
Functional Connectivity and Information Flow of
the Respiratory Neural Network in Chronic

Obstructive Pulmonary Disease

Lianchun Yu,1,2 Marine De Mazancourt,1,3 Agathe Hess,4 Fakhrul R. Ashadi,1

Isabelle Klein,4 Herv�e Mal,5 Maurice Courbage,1 and Laurence Mangin1,6*

1Department of Physics, Matter and Complex Systems Research Laboratory, UMR 7057,
CNRS, Paris 7 University, France

2Institute of Theoretical Physics, Lanzhou University, Lanzhou, China
3Ecole Normale Sup�erieure, Paris, France

4Neuroradiology Department, APHP, Hôpital Bichat, France
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Abstract: Breathing involves a complex interplay between the brainstem automatic network and cortical
voluntary command. How these brain regions communicate at rest or during inspiratory loading is
unknown. This issue is crucial for several reasons: (i) increased respiratory loading is a major feature of
several respiratory diseases, (ii) failure of the voluntary motor and cortical sensory processing drives is
among the mechanisms that precede acute respiratory failure, (iii) several cerebral structures involved in
responding to inspiratory loading participate in the perception of dyspnea, a distressing symptom in
many disease. We studied functional connectivity and Granger causality of the respiratory network in
controls and patients with chronic obstructive pulmonary disease (COPD), at rest and during inspiratory
loading. Compared with those of controls, the motor cortex area of patients exhibited decreased connec-
tivity with their contralateral counterparts and no connectivity with the brainstem. In the patients, the
information flow was reversed at rest with the source of the network shifted from the medulla towards
the motor cortex. During inspiratory loading, the system was overwhelmed and the motor cortex became
the sink of the network. This major finding may help to understand why some patients with COPD are
prone to acute respiratory failure. Network connectivity and causality were related to lung function and
illness severity. We validated our connectivity and causality results with a mathematical model of neural
network. Our findings suggest a new therapeutic strategy involving the modulation of brain activity to
increase motor cortex functional connectivity and improve respiratory muscles performance in patients.
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*Correspondence to: Laurence Mangin, Physics and Physiology
Departments, Paris 7 University, Paris, France.
E-mail: laurence.mangin@bch.aphp.fr

Received for publication 1 April 2015; Revised 15 February 2016;
Accepted 23 March 2016.

DOI: 10.1002/hbm.23205
Published online 5 April 2016 in Wiley Online Library (wileyonli-
nelibrary.com).

r Human Brain Mapping 37:2736–2754 (2016) r

VC 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which per-
mits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifica-
tions or adaptations are made.



INTRODUCTION

Breathing involves a complex interplay between the
automatic brainstem network and the voluntary cortical
command [Gandevia and Rothwell, 1987; Sharshar et al.,
2004]. Both networks interact harmoniously to control
respiratory muscles contraction, thereby ensuring normal
blood gas levels during speech, volitional breathing and
ventilatory load. Converging evidence from functional
neuroimaging studies indicates that the sensorimotor cor-
tex, medulla, pons and insula are among the critical cere-
bral regions activated during inspiratory loading [Gozal
et al., 1995; Hess et al., 2013; Isaev et al., 2002; McKay
et al., 2003; Peiffer et al., 2001]. How these brain regions
communicate with one another at rest or during load
increases is unknown. This issue is crucial for several rea-
sons: (i) increased respiratory loading is a major feature of
several respiratory diseases, (ii) failure of the voluntary
motor and cortical sensory processing drives is among the
mechanisms that precede acute respiratory failure [Daven-
port et al., 2000; Sassoon et al., 1996], and (iii) several cere-
bral structures involved in responding to inspiratory
loading also participate in the perception of dyspnea
[Peiffer et al., 2001; Von Leupold et al., 2008, 2009], a com-
mon and often distressing symptom in many disease.

Chronic obstructive pulmonary disease (COPD) is the
most common chronic lung disease in the general popula-
tion. Chronic inflammation of the distal airways, caused
chiefly by tobacco smoke leads to increases in airway tree
resistance and, subsequently, in ventilatory loads. Lung
function is impaired with a decline in forced expiratory
flow, and respiratory muscle insufficiency, which increase
the neural drive to breathe [Jolley et al., 2009; Murphy
et al., 2011]. Patients with end-stage COPD have chronic
respiratory failure that requires home oxygen (O2) therapy.
In a previous study involving cerebral functional magnetic
resonance imaging (fMRI), we found that patients with
COPD exhibited specific alterations in the brainstem neu-
ral control of the respiratory muscles during spontaneous
breathing with a high amplitude of low-frequency oscilla-
tions of expiratory neuron clusters [Hess et al., 2013].
Experimental data combined with mathematical modelling
of respiratory rhythmogenesis indicated that patients with
COPD responded to a ventilatory load increase by reacti-
vating the parafacial group in the brainstem in order to
sustain ventilation [Hess et al., 2013]. Furthermore, trans-
cranial magnetic stimulation (TMS) showed that the motor
cortex driving the diaphragm had a low motor threshold,
a high excitability level and a ceiling effect, as previously
reported [Hopkinson et al., 2004]. Taken together, these
findings suggest a major role for the automatic and volun-
tary respiratory neural networks in the pathophysiology of
COPD. Surprisingly, no information is available on the
connectivity pattern of the respiratory network at rest or
in response to increased ventilatory loading in healthy
individuals or patients with COPD.

We hypothesized that the functional architecture and
information flow of the brain network controlling the respi-
ratory muscles exhibited specific impairments in patients
with COPD, and that these impairments correlated with ill-
ness severity. The selected seed regions were identified dur-
ing an inspiratory load design and involved seven key
areas of the network: two bilaterally in the motor cortex,
two bilaterally in the somatosensory cortex, one in the
brainstem region including the medulla and pons, one in
the cerebellum, and one in the insula. Correlations between
the seed regions and the brain were evaluated and a
Granger’s predictability analysis was performed during
resting-state fMRI and inspiratory loading to investigate
communication within the network. We also sought sup-
port for the connectivity and causality findings by develop-
ing a mathematical model of the neural network.

