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Abstract: Hydrogen, which is a novel biomedical molecule, is currently the subject of extensive research involving animal 
experiments and in vitro cell experiments, and it is gradually being applied in clinical settings. Hydrogen has been proven to possess 
anti-inflammatory, selective antioxidant, and antiapoptotic effects, thus exhibiting considerable protective effects in various diseases. 
In recent years, several studies have provided preliminary evidence for the protective effects of hydrogen on spinal cord injury (SCI). 
This paper provides a comprehensive review of the potential molecular biology mechanisms of hydrogen therapy and its application in 
treating SCI, with an aim to better explore the medical value of hydrogen and provide new avenues for the adjuvant treatment of SCI. 
Keywords: hydrogen, spinal cord injury, selective antioxidant, anti-inflammatory

Introduction
Hydrogen gas is abundant in the environment. Traditionally considered an inert gas, its role in living organisms has been 
largely overlooked. In 1975, American researchers first reported that high-pressure hydrogen gas could be used to treat 
squamous cell carcinoma in mice, which is possibly due to its antioxidant properties.1 In 2007, Japanese scholars 
reported that the inhalation of 2% hydrogen gas could selectively scavenge hydroxyl radicals and peroxynitrite anions, 
thereby improving oxidative stress damage caused by cerebral ischemia‒reperfusion and reducing the cerebral infarction 
area in rats. This study sparked widespread interest in the medical field regarding the value of hydrogen in medical 
research.2 Since that time, research on hydrogen therapy has gradually expanded to include diseases such as liver cancer, 
chronic inflammatory responses in hemodialysis, mitochondrial myopathy, metabolic syndrome, diabetes, rheumatoid 
arthritis, and pneumonia, thus achieving promising results.3–6 Hydrogen is now recognized as being the fourth signaling 
gas molecule after Nitric Oxide (NO), Carbon monoxide (CO), and Hydrogen sulfide (H2S) and is considered a novel 
medical gas molecule.7,8 This article aims to provide a comprehensive review of the potential molecular and biological 
mechanisms of hydrogen therapy, as well as its application in treating spinal cord injury (SCI), with the objective of 
better understanding the medical value of hydrogen and providing new avenues for the adjunctive treatment of SCI.

SCI and Treatment Status
Pathogenesis of SCI
SCI can be divided into two stages based on pathological changes: primary and secondary stages. Primary injury signifies 
irreversible mechanical damage causing tissue deformation or tearing, local blood supply disorders, neuronal and glial 
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damage, local axonal truncation, and neuronal destruction. Secondary injury prompts immune system activation, thus 
leading to rapid microglial activation and the release of proinflammatory mediators such as NO, interleukin-1 beta (IL- 
1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Cytokines produced by activated inflammatory cells, 
along with adhesion molecules and chemokines produced by damaged endothelial cells, promote the influx of neutrophils 
and monocytes into the injured spinal cord. This triggers an inflammatory response cascade that exacerbates SCI, thus 
ultimately leading to excitotoxicity, axonal demyelination, necrosis, glial scar formation, degeneration, and cell death of 
damaged cells.9

Treatment of SCI
Currently, treatment methods for SCI are rapidly evolving, with some methods transitioning from laboratory to clinical 
trials.10 Research on SCI treatment primarily focuses on three aspects: the first aspect involves reducing pressure or 
controlling inflammation to preserve existing injuries and to prevent further secondary damage; the second aspect 
involves reactivating cell function through various means to promote residual axon remyelination; and the third aspect 
involves nerve regeneration or reconstruction. Despite the use of various methods, no single therapy can address the issue 
of spinal cord injury. In the last twenty years (especially in recent years), substantial progress has been made in basic and 
preclinical studies (including studies on the use of hydrogen for treating SCI) and clinical therapeutic studies.11,12 

Encouragingly, several clinical trials and studies have yielded positive results and may become the basis for new 
conventional treatments, including cell therapy, neuromodulation and brain-computer interfaces, neurorestorative decom-
pression or transplantation, new neurorepair drugs, hyperbaric oxygen therapy, and other approaches.13

Biological Mechanisms of Hydrogen Therapy (Figure 1)
Selective Antioxidant Action of Hydrogen
Free radicals are atoms, atomic groups, or molecules with unpaired electrons, such as hydroxyl radicals (·HO). Reactive 
oxygen species (ROS) include superoxide anions, hydrogen peroxide, peroxynitrite anions, and others.7 Under normal 
conditions, these free radicals are necessary for maintaining normal cellular functions and serve as the basis of energy 

Figure 1 Molecular action mechanism of hydrogen in biology.
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metabolism. Free radicals also act as important signaling molecules within cells. However, excess free radicals can cause 
cellular damage.14 Numerous studies have shown that hydrogen can selectively eliminate excessive harmful free radicals 
in the body and alleviate cellular damage.2,3,15–19 Du et al reported that hydrogen-rich saline can act on the ROS/NOD- 
like receptor thermal protein domain associated protein 3 (NLRP3) signaling pathway, alleviate inflammation, and 
promote recovery from cerebral ischemia.20 Zhang et al reported that the inhalation of hydrogen gas significantly 
upregulated superoxide dismutase activity and significantly reduced the elevated levels of malondialdehyde and 
myeloperoxidase.21 In addition to directly neutralizing free radicals, hydrogen can indirectly act on the antioxidant 
system by enhancing the activity of endogenous antioxidant enzymes, including superoxide dismutase (SOD), catalase 
(CAT), glutathione peroxidase (GSH-Px), and heme oxygenase-1 (HO-1), thereby eliminating harmful free radicals in the 
body and protecting against oxidative stress-induced damage.22–24

