a

ACPA+ 67.5% n/a
CRP 11.8 ± 4.2 n/a
ESR 19.8 ± 6.9 n/a

RA, rheumatoid arthritis; HC, healthy control; DAS28-CRP, disease activity score of 28 joints based on CRP; RF,
rheumatoid factor; ACPA, anti-citrullinated protein; CRP, c-reactive protein (mg/L); ESR, erythrocyte sedimenta-
tion rate (mm/h); n.a., not applicable; mean values ± SEM are shown; 1 years; 2 number of patients currently
treated with DMARDs.
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Figure 1. Ikaros zinc finger transcription factor expression in Treg cells, Th1 cells and Th17 cells 
from patients with RA. (A) Gating strategy for the identification CD127lowCD25highFoxP3+ Treg cells. 
(B) Representative example of flow cytometry analysis of Ikaros, Helios, Aiolos and Eos in Treg cells 
from RA patients. (C) Representative example of IFN-γ and IL-17 analysis. (D) Ex vivo expression 
of Ikaros zinc finger family members in Treg cells, (E) Th1 cells and (F) Th17 cells from RA patients 
(RA; n = 20) and healthy controls (HC; n = 12). Significance was calculated using non-parametric 
Mann–Whitney test and results are presented as mean +/− SEM. 
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Figure 2. Correlation between disease activity and Aiolos or Helios expression in Treg cells.
(A) Correlation between Aiolos expression (%) in Treg cells and DAS28-CRP in patients with RA
(n = 20). (B) Correlation between mean fluorescence intensity ratio (MFIR) of Aiolos in Treg cells with
DAS28-CRP in patients with RA (n = 20). (C) Correlation between Helios expression (%) in Treg cells
and DAS28-CRP in patients with RA (n = 20). (D) Correlation between mean fluorescence intensity
ratio (MFIR) of Helios in Treg cells with DAS28-CRP in patients with RA (n = 20). (E) Percentage of
Aiolos, Ikaros, Helios or Eos expressing Treg cells, Th1 cells and Th17 cells in the peripheral blood
of patients with low disease activity (DAS28-CRP ≤ 3.2) or high disease activity (DAS28-CRP > 3.2)
(n = 20). Significance was calculated by Spearman’s Rho test or by one-way ANOVA with Tukey’s
multiple comparison test. Where indicated, results are presented as the median with interquartile
ranges (IQR) (* p < 0.05, ** p < 0.01).

4. Discussion

The transcription factor Aiolos was first described by Morgan et al. in 1997 as an Ikaros
homologue that heterodimerizes with Ikaros proteins [42]. Further research identified Aio-
los as an important promotor of Th17 cell differentiation and Treg cell induction [10,13,14].
In our study, we observed an association between Aiolos expression levels in Treg cells and
disease activity. Treg cells require IL-2 for induction and maintenance of their suppressive
function [43]. Importantly, Aiolos promotes Th17 cell differentiation by silencing IL2 [10].
Therefore, we speculate that reduced expression of Aiolos might prevent transdifferen-
tiation of Treg cells into Th17 cells, thereby leading to reduced disease activity in RA.
The upregulation of Aiolos in Treg cells from patients with high disease activity might
reflect the shift of the Th17/Treg cell ratio towards Th17 cells that is observed in patients
with autoimmune diseases and high disease activity [44]. In this context, Helios might be
upregulated as a counter-regulatory mechanism.

Ikaros is a negative regulator of Th1 cell differentiation. Therefore, the observed
downregulation of Ikaros in Th1 cells represents a potential mechanism of enhanced Th1
cell activity and elevated IFN-γ levels in RA. Th1 cells play a crucial role in RA pathogenesis,



Cells 2022, 11, 2171 7 of 9

and their differentiation is inhibited by Ikaros, which silences T-bet [16,45]. The Th1 cell
phenotype might be further stabilized by reduced levels of Aiolos and Helios in Th1 cells
from RA patients. On the other hand, reduced expression of Helios, Aiolos and Eos in
Treg cells from RA patients might contribute to reduced Treg cell numbers and diminished
Treg cell activity in RA as these Ikaros transcription factors play an important role in the
stabilization of the Treg cell phenotype.

Our findings reveal that Aiolos and Helios expression correlate with disease activity
and might therefore be potential biomarkers for disease activity in RA. Unspecific inflam-
matory markers such as CRP, ESR and IL-6 are elevated during infections, in malignant
diseases and other systemic inflammatory conditions. Moreover, clinical assessment of
disease activity can be hampered by activated osteoarthritis or other medical conditions,
such as fibromyalgia. Therefore, a specific laboratory parameter for disease activity would
be very helpful in daily clinical practice. So far, different panels of inflammatory proteins
have been studied for their ability to measure disease activity in RA [46]. However, no
RA specific laboratory parameter has been established as a surrogate marker for disease
activity in daily clinical practice. The Ikaros transcription factors Helios and Aiolos could
therefore be helpful for assessing disease activity with laboratory tests.
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