METHODS

Participants

We included 15 patients with stable COPD seen at the
Physiology and Respiratory disease departments of the
Bichat Hospital between 2011 and 2012. Inclusion criteria
were age older than 18 years, clinical and lung-function-
test findings indicating mild-to-severe COPD [Pauwels
et al., 2001], and absence of exacerbation in the past 4
weeks. Exclusion criteria were home O2 therapy, neurolog-
ical disease, history of stroke or other cardiovascular
events, psychiatric disorder, body mass index (BMI)
>30 kg/m2, and contraindication to cerebral fMRI. The
study was approved by the Ile-de-France-1 ethics commit-
tee, and patients gave written informed consent before
study inclusion. Each patient underwent a physical exami-
nation and lung function testing: forced expiratory volume
in one second (FEV1), FEV1 over forced vital capacity
(FEV1/FVC), total lung capacity (TLC). Dyspnea was
quantified at rest and during inspiratory loading using the
Medical Research Council Dyspnea Scale (MRC) [Fletcher,
1960]. We assessed COPD severity using the GOLD stage
[Pauwels et al., 2001] and the multidimensional BODE
index based on BMI, FEV1, dyspnea severity (MRC), and
the 6-min walking distance [Celli et al., 2004]. Age-
matched controls (n 5 15) were recruited from our hospi-
tal’s clinical investigation center. All controls and patients
were right-handed.

Functional Magnetic Resonance

Imaging (fMRI) Acquisition

For each participant, three sets of images were acquired:
structural, resting state, and block design paradigm. The
participants breathed normally for structural and func-
tional imaging at rest. For block design imaging, they
breathed via a mouthpiece connected to a two-way nonre-
breathing valve (Hans Rudolph 1410 Series) and wore a
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nose clip. A small plastic 1-m long tube was connected to
the inspiratory limb of the T-valve for application of a
resistive load (50 cm H20/L/s). During the block design,
we monitored mouth pressure at the level of the T-valve,
as a validated index of respiratory muscle effort. Before
starting the fMRI sessions, the participants were allowed 5
min of familiarization with the equipment in the quiet
radiology suite. Physiological monitoring was synchron-
ized with image acquisition. Chest expansion was meas-
ured using a pneumatic belt and an electrocardiogram was
recorded via chest electrodes [Glover and Chang, 2009],
with sampling rates of 10 ms and 1 ms, respectively. End-
tidal pressure of carbon dioxide (PETCO2) and O2 saturation
were recorded continuously at a sampling rate of 10 ms.

Imaging was performed using a 3 Tesla MR scanner
(General Electrics) with a 64-channel head coil. Structural
T1-weighted high-resolution three-dimensional (3D) volu-
metric image covering the entire brain were acquired in all
participants, using the following parameters: 171 axial sli-
ces; 1.2 mm thickness with no gap; echo time [Te] 5 3.4
ms; repeat time [RT] 5 8.6 ms; flip angle 5 128; matrix 256
3 256; and field of view 240 mm 3 240 mm. Total acquisi-
tion time was 4 min and 35 s.

T2-weighted echoplanar images were acquired for the
first acquisition run during the resting state (52 axial slices;
4 mm thickness with no gap; echo time [Te] 5 19 ms;
repeat time [RT] 5 2,000 ms; flip angle 5 908; matrix 64 3

64; field of view 240 mm 3 240 mm; and voxel dimension
3 3 3 3 4 mm). Acquisition time was 10 min and 8 s, and
300 whole brain volumes were obtained. For the resting
state, the participants were instructed to “keep their eyes
closed and think of nothing in particular,” to refrain from
cognitive, language, and motor tasks as much as possible,
and not to fall asleep.

The second set of functional images was acquired using
a block design with five cycles, each consisting in alternat-
ing 36-s rest periods and 36-s active periods with applica-
tion of a 50 cmH2O/L/s resistive load. MRI parameters
were as follows: 52 axial slices; 4 mm thickness with no
gap; [Te] 5 33 ms; [RT] 5 3,000 ms; flip angle 5 908; matrix
64 3 64; field of view 240 mm 3 240 mm, and voxel
dimension 3 3 3 3 4 mm. Total acquisition time was 6
min 12 s, and 120 whole-brain volumes were obtained. A
supplementary set of functional images was acquired at
rest in one control and one patient, with active periods
consisting of a right wrist extension for 36 s. The cerebral
activation area resulting from the hand movement (HM)
was taken as the representation of the right hand in the
primary motor cortex, which was distinct from the respira-
tory muscle area [Sarfeld et al., 2012].

Image Analyses

Image processing was performed using FSL software
(http://www.fmrib.ox.ac.uk/fsl, Oxford University).

Structural images

Cerebral gray and white matter volumes were estimated
using the optimized voxel-based morphometry (VBM)
[Good et al., 2001] protocol FSL-VBM (http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/FSLVBM) [Douaud et al., 2007], carried
out with FSL 5.0 [Smith et al., 2004]. First, structural
images were brain-extracted and gray matter-/white
matter-segmented before being registered to the MNI 152
standard space using nonlinear registration [Andersson
et al., 2007]. The resulting images were averaged and
flipped along the x-axis to create a left-right symmetric,
study-specific grey/white matter template. Second, all
native gray and white matter images were nonlinearly reg-
istered to this study-specific template and “modulated” to
correct for local expansion (or contraction) due to the non-
linear component of the spatial transformation. The modu-
lated gray and white matter images were then smoothed
using an isotropic Gaussian kernel with a sigma of 3 mm.
Finally, comparisons between gray and white matter as
well as of the seven volumetric regions of interest (ROIs)
were performed using a voxelwise general linear model
and permutation-based nonparametric testing adjusted for
differences in PaO2 (partial pressure of oxygen in arterial
blood) covariate and correcting for multiple comparisons
across space.

Resting state fMRI

Preprocessing steps included motion correction using
MCFLIRT [Jenkinson et al., 2002], slice timing corrections
using Fourier-space time-series phase-shifting, non-brain
removal using BET [Smith 2002], spatial smoothing using
a Gaussian kernel of full-width-half-maximum 6 mm, and
multiplicative mean intensity normalization of the volume
at each time point. We also performed single-session inde-
pendent component analysis (ICA) [Beckmann and Smith,
2004] as implemented in MELODIC (Multivariate Explora-
tory Linear Decomposition into Independent Components)
(FSL 5.0). The preprocessed data were whitened and pro-
jected into a 30-dimensional subspace. The whitened
observations were decomposed into sets of vectors describ-
ing signal variations across the temporal domain (time-
courses) and spatial domain (maps) by optimizing for
non-Gaussian spatial source distributions using a fixed-
point iteration technique [Hyv€arinen, 1999]. Estimated
component maps were divided by the standard deviation
of the residual noise and thresholded by fitting a mixture
model to the histogram of intensity values [Beckmann and
Smith, 2004]. ICA was used to remove, among the 30 com-
ponents, those identified as scanner-related, produced by
head movement and physiological noise. This step is
based on visual inspection of the components in the spa-
tial, temporal and spectral domains (Supporting Informa-
tion Figs. S1 and S2).