Anti-Inflammatory Effects
Inflammation is an immune response that is initiated by white blood cells that target infections to restore tissue 
homeostasis. Uncontrolled inflammation can lead to tissue damage. Inflammatory reactions are important components 
in the pathogenesis of various diseases. SCI can cause complex and variable inflammatory reactions in the early stages of 
injury, which is one of the important pathological mechanisms of secondary SCI.25 Previous studies have shown that 
reducing this type of inflammation can be beneficial for alleviating SCI.26 Hydrogen molecules are nontoxic and efficient 
antioxidants that can reduce the generation of inflammatory factors and increase the release of anti-inflammatory 
factors.27 The anti-inflammatory effects of hydrogen gas involve the expression of proinflammatory cytokines, such as 
IL-1β, IL-6, interleukin-10 (IL-10), and TNF-α, as well as inflammatory mediators, such as macrophage chemoattractant 
protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1), NLRP3, high-mobility group box protein 1 (HMGB-1), 
and nuclear factor-κB (NF-κB); these factors are regulated by the Toll-like receptor 4 (TLR-4) signaling pathway, thereby 
exerting anti-inflammatory effects.28–32 Zhao et al reported that hydrogen gas alleviates inflammation by inducing the 
early polarization of M2 macrophages during skin wound healing.33 Zhang et al reported that the anti-inflammatory effect 
of hydrogen gas is reflected not only in inhibiting the activity of inflammatory cells and reducing inflammatory cell 
infiltration but also in reducing important factors involved in the inflammatory response, such as 3-nitrotyrosine (3-NT), 
the expression of ICAM-1, and myeloperoxidase (MPO).34 Yao et al demonstrated that hydrogen-rich saline improved 
the inflammatory response during ischemia/reperfusion by inducing mitochondrial autophagy mediated by PINK1/ 
Parkin.35 Moreover, Guo et al showed that hydrogen gas can alleviate early acute kidney injury in rats after severe 
burns by inhibiting the activation of p38, c-Jun amino acid terminal kinase (JNK), extracellular signal-regulated kinase 
(ERK), and NF-κB, as well as by increasing the phosphorylation of protein kinase B (Akt) and regulating the mitogen- 
activated protein kinase (MAPK), Akt, and NF-κB signaling pathways, thereby suppressing the oxidative stress-induced 
inflammatory response.36 Wang et al reported that hydrogen-rich saline alleviates the inflammatory response induced by 
amyloid-β in a rat model of Alzheimer’s disease by inhibiting the activation of JNK and NF-κB.37

Mitochondrial Function Recovery and Reconstruction
The production of reactive oxygen species mainly occurs in the mitochondria, and research has reported that hydrogen 
may activate mitochondria to restore depleted CD8(+) T cells to active CD8(+) T cells, thereby improving the prognosis 
of patients with cancer.38 Hydrogen can promote cell protection, mitochondrial biogenesis, adenosine triphosphate (ATP) 
generation, an increased NAD(+)/NADH ratio, Phase II enzymes for cell protection, heat shock proteins, and sirtuins, 
among other effects.39 Dohi et al reported that treatment with hydrogen-rich culture medium for 24 hours significantly 
enhanced mitochondrial basal respiration, reserve respiration, and nonmitochondrial respiration while increasing ATP 
production.40 Nonmitochondrial respiration refers to the oxygen consumed by enzymes in the cell after the mitochondrial 
electron transfer chain is closed. The authors believe that hydrogen treatment may form a hydrogen ion gradient that 
promotes ATP generation independent of the mitochondrial electron transport chain, thereby alleviating the decrease in 
ATP generation caused by mitochondrial damage due to traumatic brain injury. Yao et al showed that hydrogen-rich 
saline improved the inflammatory response and apoptosis in ischemia/reperfusion injury via PINK1/Parkin-mediated 
mitochondrial autophagy.35
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Regulated Cell Death
Anti-Apoptosis
Apoptosis is a highly regulated process that occurs during the normal turnover of healthy cells, as well as in various 
diseases, such as inflammation, infection, autoimmunity, and cancer. Apoptotic cells undergo a series of morphological 
changes that lead to the disintegration of dead cells. Apoptosis after secondary SCI leads to irreversible changes in neurons 
and exacerbates injury. Several studies have shown that hydrogen promotes functional recovery after nerve injury via its 
antiapoptotic effects.41,42 Hydrogen molecules can cross the cell membrane and enter the cell, protect DeoxyriboNucleic 
Acid (DNA) and proteins from damage by free radicals, maintain normal mitochondrial function, and prevent apoptosis.19 

In contrast, it inhibits the expression and translocation of a variety of apoptotic proteins and upregulates the expression of 
antiapoptotic proteins. Additionally, hydrogen reduces the expression of caspase-3, caspase-9, and BCL2-associated 
X (Bax), increases the expression of B-cell lymphoma-2 (Bcl-2), and significantly reduces neuronal apoptosis.43,44 

Hydrogen can reduce acute lung injury in septic rats, and this mechanism may be related to the regulation of macrophage 
polarization and a reduction in apoptosis.45 Furthermore, hydrogen protects the intestinal epithelial tight junction barrier by 
inhibiting the endoplasmic reticulum stress-induced apoptotic pathway in rats with intestinal ischemia‒reperfusion injury.46 

Hydrogen can also promote apoptosis and autophagy in lung cancer cells by inhibiting the activation of the STAT3/Bcl2 
signaling pathway, and the inhibition of autophagy can enhance the ability of hydrogen to promote the apoptosis of lung 
cancer cells.47 Hydrogen treatment of scratch-injured cells can inhibit cell apoptosis, mainly by activating the PI3K/Akt/ 
GSK-3β signaling pathway.48 The antiapoptotic effect of hydrogen primarily occurs by inhibiting the expression and 
translocation of apoptotic proteins and upregulating the expression of antiapoptotic proteins.

Autophagy Suppression
Recent studies have shown that hydrogen may exert a protective effect by regulating the autophagy signaling pathway. In 
a rat model of neuropathic pain, Wang et al reported that hydrogen-rich saline alleviated mechanical hyperalgesia and 
autophagy activation through an HIF1-dependent pathway.49 Zhu et al reported that hydrogen regulates the polarization 
of microglia through the mechanistic target of rapamycin (mTOR) autophagy-dependent pathway, thus reducing sepsis- 
induced neuroinflammation. According to animal and cellular studies, hydrogen reduces TNF-α, IL-6, and HMGB-1 
levels and M1-type polarization but increases IL-10 and transforming growth factor-β (TGF-β) horizontal and M2-type 
polarization. Hydrogen treatment reduces the P-mTOR/mTOR ratio and the expression of P62 while increasing the 
phosphorylated adenosine 5’-monophosphate-activated protein kinase (AMPK)/AMPK ratio, as well as the ratio of 
LC3II/LC3I, the recombinant triggering receptor expressed on myeloid cells 2 (TREM-2), and Beclin-1 expression.50 Liu 
et al demonstrated that hydrogen can promote apoptosis and autophagy in lung cancer cells by inhibiting the activation of 
the STAT3/Bcl2 signaling pathway and that inhibiting autophagy can enhance the ability of hydrogen to promote 
apoptosis in lung cancer cells.47 Gao et al reported that hydrogen alleviates myocardial ischemia‒reperfusion injury in 
rats by weakening endoplasmic reticulum stress-induced autophagy.51 Yan et al reported that the therapeutic effect of 
hydrogen on sepsis-induced liver injury may be mediated by the regulation of the mitochondrial autophagy pathway 
induced by Fun14 domain protein 1.19 In a rat model of postherpetic neuralgia, a hydrogen-rich solution activated 
autophagy by upregulating the expression of LC3, Beclin-I, and p62, thus reducing postherpetic neuralgia in rats.52

Antipyroptosis
Mu et al reported that hydrogen produced by hydrogen-producing silicones may regulate microglial pyroptosis through 
the NLRP3-caspase-1-GSDMD pathway, thereby preventing the development of chronic neuroinflammation and redu-
cing the incidence of nerve demyelination.53 Luo et al reported that hydrogen may alleviate acute lung injury after burn 
injury by inhibiting macrophage apoptosis via NLRP3.54 Zou et al reported that hydrogen reduced cell apoptosis by 
inhibiting the AMPK/mTOR/NLRP3 signaling pathway.55 Additionally, the hydrogen storage nanomaterial MgH(2) 
inhibited cell apoptosis, pyroptosis, and inflammatory responses by mediating irradiation-induced ROS production, 
thereby improving radiation-induced damage to male fertility.56 Zhang et al examined the effect of hydrogen gas on 
early neuronal apoptosis in rats with subarachnoid hemorrhage through the mitoK(ATP)/ERK1/2/p38 MAPK signaling 
pathway.57
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Methylation
Hydrogen can reduce the expression of proinflammatory factors in septic mice and decrease the expression of DNA 
methyltransferase 1 (DNMT1) and DNMT3a, thus leading to hypomethylation of the five CpG sites of the BDNF 
promoter IV. This action reduces neuroinflammation and cognitive dysfunction in septic mice.58 In a clinical study 
involving older individuals (aged 70 years and above), a 6-month intake of hydrogen-rich water significantly increased 
DNA methylation markers compared to those in the control group. Moreover, the interaction between treatment and time 
exhibited a strong trend in terms of methylation degree.59

MicroRNAs (miRNAs)
SCI leads to the abnormal expression of spinal cord miRNAs, which play a role in the pathophysiology of SCI. Hydrogen gas 
can promote the recovery of spinal cord function by regulating miRNAs.60 MicroRNA-21 (miR-21) is among the noncoding 
small molecule miRNA family members with the highest expression level in mammalian cells. Studies have indicated that 
hydrogen therapy can enhance neurological prognosis following traumatic brain injury by increasing miR-21.61 Additionally, 
research has demonstrated that hydrogen can downregulate miR-9 and miR-21 while upregulating miR-199, thereby 
mitigating inflammatory damage.7,62 Hydrogen-saturated physiological saline significantly reduces miR-199a-3p, thereby 
exerting antiapoptotic effects through the IGF-1/PI3K/Akt/mTOR pathway and protecting the intestinal tract of mice from 
ischemia/reperfusion injury.63

Biomarkers and Pathways
Hydrogen and Nuclear Factor E2 Related Factor 2 (Nrf2)
Nrf2 is a key regulatory factor in the endogenous antioxidant defense system of cells and controls the expression of 
antioxidant and electrophilic stress genes. It also serves as a pivotal transcription factor maintaining cellular metabolism, 
redox balance, and protein homeostasis, thus inducing the expression of numerous protective and detoxification genes.64 

Multiple studies have demonstrated that hydrogen exerts its antioxidant effects by activating the Nrf2 pathway.65–68 