Respiratory volume per time (RVT) was computed from
the respiratory waveform (chest belt) [Birn et al., 2008].
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The waveform peak-trough difference was divided by the
breathing period for each breath cycle then interpolated to
the imaging repeat time (RT). The RR cardiac interval,
PETCO2 and O2 saturation (maximum values per breath),
were also interpolated to the imaging RT. Masks of the
cerebrospinal fluid and white matter were computed from
the structural images of participants using the FAST pro-
gram in FSL, then moved into the functional space of the
resting state and extracted as time series. The RVT, the RR
cardiac interval, PETCO2 [Peng et al., 2013; Wise et al.,
2004], O2 saturation, and cerebrospinal fluid and white
matter time series were then included into a multivariate
linear regression model to account for significant influen-
ces of these potentially confounding factors on the blood
O2 level-dependent (BOLD) signal and were regressed out.

Statistical images were then registered to high-resolution
structural and standard space images using FLIRT [Jenkin-
son and Smith, 2001], and further refined using FNIRT
nonlinear registration.

Block design fMRI

Preprocessing steps were the same as for resting state
fMRI except for the use of MELODIC, and the addition of
high-pass temporal filtering (Gaussian-weighted least-
squares straight line fitting with sigma 5 36 s). At the sin-
gle level analysis, a general linear model was used and
confounding covariates (RVT, PETCO2, RR cardiac interval,
O2 saturation, cerebrospinal fluid and white matter, head
motion) were regressed out. A voxel-wise statistical analy-
sis was extended to a second (group) level in a fixed-
effects analysis, and between-group differences were then
performed with the control>COPD contrast, adjusted for
differences in PaO2. To correct for multiple comparisons,
each cluster’s estimated significance level (using Gaussian
random field theory) was compared with the cluster prob-
ability threshold (Z> 4, P< 0.05). Statistical images were
then registered to high-resolution structural and standard
space images using FLIRT [Jenkinson and Smith, 2001]
then further refined using FNIRT nonlinear registration.

Regions of Interest (ROIs) Selection and

Functional Connectivity During Resting State

and Inspiratory Load Design

We used a supplementary algorithm implemented in
FSL to specifically remove the effect of timepoints due to
large head motions, during resting state and block design
imaging. The effects of these timepoints on the analysis
can be completely removed without adversely affecting
the validity of the statistical results [Power et al., 2012].
This approach is designed to deal with the effects of inter-
mediate to large movements, which corrupt images
beyond anything that the linear motion parameter regres-
sion methods can fix. The method is based on the root
mean square (rms) intensity difference between volume N

and volume N 1 1 [Power et al., 2012]. The participants
did not differ significantly regarding motion or average
root mean square (rms) movement at rest (controls,
0.11 6 0.04 mm; COPD, 0.15 6 0.09 mm), or during the
block design (controls, 0.14 6 0.07 mm; COPD,
0.18 6 0.05 mm). We selected the seven regions of interest
(ROIs) based on between-group differences in the inspira-
tory load block design according to the control>COPD
contrast. The seeds thus identified for the functional con-
nectivity analyses were located in the right motor (RMC)
cortex, left premotor cortex (LMC), right and left primary
somatosensory cortex (LSC, RSC), medulla-pons (MP)
region of the brainstem, cerebellum, and left anterior
insula (Fig. 1), according to the MNI structural and Juelich
histological atlases in FSL (Supporting Information Table
S1). A supplementary seed region was located in the left
primary and premotor cortex and was related to the hand
movement (HM) block design (LMC-HM, Fig. 1 top
panel). All seeds had the same volume (15 voxels,
120 mm3). The time series of the ROIs was extracted, by
averaging the time series of all voxels within each ROI.
The whole-brain time series was also extracted and func-
tional connectivity was processed in Matlab R2014b soft-
ware (Mathworks) using a custom-written program. The
time series were first filtered between 0.01 and 0.1 Hz to
remove the effects of very low frequency drift and high-
frequency noise [Fox and Raichle, 2007]. A partial correla-
tion analysis was then performed between the seed region
and the whole brain while controlling for the six rigid-
body motion parameters. These parameters were previ-
ously estimated from the motion correction of the resting
state and block design functional images. The resulting
processed image was a correlation coefficient map provid-
ing a quantitative assessment of correlation strength. Vox-
elwise statistical analyses of the functional connectivity
map were performed using non-parametric permutation
testing and randomize in FSL 5.0 [Winkler et al., 2014].
The number of permutation tested was 5,000 and statistics
were performed using threshold-free cluster enhancement.
Within- and between-group differences were assessed
using t-tests, with voxels considered significant when
P< 0.05 after family-wise error (FWE) correction. To dem-
onstrate the robustness of our findings against potential
movement confounds, we computed correlations between
movement parameters (average rms) and whole-brain
BOLD signals. We found no within- and between-group
correlations that might have corrupted our connectivity
analyses during resting state or block design imaging.
Given our focus on the respiratory neural network, we
used a specific search volume for multiple comparisons.
The anatomic mask was derived from the Juelich histologi-
cal atlas in FSL and encompassed the entire primary and
premotor cortex, the primary somatosensory cortex and
the brainstem. This established method reduces the num-
ber of necessary corrections for multiple comparisons from
the whole brain to relevant target brain areas. Between-
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groups comparisons were performed while controlling for
the PaO2 covariate.

We also used a one-sample t-test with additional covari-
ates using the general linear model as implemented in
FSL, to obtain inferences for the linear relationships
between the chosen covariates (lung function (FEV1,
FEV1/FVC, and TLC) and PaO2 in controls; illness severity
(dyspnea, lung function, GOLD, and BODE scores), etiol-
ogy (COPD vs. genetic emphysema), and PaO2 in patients)

and the dependent variable (the connectivity map). We
then ran randomize and permutations testing with the
appropriate contrasts.