Kawamura et al found67 that inhaling 2% hydrogen could upregulate the transcription of Nrf2-dependent cell protective 
genes, thus increasing HO-1 protein expression and mRNA transcription and thereby improving lung permeability, 
pulmonary edema, and oxygenation. In rats with Nrf2 gene deletion, hydrogen can still reduce malonaldehyde (MDA) 
levels; however, it fails to upregulate the expression of HO-1 and other Nrf2-dependent protective genes or significantly 
enhance body oxygenation. Hydrogen not only directly clears ·HO but also protects body tissues and cells through the 
Nrf2 signaling pathway. Sun et al65 showed that high concentrations of hydrogen can alleviate lipopolysaccharide- 
induced lung injury in mice by activating the Nrf2/NF-kB signaling pathway. Yu et al found24 that hydrogen reduces the 
release of HMGB-1 in the lung tissue of septic mice through the Nrf2/HO-1 pathway. Increasing evidence suggests that 
the transcription factor Nrf2 crucially controls the expression of antioxidant genes, thus exerting anti-inflammatory 
effects. Activation of the Nrf2 pathway may play dual roles in both antioxidant and anti-inflammatory effects.69 The 
antioxidant effect of hydrogen is widely acknowledged in the academic community, with oxidative stress considered to 
be a substantial contributor to SCI.70,71 Therefore, the antioxidant theory appears to elucidate the protective effects of 
hydrogen.

Hydrogen and NF-κB
NF-κB is a rapid-acting transcription factor that is commonly found in the cytoplasm, and it is primarily involved in 
transmitting information related to the body’s defense response, tissue damage and stress, cell differentiation and 
apoptosis, as well as for inhibiting tumor growth processes. Research has demonstrated that inhaling hydrogen can 
reduce oxidative stress and the inflammatory response to alleviate liver damage through the TLR-4/NF-κB pathway while 
also enhancing the intestinal microbiota and fortifying the intestinal barrier.30 An et al discovered that estrogen increased 
the sensitivity of male mice with cerebral hemorrhage to hydrogen gas. This mechanism may be linked to the inhibition 
of the astrocyte NF-κB signaling pathway.72 Huang et al reported that inhaling hydrogen gas significantly inhibited NF- 
κB and activated the Nrf2 pathway.73 Moreover, inhalation of hydrogen can inhibit the ERK1/2 and NF-κB pathways, 
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thus reducing inflammation induced by cigarette smoke in mice with chronic obstructive pulmonary disease and 
impeding the progression of chronic obstructive pulmonary disease.74 Shi et al reported that hydrogen inhibits the NF- 
κB signaling pathway and the release of proinflammatory cytokines, thus mitigating sevoflurane neurotoxicity in neonatal 
rats.75

Hydrogen- and Mitogen-Activated Protein Kinase (MAPK)
The MAPK pathway is a crucial signal transduction system that mediates cellular responses; moreover, it is widely 
present in mammalian cells and is involved in various physiological processes, such as cell growth, development, 
differentiation, and apoptosis. MAPKs belong to the serine/threonine kinase family and include ERKs, p38 mitogen- 
activated protein kinases, and JNKs, which serve as vital links in a series of kinase enzymatic cascade reactions. You et al 
reported that hydrogen inhibits oxidative stress-induced MAPK activation and maintains calcium homeostasis.18 Song 
et al reported that hydrogen inhalation alleviated cognitive dysfunction, behavioral abnormalities, and neuronal apoptosis 
in subarachnoid rats. This mechanism may be related to inhibition of the p38 MAPK signaling pathway.76 The protective 
effects of hydrogen on organs and cells are closely associated with the activation of MAPKs and their signaling 
pathways.

Hydrogen and PI3K-AKT
The PI3K/Akt pathway is a notable signaling pathway that activates downstream extracellular signals and influences 
processes such as cell proliferation, apoptosis, and survival.77 Ke et al reported that hydrogen alleviates neurobehavioral 
deficits and cell apoptosis due to hypoxic–ischemic brain injury in newborn mice via the Akt pathway. These effects, 
which are associated with reduced phagocytosis, seem to involve the Akt signaling pathway.78 Hydrogen-saturated 
physiological saline can notably reduce miR-199a-3p, thereby exerting antiapoptotic effects through the IGF-1/PI3K/Akt/ 
mTOR pathway to protect the intestinal tract of mice from ischemia/reperfusion injury.63 Chen et al demonstrated that 
hydrogen-rich saline alleviated brain injury and inhibited microvascular endothelial cell apoptosis in rats undergoing 
cardiopulmonary bypass through the PI3K/Akt/gsk3β signaling pathway.79

Hydrogen and IgE High-Affinity Receptors (FcεRIs)
The specific receptor FcεRI is closely associated with allergic reactions in the body. FcεRI triggers downstream signal 
transduction, thus leading to mast cell degranulation and the release of chemokines and cytokines. Research indicates that 
hydrogen can inhibit mast cell degranulation and the release of inflammatory mediators such as leukotrienes, which are 
initiated by IgE binding to FcεRI. This inhibition is achieved by reducing the phosphorylation of downstream molecules, 
including spleen tyrosine kinase (Syk), phospholipase C gamma 1 (PLCγ1), phospholipase C gamma 2 (PLCγ2), Akt, 
ERK1/2, JNK, p38, and cytosolic phospholipase A2 (cP-LA2), among other factors, in the FcεRI signaling pathway. 
Additionally, hydrogen reduces NADPH oxidase activity, which subsequently decreases H2O2 production. There is 
a close relationship between hydrogen and FcεRI, thus suggesting that hydrogen exerts protective effects through the 
FcεRI signaling pathway.80