Granger Causality Analysis (GCA)

We used only six regions for the GCA to allow an accu-
rate analysis of the network using a linear multivariate
model. The six selected seed regions were the LMC, RMC,
LSC, RSC, MP, and insula. Each seed region was previ-
ously regressed out for confounding covariates (RVT,
PETCO2, RR cardiac interval, O2 saturation, cerebrospinal
fluid and white matter and head motion). Resting-state
and inspiratory load time series were extracted by averag-
ing the time series of all voxels within it. BOLD time series
were demeaned and detrended. In addition, blind decon-
volution of the hemodynamic response function was per-
formed to retrieve the underlying neuronal process [David
et al., 2008; Schippers et al., 2011; Wu et al., 2013].

In 1969, Granger introduced the idea of G-causality in
terms of linear regression modeling [Granger 1969]. A
variable X2 “Granger causes” a variable X1 if the inclusion
of past observations of X2 reduces the prediction error of
X1 in a linear regression model of X1 and X2, compared
with a model including only previous observations of X1.
To illustrate G-causality, let us suppose that the temporal
dynamics of two time series X1(t) and X2(t) (both of length
T) can be described by a bivariate autoregressive model:

X1 tð Þ5
Xp

j51

A11;jX1 t2jð Þ1
Xp

j51

A12;jX2 t2jð Þ1n1 tð Þ

X2 tð Þ5
Xp

j51

A21;jX1 t2jð Þ1
Xp

j51

A22;jX2 t2jð Þ1n2 tð Þ

where p is the maximum number of lagged observations
included in the model (the model order, p<T), A contains
the coefficients of the model, and n1, n2 are the residuals
(prediction errors) for each time series. If the variance of
n1 (or n2) is reduced by including the X2 (or X1) terms in
the first (or second) equation, then it is said that X2 (or X1)
G-causes X1 (or X2). Assuming that X1 and X2 are covari-
ance stationarity (i.e., have unchanging mean and var-
iance), the magnitude of this interaction can be measured
by the log ratio of the prediction error variances for the
restricted (R) and unrestricted (U) models:

F2 15ln
var n1R 12ð Þ

� �
var n1Uð Þ

where n1R(12) is derived from the model omitting the A12,j

(for all j) coefficients in the first equation and n1U is
derived from the full model. Importantly, it is possible to
generalize to the multivariate (conditional) case in which
the G-causality of X2 on X1 is tested in the context of mul-
tiple additional variables X3 . . . Xn [Geweke, 1982]. We

Figure 1.

Location of the seed regions (red surface) for functional connec-

tivity analyses: the seeds were selected during an inspiratory

loading block design paradigm by using a between groups voxel-

wise contrast, controls>COPD. Top panel: the LMC seed was

located in the left premotor cortex while the LSC seed

belonged to the primary somatosensory cortex. The RMC seed

was in the right primary and premotor cortex and the RSC

seed in the right somatosensory cortex; the LMC-HM seed (left

motor cortex related to hand movements) was identified by

block-design imaging during repeated wrist extension. Bottom

panel: the insula seed was in the left anterior part of the insula.

The cerebellar seed was in the left cerebellar hemisphere. The

MP (medulla and pons) seed was in the rostral medulla and cau-

dal pons at the level of the fissura pontomedullaris.
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estimated the information flow in the network using the
multivariate granger causality (MVGC) toolbox in MAT-
LAB R2014b [Barnett and Seth, 2014]. See Supporting
Information for additional methods.

Mathematical Model of the Brain Neural

Network

We derived our model from the discrete version of the
FitzHugh-Nagumo model by adding the Heaviside step
function H(x). Discrete time models, known as “map-
based” models, reproduce the basic activity modes of neu-
rons such as spiking, bursting, chaotic spiking-bursting,
subthreshold oscillations, tonic and phasic spiking, and
normal excitability of real biological neurons [Courbage
et al., 2007]. However, their mathematical structure is sim-
pler than that of the FN model. In a previous study, we
used our model to simulate respiratory rhythmogenesis
with two synchronized map-based models working in tan-
dem, and we were able to reproduce the basic activity
modes of neurons involved in the automatic respiratory
network in healthy humans and patients with COPD
[Hess et al., 2013].

Here, each neural cluster was modeled using the two-
dimensional original Courbage-Nekorkin-Vdovin map
[Courbage et al., 2007; Courbage and Nekorkin 2010].

x5x1FðxÞ2bHðx2dÞ2y

y5y1eðx2ðJ1IsynÞÞ
(1)

where x qualitatively defines the dynamics of the mem-
brane potential of the neuron and y is the common vari-
able specifying the dynamics of all outward ionic currents
(recovery variable); b and d controls the threshold proper-
ties of the oscillation; E is a positive parameter setting the
time scale of the recovery variable y; J is associated with
neuron excitability properties; F(x) is a piece-wise linear
version of the cubic function in the FN model:

FðxÞ5

2mox

m1ðx2aÞ

2moðx21Þ

ifx � Jmin

ifJmin < x < Jmax

ifx � Jmax

8>><
>>:

With Jmin 5
am1

mo1m1
; Jmax 5

mo1am1

mo1m1
; and m0; m1 > 0

where m0 is a parameter that changes the recovery phase
of the action potential and m1 represents a balance
between the excitation and the recovery phase. The param-
eter a changes the firing threshold of the neuron. We
added Gaussian white noise activity to each neuron cluster
with mean 0 and standard deviation 0.01.

In Eq. (1), Isyn is the chemical synaptic coupling between
neurons:

Isyn5K
X

ni<n
rectðni;n; s;DÞ

where K is the coupling strength, whose value is positive
for excitatory synapse and negative for inhibitory synapse
and rect is the rectangle function as described below:

rectðni;n; s;DÞ5
0if jn2nij > s1D

1if jn2nij � s1D

(

where ni is the step of the ith spike in the presynaptic neu-
ron and s is a fixed time window during which the action
potentials are considered before the synapse is reset. D
characterizes the transmission time through the synapse.
Finally, there are two parameters, K and D, which charac-
terize the chemical synaptic junction between two neurons.
This model allows an assessment of how correlation and
causality inferences are shaped by different network char-
acteristics, such as synaptic parameters (K and D), neuron
excitability J, and the threshold property a. See Supporting
Information for additional methods.