Basic and Preclinical Studies of Hydrogen Therapy for Diseases
Due to their small molecular size,81 hydrogen molecules possess high penetrability, thus enabling direct crossing of the 
blood‒brain barrier and cell membranes without relying on protein channels. Consequently, they diffuse into the spinal 
cord, systemic tissues, and organs, where they exert biological effects.7,19 Hydrogen, which is a weak reducing agent, 
does not react with reactive oxygen species, which are crucial in signaling. Instead, it selectively scavenges free oxygen 
radicals, thus preserving other beneficial oxidants and the body’s inherent antioxidant defense system.82 Moreover, 
hydrogen gas functions as an inert molecule within the human body and is unaffected by signaling molecules involved in 
neural transmission, vasodilation, cell apoptosis, proliferation, differentiation, extensive signal cascades, and anti- 
infectious signals (such as NO∙and O2∙ H2O2)83,84 (Figure 2). Many basic and clinical studies have explored the role 
of hydrogen in various conditions, including respiratory diseases,27,81,85–88 cardiovascular diseases,89 neurological 
disorders,90,91 gastrointestinal diseases,92,93 musculoskeletal disorders,94,95 immune system disorders,96 injury repair,97 
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cancer,98 and multiorgan damage caused by COVID-19.88,99,100 Overall, hydrogen therapy has shown potential in 
treating numerous diseases.

Currently, various approaches exist for delivering hydrogen in SCI treatment (Figure 3), including intraperitoneal 
injections of hydrogen-rich saline,101 subarachnoid injections of hydrogen-rich saline,44 inhalation of hydrogen gas,43 

and slow release of hydrogen using novel materials.102 Studies on SCI treatment using hydrogen have included three 
cases involving hydrogen gas inhalation,43,103,104 one case involving subarachnoid injection,44 and one case involving the 
use of a novel material (anisotropic magnetic fluid hydrogel).102 Other studies have used intraperitoneal injections of 
hydrogen-rich physiological saline. Hydrogen-rich physiological saline is commonly used due to its perceived safety, 
ease of administration, ability to enter the bloodstream, and ability to facilitate hydrogen transportation and diffusion 
within the body with precise dosage calculations. However, its use is limited due to its relatively low solubility in 
hydrogen gas at normal temperatures and pressures, thus leading to potential hydrogen leakage. Hence, a newly prepared 
hydrogen-rich physiological saline with improved sealing ability is preferred. There are no standardized guidelines for 
hydrogen dosage. Most studies have administered the dosage once daily throughout the experiments, often at 5 mL/kg for 
intraperitoneal injections. A greater amount of hydrogen-rich water had a more significant therapeutic effect. Kimura et al 
compared inhalation dosages of 1%, 2%, and 3% hydrogen gas, and they observed better treatment results with a 3% 
dosage.103 Chen et al compared inhalation dosages of 50%, 65%, and 75% hydrogen gas, with the 75% dosage showing 
superior treatment effects.43 Similarly, higher doses of hydrogen-rich physiological saline solutions resulted in better 
treatment effects.105,106 From the perspective of existing studies and pharmacology, it is easier to quickly obtain a higher 
dose of hydrogen intake by using a relatively high concentration of hydrogen, which is more likely to produce possible 

Figure 2 Advantages of hydrogen therapy in treating spinal cord injury.

Figure 3 Methods of hydrogen delivery.
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effects.107–110 However, blindly pursuing high concentrations may cause unnecessary treatment risks. At present, 
research on hydrogen medicine lacks a strict dose-effect relationship, which may be one of the key research directions 
of hydrogen medicine in the future. Currently, other methods of hydrogen delivery exist, including hydrogen delivery 
through hemodialysis and peritoneal techniques,3 topical application,111 and subcutaneous injections,112 among other 
methods. The emergence of novel hydrogen-producing materials may further enhance the efficacy of existing interven-
tion methods. They enable slow hydrogen release and targeted applications, thus potentially making hydrogen therapies 
safer and more effective.102

Research Status of Hydrogen Therapy for Spinal Cord Injury
Since 2010, 12 studies on the protective effect of hydrogen on SCI have been published (Table 1), which have 
preliminarily confirmed the potential protective effect of hydrogen on SCI.

These studies have confirmed (from multiple perspectives) that hydrogen therapy can reduce the oxidative stress 
response after SCI, alleviate inflammation, prevent apoptosis, improve spinal cord ischemia‒reperfusion injury, inhibit 
astrocyte formation, inhibit chemokines, and restore mitochondrial function (Figure 4).

Selective Antioxidant, Anti-Inflammatory and Antiapoptotic Effects
In 2010, Chen et al examined the mechanism of action of hydrogen-rich saline in treating acute spinal cord contusions. 
The authors used a standard contusion SCI model with male Sprague–Dawley rats. Hydrogen saline (5 mL/kg) was 

Table 1 Basic Research of Hydrogen in the Treatment of Spinal Cord Injury

Cells/Animals Treatments Duration Effects Biomarkers Evaluated References

BV2 cell/Sprague‒ 
Dawley rats

Ferromagnetic 

fluid hydrogel 
for slow 

release of 

hydrogen

8 weeks post 

injury

Reducing the expression of activated 

microglia and proinflammatory factors 
in SCI rats through the NF-κB 

pathway. Significantly promotes axonal 

directed regeneration and functional 
recovery after spinal cord injury

IL-1β↓, IL-6↓, iNOS↓, 

TNF-α↓, P-P65↓, P-IκB↓
[102]