RESULTS

Demographic and Clinical Variables

Table I and Supporting Information Table S2 compare
the demographic and clinical variables in the controls and
patients. The patients did not differ from the controls in

TABLE I. Characteristics of the participants

Controls
(n 5 15)

COPD
(n 5 15) P

Age (yr) 55 6 9 56 6 11 NS
Gender (M/F) 8/7 9/6 NS
Height (m) 1.71 6 0.09 1.70 6 0.1 NS
Weight (kg) 69 6 16 66 6 13 NS
Body mass index 23 6 3 23 6 3 NS
FEV1/FVC (% predicted) 79 6 5 38 6 10 <0.001
FEV1 (% predicted) 108 6 14 47 6 23 <0.001
RV (%predicted) 103 6 17 197 6 57 <0.001
TLC (%predicted) 110 6 14 129 6 18 <0.001
PaO2 (kPa) 12 6 2 9.5 6 1 <0.001
PaCO2 (kPa) 5.3 6 0.4 5 6 0.5 NS
Dyspnea at rest (MRC) 2.3 6 0.7
Dyspnea during insp

load (MRC)
2.2 6 0.6 2.7 6 0.6 <0.05

BODE score 4.5 6 2

Values are mean 6 SD unless otherwise indicated. Pulmonary
function parameters: FEV1/FVC forced expiratory volume in 1 s/
forced vital capacity.
FEV1: forced expiratory volume in 1 s; RV: residual volume; TLC:
total lung capacity; PaO2: partial pressure of oxygen in arterial
blood; PaCO2: partial pressure of carbon dioxide in arterial blood;
Insp: inspiratory; MRC, Medical Research Council scale for dysp-
nea; BODE: body mass index, airflow obstruction, dyspnea, and
exercise capacity index; NS: not significant.
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terms of age, gender, body mass index, or PaCO2 (partial
pressure of carbon dioxide in arterial blood). The two
groups differed significantly in terms of PaO2. Supporting
Information Figure S4 reports RVT, PETCO2, and O2 satura-
tion during resting-state and block design fMRI in controls
and patients. Supporting Information Figure S5 reports the
mouth pressure, as an index of respiratory muscle effort,
during block design fMRI in controls and patients
(Unloaded breathing in controls: 24 6 2 cmH20, COPD:
25 6 2 cmH20; Loaded breathing in controls: 238 6 18
cmH20, COPD: 240 6 17 cmH20)

Structural Magnetic Resonance Imaging (MRI)

There were no significant between-group differences in
gray or white matter volumes. Thus, none of the patients
had cerebral atrophy (Supporting Information Table S3).
Seed volumes showed no cerebral significant difference
between the two groups.

Distribution of Functional MRI (fMRI) Activation

During Inspiratory Loading

Figure 2 reports the distribution of cerebral activations
during inspiratory loading (50cmH2O/L/s) in the controls
and patients. Corresponding coordinates in MNI space are
shown in Supporting Information Table S4. Areas acti-
vated in both groups were the left and right primary and
premotor cortex (LMC, RMC), primary somatosensory cor-
tex (LSC, RSC), secondary somatosensory cortex, basal
ganglia (caudate and putamen nuclei (CP)), part of the
limbic system including the left anterior insular cortex, the
superficial group of the amygdala and the thalamus (P
corrected threshold <0.05). All participants exhibited sig-
nificant BOLD signal alterations of the brainstem (medulla
and pons (MP)) and cerebellum (P corrected threshold
<0.05). We selected seven regions of interests (ROIs)
exhibiting significant BOLD signal variations according to
the controls>COPD contrast: LMC and RMC, LSC and
RSC, MP, cerebellum, and left anterior insula (Fig. 1, Sup-
porting Information Table S1).

Functional Connectivity During Resting State

We first evaluated functional connectivity in each group
(Figs. 3 and 4). The LMC seed exhibited significant connec-
tivity with the contralateral primary motor, premotor, and
primary somatosensory areas and the ipsilateral primary
somatosensory area in both groups (P <0.01, FWE-cor-
rected). Connectivity of the LMC area extended to the MP
region only in controls (Fig. 3A, Supporting Information
Table S5). The RMC seed showed significant connectivity
with the contralateral primary, premotor, and primary
somatosensory areas and the ipsilateral somatosensory
area in both groups (P <0.01, FWE-corrected). Connectiv-
ity of the RMC area extended to the MP only in the con-

trols (Fig. 3B, Supporting Information Table S5). The LSC
displayed connectivity with the right primary somatosen-
sory cortex, the left and right motor and premotor cortex in
both groups (P <0.01, FWE-corrected), and with the
medulla only in the controls (Fig. 4A, Supporting Informa-
tion Table S5). The MP seed had significant connectivity
with the right premotor and primary motor cortex, the right
and left somatosensory cortex in the controls (Fig. 4B, Sup-
porting Information Table S5) but had no significant con-
nectivity with the motor or somatosensory cortex in the
patients. The cerebellar seed had significant correlations
with the left and right primary and premotor cortex, the left
and right primary somatosensory cortex only in the con-
trols, and with the dorsal medulla and pons in both groups
(Fig. 4C, Supporting Information Table S5). The RSC seed
showed significant correlations with the left primary soma-
tosensory, the left and right premotor and primary motor
cortex in both groups (P <0.01, FWE-corrected) (Supporting
Information Fig. S6A and Table S5). The left anterior insula
exhibited connectivity with the right and left somatosen-
sory cortex, right and left motor and premotor cortex, and
medulla-pons in both groups (P <0.01, FWE-corrected)
(Supporting Information Fig. S6B and Table S5).

We then assessed between-group differences in connec-
tivity patterns for each seed (Figs. 3 and 4). In the patients,
we identified significantly lower connectivity for the net-
works linked with the LMC, RMC, and LSC seeds, com-
pared with the controls (P< 0.05, FWE-corrected) (Figs.
3A,B and 4A, Supporting Information Table S5). Of note,
with the wrist-extension block design, no between-groups
differences were present with the LMC-HM seed and the
contralateral motor and premotor cortex (Supporting Infor-
mation Fig. S6C). This finding supports the specificity of our
results regarding the motor area for the respiratory muscles.