Bone mesenchymal 

stem cell/Sprague‒ 
Dawley rats

Hydrogen-Rich 

Cell Culture 
Medium/ 

Hydrogen-Rich 

Saline

28 days post 

injury

Hydrogen can repair spinal cord injury 

by reducing inflammatory response 
and oxidative stress at the injury site 

and enhancing the migration and 

proliferation of bone marrow 
mesenchymal stem cells

TNF-α↓, IL-1β↓, 

IL-6↓, MDA↓, 
SOD↑

[101]

Sprague‒Dawley rats Hydrogen-Rich 

Saline

7 days post 

injury

The levels of IL-6 and TNF-α were 

significantly decreased in hydrogen- 
rich saline treated group after SCI, and 

apoptosis was also significantly 

reduced

TNF-α↓, 

IL-6↓
[113]

Sprague‒Dawley rats Hydrogen gas 

inhalation

140 minutes Hydrogen inhalation exerts 

a concentration-dependent protective 

effect on the spinal cord, and GLT-1 is 
involved in this protective effect

GLT-1↓ [103]

Sprague‒Dawley rats Hydrogen-Rich 

Saline

7 days from 

surgery

Hydrogen-rich saline can dose- 

dependently decrease morphine 
tolerance, reduce proinflammatory 

cytokine expression, inhibit astrocyte 

activation, reduce GLT-1 and GS 
nitration, and inhibit membrane 

transport of NMDA receptors

TNF-α↓, IL-1β↓, 

IL-6↓, GLT-1↓, 
GS nitration↓, NMDA 

receptors↓

[106]

(Continued)
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Table 1 (Continued). 

Cells/Animals Treatments Duration Effects Biomarkers Evaluated References

Primary spinal cord 

neuron, C57BL/6 mice

Hydrogen gas 

inhalation

42 days post 

injury

Hydrogen can reduce the production 

of ROS and inhibit neuronal apoptosis 
by oxidative stress, restoring the 

construction and function of 

mitochondria in spinal cord injury. 
Cox8b, Cox6a2, Cox7a1, Hspb7, and 

Atp2a1 were identified as potential 

target genes for hydrogen treatment

Cox8b↓, Cox6a2↓, 

Cox7a1↓, Hspb7↓, 
Atp2a1↓

[43]

Wistar rats Hydrogen-Rich 

Saline

42 days post 

injury

Hydrogen rich saline can promote the 

recovery of testicular biological 

function through antioxidant, anti- 
inflammatory, and antiapoptotic 

effects after spinal cord injury

HO-1↓, MFN-2↑ [114]

Sprague‒Dawley rats Hydrogen-Rich 
Saline

2 weeks post 
injury

Injecting hydrogen rich saline within 2 
weeks after injury can effectively 

promote the repair of acute spinal 

cord injury, which is achieved by 
alleviating tissue damaging oxidative 

stress, inflammation and apoptosis

CGRP↑, caspase-3↓, 
SOD↑, MDA↓

[44]

Astrocytes/Sprague‒ 
Dawley rats

Hydrogen-Rich 
Saline

2 weeks post 
injury

Hydrogen could suppress reactive 
astrogliosis after contusive SCI and 

reduce the release of proinflammatory 

cytokines produced by active 
astrocytes related to oxidative injury

ROS↓, STAT3↓, p-STAT3↓, 
GFAP↓, 

TNF-α↓, IL-1β↓, IL-6↓,

[70]

New Zealand white 

rabbits

Hydrogen-Rich 

Saline

72 hours after 

reperfusion

Hydrogen therapy for spinal cord 

ischemia‒reperfusion injury by 
activating the mitoKATP channel and 

reducing oxidative stress, 

inflammatory cytokines, and apoptosis

mitoKATP [105]

Sprague‒Dawley rats Hydrogen-Rich 

Saline

72 hours post 

injury

Hydrogen-rich saline reduced acute 

spinal cord contusion injury, possibly 

by reduction of oxidative stress and 
elevation of BDNF

BDNF↑, 

MDA↓, 

MPO↓, caspase-3↓

[115]

New Zealand white 

rabbits

Hydrogen gas 

inhalation

72 hours after 

reperfusion

Hydrogen therapy is beneficial to 

spinal cord I/R damage by reducing 
oxidative stress, inflammatory 

response, and apoptosis

TNF-α↓, HMGB1↓, 

SOD↑, 
CAT↑, 

MDA↓, 

8-iso-PGF2α↓

[104]