Relationships of Functional Connectivity During

Resting State With Lung Function and

Illness Severity

In the controls, the LMC network linearly associated with
PaO2 was the ventral medulla (P <0.05, FWE-corrected)
(Fig. 5A). The MP network associated with PaO2 was the
left motor and premotor cortex (P <0.05, FWE-corrected)
(Fig. 5B). Finally the Insula network had relationships with
the lung function parameter FEV1/FVC in the right and left
premotor cortex (P <0.05, FWE-corrected) (Fig. 5C).

In the patients, the RMC network correlated with the
BODE severity score in the left primary motor cortex and
in the right somatosensory cortex (P< 0.05, FWE-corrected)
(Fig. 6A). The LSC network correlated with the BODE
score in the contralateral somatosensory cortex (P <0.05,
FWE-corrected) (Fig. 6B). The RSC network had linear
relationships with TLC in the right premotor and left
somatosensory cortex (P <0.05, FWE-corrected) (Fig. 6C).
Finally, the Insula network was linked with TLC in the
dorsal pons, and with dyspnea in the right premotor
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cortex (P <0.05, FWE-corrected) (Fig. 6D). No significant
associations were evidenced between the networks and the
etiology of the disease.

Functional Connectivity During

Inspiratory Loading

We first evaluated functional connectivity in each group
(Supporting Information Figs. S6D and S7). The LMC seed

exhibited significant connectivity with the contralateral
primary motor, premotor, and primary somatosensory
areas and the ipsilateral primary somatosensory area in
both groups (P< 0.01, FWE-corrected) (Supporting Infor-
mation Fig. S6D and Table S6). Connectivity of the LMC
area extended to the MP region only in the controls. The
RMC seed showed significant connectivity with the contra-
lateral primary, premotor, and primary somatosensory
areas and the ipsilateral somatosensory area in both
groups (P <0.01, FWE-corrected) (Supporting Information

Figure 2.

Group results of brain activation associated with inspiratory

load as compared with unloaded breathing in controls (top),

COPD (middle), and control>COPD contrast (bottom). Signifi-

cant region are displayed with a threshold Z> 4 and a cluster

probability threshold P< 0.05 (corrected for multiple compari-

sons using random field theory). Coordinates of clusters are

given in Supporting Information Table S4. No significant cluster

was evidence for the COPD> control contrast. Sagittal, coronal

and axial slices are shown. See text for comments. S: superior, I:

inferior, R: right, L: left, P: posterior.
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Figure 3.

Voxel-wise functional connectivity analyses at rest for the LMC

(Left motor cortex, A) and RMC (right motor cortex, B) seeds.

Sagittal, coronal and axial slices are shown. Within (P< 0.01,

FWE-corrected) and between-group (P< 0.05, FWE-corrected)

differences are reported. A decreased connectivity of the net-

works linked with the right and left motor cortex seed regions

is evident with contralateral motor area in the COPD group, as

compared with controls. S: superior, I: inferior, R: right, L: left,

P: posterior.
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Figure 4.

Voxel-wise functional connectivity analyses at rest for the LSC

(Left sensory cortex, A), the MP (medulla and pons, B), and

cerebellar (C) seeds. Sagittal, coronal, and axial slices are shown.

Within (P< 0.01, FWE-corrected) and between-group (P< 0.05,

FWE-corrected) differences are reported for the LSC seed. A

significant lower connectivity is apparent for the network linked

with the LSC seed in the right motor and somatosensory cortex

in COPD, as compared with controls (A). The MP (B) and cere-

bellar (C) seeds exhibit correlations with the motor and sensory

cortex only in the controls (P< 0.01, FWE-corrected). S: supe-

rior, I: inferior, R: right, L: left, P: posterior.
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Fig. S7A and Table S6). Connectivity of the RMC area
extended to the MP only in the controls. The LSC dis-
played connectivity with the right primary somatosensory
cortex, left and right motor and premotor cortex, and mid-
brain in both groups, and with the medulla only in the
controls (P <0.01, FWE-corrected) (Supporting Information
Fig. S7B and Table S6). The RSC seed showed significant
correlations with the left primary somatosensory, left and
right premotor and primary motor cortex in both groups,
and with the medulla only in the controls (P <0.01, FWE-
corrected) (Supporting Information Fig. S7C and Table S6).
The MP seed had significant connectivity with the right

and left premotor, primary motor, and somatosensory cor-
tex in the controls, and only with the right and left premo-
tor cortex in the patients (P< 0.01, FWE-corrected)
(Supporting Information Fig. S7D and Table S6). The cere-
bellar seed had significant connectivity with the right and
left premotor, primary motor, somatosensory cortex, and
medulla in the controls (P< 0.01, FWE-corrected), and
with the left sensorimotor and premotor cortex in the
patients (P <0.01, FWE-corrected) (Supporting Information
Fig. S7E and Table S6). The left anterior insula exhibited
connectivity with the right and left somatosensory cortex,
right and left motor and premotor cortex, midbrain and

Figure 5.

In the control group (n 5 15), the regions of the brain that cor-

relate with the seeds and associated with clinical parameters are

indicated. From top to bottom: the LMC seed network associ-

ated with PO2 is the ventral medulla (P< 0.05, FWE-corrected).

(A) The left motor and premotor cortex (x 5 26, y 5 218,

z 5 54) associated with the MP seed region is also linked with

PO2 (P< 0.05, FWE-corrected). (B) The network connected

with the insula seed had relationships with pulmonary function

FEV1/FVC in the right (x 5 20, y 5 210, z 5 56, MNI space) and

left (x 5 26, y 5 10, z 5 56) premotor cortex (P< 0.05, FWE-

corrected). S: superior, I: inferior, R: right, L: left, P: posterior.
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Figure 6.