Abbreviations: Akt, Protein Kinase B; AMPK, Adenosine 5‘-monophosphate-activated protein kinase; ATP, adenosine triphosphate; Bax, BCL2-Associated X; BBB, Basso, 
Beattie & Bresnahan locomotor rating; Bcl-2, B-cell lymphoma-2; BDNF, Brain-derived neurotrophic factor; CAT, Catalase; CO, Carbon monoxide; Cox6a2, Cytochrome 
c oxidase subunit 6A2; Cox7a1, Cytochrome c oxidase subunit 7A1; Cox8b, Cytochrome c oxidase subunit 8B; cP-LA2, Cytosolic Phospholipase A2; DNA, 
DeoxyriboNucleic Acid; DNMT, DNA methyltransferase; ERK, extracellular signal-regulated kinase; ERK, Extracellular regulated protein kinases; FcεRI, IgE High Affinity 
Receptors; GLT-1, Glutamate transporter-1; GS, Glutamine synthetase; GSDMD, Gasdermin D; GSH-Px, Glutathione peroxidase; GSK-3β, Glycogen synthase kinase-3 beta; 
HIF1, hypoxia inducible factor-1; HMGB-1, High-mobility group box protein 1; HO-1, oxygenase-1; H2S, Hydrogen sulfide; Hspb7, Heat Shock Protein Beta 7; ICAM-1, 
Intercellular adhesion molecule 1; IGF-1, Insulin-like growth factor 1; IL-10, Interleukin-10; IL-1β, Interleukin-1 beta; IL-6, Interleukin-6; JNK, c-Jun amino acid terminal 
kinase; LC3, Microtubule-associated protein light chain 3; MAPK, Mitogen Activated Protein Kinase; MCP-1, Macrophage chemoattractant protein 1; MDA, malonaldehyde; 
MPO, Myeloperoxidase; mTOR, Mechanistic Target Of Rapamycin; NAD, Nicotinamide adenine dinucleotide; NF-κB, Nuclear factor-κB; NLRP3, NOD-like receptor thermal 
protein domain associated protein 3; NMDA, N-Methyl-d-aspartic acid; NO, Nitric Oxide; Nrf2, Nuclear factor E2 related factor 2; PI3K, Phosphatidylinositol 3-kinase; 
PINK1, PTEN induced putative kinase 1; PLCγ1, Phospholipase C Gamma 1; PLCγ2, Phospholipase C Gamma 2; ROS, Reactive oxygen species; SCI, Spinal cord injury; SOD, 
superoxide dismutase; STAT3, Signal transducer and activator of transcription; Syk, Spleen Tyrosine Kinase; TGF-β, Transforming growth factor-β; TLR-4, Toll-like receptor 4; 
TNF-α, Tumor necrosis factor-α; TREM-2, Recombinant Triggering Receptor Expressed On Myeloid Cells 2; HO, hydroxyl radicals; 3-NT, 3-nitrotyrosine; 8-iso-PGF2α, 
8-iso-prostaglandin F2alpha.
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intraperitoneally injected at 24 and 48 hours after injury. Cell apoptosis, oxidative stress, inflammation, and brain-derived 
neurotrophic factor (BDNF) levels were measured. They also utilized the Basso, Beattie & Bresnahan locomotor rating 
(BBB) scale to evaluate exercise behavior. Research has indicated that hydrogen-rich saline may alleviate acute SCI by 
reducing oxidative stress, decreasing the number of apoptotic cells, and increasing BDNF levels.115 Huang investigated 
the therapeutic effect of hydrogen on spinal cord ischemia‒reperfusion injury in rabbits. One study demonstrated that 
hydrogen reduced oxidative stress and the inflammatory response in a concentration-dependent manner.104 Liu et al 
conducted in vitro and in vivo experiments and found that hydrogen molecules could inhibit the formation of reactive 
astrocytes after traumatic SCI. This inhibition led to a reduction in the release of proinflammatory cytokines produced by 
active astrocytes associated with oxidative damage.70

Wang et al reported that hydrogen-rich saline notably reduced cell death, inflammatory cell infiltration, serum 
malondialdehyde content, and caspase-3 immunoreactivity. It also increased serum superoxide dismutase activity and 
calcitonin gene-related peptide immunoreactivity, thus ultimately improving hind limb motor function.44 Ge et al 
demonstrated that hydrogen-rich saline could enhance the recovery of testicular function following spinal cord hemi- 
section injury through its antioxidant, anti-inflammatory, and antiapoptotic effects.114 Kayabas et al investigated the anti- 
inflammatory and antiapoptotic effects of hydrogen-rich saline by reducing the levels of IL-6 and TNF-α.113

Activation of Mitochondria
Chen et al reported that the inhalation of 75% hydrogen gas improved SCI, reduced mechanical damage to isolated 
neurons, and exerted a dose-dependent protective effect on spinal cord neurons. These mechanisms include reducing 
ROS production and oxidative stress, inhibiting neuronal apoptosis, and restoring mitochondrial structure and function. 
Cytochrome c oxidase subunit 8B (Cox8b), cytochrome c oxidase subunit 6A2 (Cox6a2), cytochrome c oxidase subunit 
7A1 (Cox7a1), heat shock protein beta 7 (Hspb7), and Atp2a1 have been identified as being potential targets of hydrogen 
treatment.43 MitoKATP is a protein complex that is present in mitochondria that is associated with ATP levels. Zhou et al 
induced spinal cord ischemia for 20 min in male New Zealand white rabbits with subrenal aortic occlusion. Different 
doses of hydrogen-rich saline were intravenously administered before or 5 min after the start of reperfusion. Studies have 
shown that hydrogen-rich saline may be an effective therapeutic agent for spinal cord ischemia‒reperfusion injury by 
reducing oxidative stress, inflammatory cytokines and apoptosis, and this therapeutic effect can be partially eliminated by 
the mitoKATP channel blocker 5-hydroxyacetate.105