The correlations that associate each network of the RMC, LSC,

RSC, and insula seeds with lung function and severity in the

COPD group (n 5 15) are shown. The network connected with

the RMC seed region correlates with the BODE severity score

in the left primary motor cortex (x 5 248, y 5 210, z 5 34)

and in the right somatosensory cortex (x 5 246, y 5 218,

z 5 34) (P< 0.05, FWE-corrected) (A). It is also associated with

PO2 in the left primary motor cortex (P< 0.05, FWE-cor-

rected). The network associated with the LSC seed region cor-

relates with the BODE score in the contralateral somatosensory

cortex (x 5 56, y 5 218, z 5 39) (B). The network linked with

the RSC seed region correlates with TPC (pink color) in the

right premotor (x 5 6, y 5 22, z 5 38) and left somatosensory

cortex (x 5 252, y 5 228, z 5 38) (C). Finally, the network

associated with the Insula seed is also linked with TPC in the

dorsal pons, and with the dyspnea in the right premotor cortex

(x 5 26, y 5 36, z 5 50) (D).



pons in controls (P< 0.01, FWE-corrected, Supporting
Information Table S6, figure not shown). In the patients,
the network was constrained to the right and left somato-
sensory, left motor cortex and to the midbrain (P< 0.01,
FWE-corrected, Supporting Information Table S6, figure
not shown).

We then assessed between-group differences in connec-
tivity patterns during inspiratory loading (Supporting
Information Figs. S6D and S7A). In the patients, we identi-
fied significantly lower connectivity for the networks
linked with the LMC and RMC seeds, compared with the
controls (P <0.05, FWE-corrected).

Granger Causality Analysis (GCA)

In the controls at rest, the MP region exerted a signifi-
cant causal influence on the entire sensorimotor network
(Figs. 7, left and 8A, Supporting Information Table S7). In
the patients group, the right and left motor cortical area
were both causal sources, whereas the MP was a causal
sink (Figs. 7, right and 8B, Supporting Information Table
S7). No between-group differences were evidenced at rest.
During inspiratory loading in the controls, the right and
left motor cortex exerted a causal influence on the entire
network (Figs. 9, left and 10A), whereas in the patients,
the situation was reversed, with both region being causal
sinks (Figs. 9, right and 10B, Supporting Information Table

S7). Between-group differences during inspiratory loading
indicated a greater influence of the motor cortex as causal
sources of the network in the controls, compared with the
patients (Fig. 9, bottom).

Relationships of Granger Causality With Clinical

Data and Illness Severity

During breathing at rest, no correlation was noted
between Granger amplitude and clinical data or illness
severity in the controls and patients, respectively. During
inspiratory loading in the controls, the Granger causality
amplitude from the LSC to the insula showed a significant
linear relationship with FEV1 (R 5 20.7, P< 0.01) while
the amplitude from the Insula to the LSC was associated
with PaO2 (R 5 20.6, P 5 0.01). Granger causality ampli-
tude from the MP to the RMC showed significant relation-
ship with dyspnea (R 5 20.6, P 5 0.05). Causality from
the RMC to MP was associated with FEV1 (R 5 20.7,
P< 0.01).

During inspiratory loading in patients with COPD, we
found an association between FEV1 and causality from the
insula to the LMC (R 5 0.6, P< 0.05). The Granger ampli-
tude from the MP to the LMC correlated with TLC (R 5

20.65, P 5 0.01). Causality from the LMC to the MP was
associated with FEV1/FVC (R 5 0.5, P 5 0.05).

Figure 7.

Granger causality analysis at rest between the six selected regions at rest. Control group results

are reported on the left, COPD group results on the right. See text for comments. LMC: left

premotor cortex, LSC: left primary somatosensory cortex, MP: medulla and pons, RMC: right

motor and premotor cortex, RSC: right primary somatosensory cortex.
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Mathematical Model of Neural Network

To study connectivity, we simulated a network of two
spiking neurons having different values for excitability (J)
and different motor threshold (a). Supporting Information
Figure S3 reports the results after convolution. Increasing
the excitability of the two neurons significantly reduced
the connectivity (Supporting Information Fig. S3B).

Decreasing a, to replicate a decrease in the neuronal motor
threshold, also lessened connectivity (Supporting Informa-
tion Fig. S3C). We then simulated the network in a control,
using specific values for J and a; and in a patient, using a
higher value for J and lower value for a. The results indi-
cated weaker network connectivity in the patient (Support-
ing Information Fig. S3D). In addition, reducing K
(strength) and increasing D (delay) resulted in diminished
connectivity (Supporting Information Fig. S8A). Support-
ing Information Figures S8 and S9 show Granger causality
directionality for different values of K and D. These
parameters provide most of the control of directionality in
a network of spiking neurons with two or three nodes
(Supporting Information Figs. S8 and S9). Of note, increas-
ing neuronal excitability (J) or the network noise of two
spiking neurons did not significantly change directionality.

DISCUSSION

We report the first characterization of the functional
architecture and causal relationships of the brain neural
network controlling the respiratory muscles at rest and
during inspiratory loading in healthy individuals and
patients with COPD. When breathing at rest and during
inspiratory loading, the motor cortex area in the patients
had weaker connectivity with their contralateral counter-
parts, compared with controls, and no connectivity with
the brainstem. GCA in the patients breathing at rest and
during inspiratory loading showed a reversal of the roles
of the MP and motor cortex compared with controls.
Moreover, network connectivity and causality findings
were related to lung function and illness severity in the
patients. Finally our mathematical model of the network
provided theoretical insights, at the neuronal scale, into
effects on correlation and causality inferences of various
characteristics such as synaptic parameters and neuron
excitability.

Functional Connectivity of the Network

Sensorimotor network

Synchronization of the sensorimotor network controlling
the respiratory muscles was impaired in patients with
COPD. This result is in line with previous TMS and elec-
troencephalography studies showing impaired information
processing in the motor and sensory cortex in patients
with obstructive lung disease [Davenport et al., 2000; Hop-
kinson et al., 2004]. Transcranial magnetic stimulation in
patients with COPD showed that the motor cortex driving
the diaphragm had a low motor threshold, high excitabil-
ity level, and ceiling effect [Hopkinson et al., 2004]. In our
mathematical model of two connected spiking neurons,
decreasing the motor threshold a, or increasing neuronal
excitability J lessened functional connectivity (Supporting
Information Fig. S3). Thus, the mathematical model helps

Figure 8.

Communication within the respiratory neural network assessed

through Granger’s predictability during resting breathing in the

control (A), and COPD (B) groups. Schematic representation of

the six-seed regions (circle) on a 3D brain. Full circles are seed

regions in the ipsilateral areas of the hemisphere. Dotted circles

represent the projection of the seed regions located in the con-

tralateral hemisphere. Sources of the network are shown in

white. Green arrows show unidirectional, while red arrows

show bidirectional information flow. See text for comments.
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to understand which mechanism, at the neuronal scale,
may induce the change in connectivity.