Figure 4 Protective effect of hydrogen on spinal cord injury and its possible molecular mechanism.
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Targeting Glutamate Transporter-1 (GLT-1)
Glutamate is the most important excitatory neurotransmitter in the spinal cord and brain, and glutamate transporters play 
an extremely important role in maintaining normal extracellular glutamate concentrations and physiological activities of 
the central nervous system. Glutamine synthetase (GS) is involved in glutamate synthesis, and N-methyl-D-aspartic acid 
(NMDA) is a homolog of glutamate and an important neurotransmitter in the spinal cord. Li et al reported that hydrogen 
preconditioning prevents morphine tolerance by reducing neuroinflammation, GLT-1, glutamine synthetase nitration, and 
NMDA receptor transport in the spinal dorsal horn. Thus, hydrogen preconditioning can be used as a new therapeutic 
strategy to prevent morphine tolerance.106 Kimura et al reported that inhaled hydrogen reduced the increase in glutamate 
levels in the anterior cornea of the spinal cord that was induced by spinal cord ischemia‒reperfusion injury in 
a concentration-dependent manner and played a protective role in the injured spinal cord. Further studies have shown 
that the protective effect of hydrogen is eliminated by using GLT-1 inhibitors. The classical mechanism of action of 
hydrogen involves selective oxidation. This study identified a new molecular mechanism by which hydrogen can directly 
act on GLT-1 to play a therapeutic role without the use of selective antioxidants.103

Combination with Bone Marrow Mesenchymal Stem Cells
Luo et al reported that the codelivery of hydrogen and bone marrow stem cells can reduce inflammation and oxidative 
stress at the injury site, improve the survival rate and migration ability of transplanted cells, significantly promote the 
recovery of neural function, and repair the injured spinal cord.101

Slow Release of Hydrogen Through New Materials
Anisotropic ferromagnetic fluid hydrogels inhibit the NF-κB pathway by slowly releasing hydrogen, reducing the 
expression of activated microglia/macrophages and proinflammatory factors in SCI rats, and significantly promoting 
axonal directional regeneration and functional recovery after SCI.102

Clinical Therapeutic Studies of Hydrogen Therapy for Diseases and 
Damage
To date, no clinical studies on hydrogen therapy for SCI have been reported; however, many clinical studies have been 
conducted on craniocerebral diseases. Benjamin reported that hydrogen-rich saline can be used in patients with traumatic 
brain injury.116 A study by Tamura, which screened 429 patients who experienced cranial coma after out-of-hospital 
cardiac arrest between February 1, 2017, and September 30, 2021, demonstrated that hydrogen inhalation may increase 
birth survival without neurological dysfunction by 90%.117 In a randomized, double-blind placebo-controlled clinical 
study, 73 patients with mild cognitive impairment drank approximately 300 mL of hydrogen-rich saline or placebo water 
per day (control group). After 1 year, apolipoprotein E4 genotype carriers in the hydrogen treatment group showed 
significant improvements in the total Alzheimer’s Disease Assessment Scale cognitive subscale score and word recall 
task score.118 Ono et al evaluated eight patients with Alzheimer’s disease who inhaled 3% H2 gas for one hour twice 
daily for six months. Studies have shown that hydrogen treatment not only alleviates clinical symptoms but also 
significantly improves the integrity of neurons passing through the hippocampus.119 A total of 38 hospitalized patients 
with acute ischemic stroke were treated with a combination of conventional treatment and hydrogen-rich saline, and 
research data has shown that intravenous injection of HRS-assisted treatment for acute ischemic stroke was safe.120

Hydrogen has been used as a diagnostic marker for several diseases. Yokoyama examined 107 patients with cirrhosis 
and reported that breath measurements of hydrogen and methane concentrations can be used to diagnose intestinal 
bacterial overgrowth and, subsequently, the occurrence of cirrhosis.121 Europe-wide diagnostic indicators for hydrogen 
and methane breath testing have been used for symptom assessment in the diagnosis of carbohydrate intolerance in both 
adult and pediatric patients and have been included in clinical guidelines.122 Future diagnosis of hydrogen markers based 
on hydrogen-producing bacteria will provide a new perspective for the diagnosis and prevention of Alzheimer’s 
disease.123 Whether hydrogen can be used as a diagnostic biomarker of SCI in the future needs further research.
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Limitations of Current Research on Hydrogen Therapy
Hydrogen medicine, which was developed in 1975, has a history of nearly 50 years and has achieved significant results in 
basic and clinical research, as well as in various applications. However, these studies were essentially effect studies, and 
research on SCI is particularly limited, especially in terms of the lack of related clinical research. There is also a lack of 
research on contraindications for hydrogen therapy. Comparatively few studies have investigated the effects of hydrogen 
treatment in comparison to other therapeutic drugs. Moreover, there is a lack of guidelines or research consensus related 
to hydrogen. As a natural substance with no complex structure or preparation difficulty, hydrogen cannot be patented, and 
many scholars remain concerned about its safety while lacking the support of large pharmaceutical companies. In 
summary, research into the protective effects of hydrogen on SCI is still in its infancy. Addressing the aforementioned 
problems could be an important basis for promoting the clinical application of hydrogen.

Conclusions and Perspectives
Hydrogen, which is a novel biomedical molecular gas, has been extensively studied in animal and in vitro cell 
experiments, and there have been many clinical reports on its use in the treatment of various diseases. Hydrogen 
treatment has been described in the guidelines for the treatment of COVID-19 in China.99 Medical insurance in China 
covers patients who receive hydrogen therapy. Hydrogen plays a role in the treatment of SCI through its biological 
effects, such as antioxidant, anti-inflammatory, and antiapoptotic effects. Despite its potential, research on the treatment 
of SCI with hydrogen remains relatively scarce, particularly in terms of clinical reports. The molecular mechanism of 
action of hydrogen therapy for SCI remains unclear, and research on the mechanism of action is insufficient. Currently, 
there is no consensus on the dosage and route of hydrogen gas. Hydrogen has great potential for application in SCI 
treatment. It is believed that ongoing research on hydrogen will hopefully improve the prognosis of patients with SCI in 
the future.
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