We previously showed that patients with COPD had
high excitability of the brainstem respiratory neuronal
group responsible for respiratory rhythmogenesis [Hess
et al., 2013]. Specifically, increasing neuronal excitability
may enhance diaphragm recruitment in order to cope with
overloading [Hess et al., 2013; Topelli et al., 2001]. Our
finding of high neuronal excitability responsible for
decreased functional connectivity of the motor cortex is
probably due in part to the cerebral consequences of the
chronic respiratory overload, impaired sensory afferents
from the respiratory muscles and lungs, and hypoxia: (i)
chronic inflammation of the distal airways leads to
increases in airway tree resistance and, subsequently, in
ventilatory loads. Increased loading induces a reflex aug-
mentation in breathing effort with elevated respiratory
muscle tension. Respiratory sensory receptors are activated
and relay neuronal impulses to the central nervous system,
either via the brainstem or directly to the sensory cortex.
(ii) In patients with COPD, impaired neuronal inputs from

the respiratory muscles [Otttenheljm et al., 2007] and lungs
are transmitted to the sensory cortex. Importantly, an elec-
troencephalogram study established that patients with
severe asthma, a lung disease characterized by acute epi-
sodes of airway obstruction, had impaired neuronal proc-
essing of afferent mechanosensory signals in the
somatosensory region of the cerebral cortex [Davenport
et al., 2000]. We found that the connectivity of the left
somatosensory seed region was decreased in patients,
compared with controls. Although the pathophysiology of
asthma and COPD differ, the development of these two
diseases may share a number of mechanisms [De Marco
et al., 2013] related to impaired central information proc-
essing; (iii) sustained hypoxia depresses the sensory proc-
essing of respiratory load increases in healthy individuals
[Eckert et al., 2005]. In the controls, we found that the left
motor region and part of its correlated network exhibited
associations with PaO2 in the medulla (Fig. 5A). The O2

chemosensitive network is distributed throughout the
brainstem, particularly in the medulla [Neubauer and Sun-
derram, 2004]. Alterations of central O2-sensitive neurons

Figure 9.

Granger causality analysis between the six selected regions during inspiratory loading. Control

group results are reported on the top left, COPD group results on the top right, and con-

trols>COPD at the bottom. See text for comments. Same abbreviations as in Figure 7.
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during chronic hypoxia probably contribute to the blunted
connectivity of the somatosensory network in patients with
COPD. Thus, we found no significant association between
the somatosensory network and PaO2 in the patient group.
We found evidence of profound network disorganization in
the COPD group with complete absence of functional con-
nectivity linking the sensorimotor cortex to the brainstem,
either at rest or during inspiratory loading.

Furthermore, the sensorimotor network correlated sig-
nificantly with COPD severity. Connectivity of the right

motor and left somatosensory cortex was associated with
the BODE score (P< 0.05, FWE-corrected) (Fig. 6). These
associations are meaningful since the BODE score is a
major marker for COPD severity that combines BMI,
FEV1, the MRC dyspnea score, and the 6-min walking dis-
tance. The specificity of the target neural network is sup-
ported by our findings that cerebral activations during
HM-block design imaging showed no differences between
the patients and controls. In line with this result, patients
with COPD has increased motor cortex excitability of the
diaphragm, as assessed using TMS, with no increase in
excitability of the corticospinal pathways driving the quad-
riceps muscle [Hopkinson et al., 2004].

Insula network

In our patients, the insula seed region and part of its
correlated network, i.e., the premotor cortex, is associated
with the dyspnea severity (Fig. 6D). The Insula is an inte-
grated sensorimotor area of the limbic system whose ante-
rior part is activated in response to inspiratory loading,
either bilaterally [Banzett et al., 2000; Evans et al., 2002] or
unilaterally [Peiffer et al., 2001; Von Leupold et al., 2008].
The insula plays a key role in dyspnea perception. Medul-
lary respiratory neurons, chemoreceptors and pulmonary
stretch receptors project to the Insula. The Insula also has
more distant connections projecting to the supplementary
motor area and receives afferents from the somatosensory
and prefrontal cortex.

Granger Causality Analysis (GCA)

of the Network

As expected in the controls at rest, the MP exerted a sig-
nificant causal influence on the entire network, whereas
the sensory-motor cortex was causal sink. Conversely in
the patients, the motor cortex was a neural driver, whereas
the MP was a causal sink. Thus, the neural driver of the
network shifted in the patients from the medulla to the
motor cortex. The functional role of the motor cortex is
disproportionate in patients during breathing at rest. Dur-
ing inspiratory loading, the right and left motor cortex
were both neural drivers in the controls, and sinks in the
patients. The motor network, already overburdened at rest
is overwhelmed during inspiratory loading. This major
finding may help to understand why patients with COPD
are particularly prone to acute respiratory failure. The
results at rest and during inspiratory loading also illustrate
the degeneracy of respiratory-network directionality dur-
ing lung disease [Edelman and Gally, 2001]. Degeneracy,
the ability of structurally different elements to perform the
same function or yield the same output, is a well-known
physiological characteristic of neural networks. We postu-
late that lung disease forces the brain network to adapt,
and that the effects on the respiratory motor cortex are
hyperexcitability, decreased functional connectivity, and

Figure 10.

Communication within the respiratory neural network assessed

through Granger’s predictability during inspiratory loading in the

control (A) and COPD (B) groups. Same legend as in Figure 8.

Red arrows show bidirectional information flow. See text for

comments.
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loss of its major role in driving the network during inspir-
atory loading.

Most of the salient changes related to degeneracy are
thought to occur at synapses. Many distinct forms of syn-
aptic plasticity have been studied. The results show that
intercellular communication can be either potentiated or
depressed [Edelman and Gally, 2001]. In line with these
findings, our mathematical model identifies synaptic
strength (K) and delay (D) as the main parameters control-
ling directionality in a network of spiking neurons with
two or three nodes (Supporting Information Figs. S8 and
S9). However, we predicted directionality for three nodes
but were unable to replicate directionality above this
threshold in a stable way because our simulated network
had a weak chaotic dynamics [Courbage et al., 2007]. Lin-
ear predictability theory is no longer compatible with a
chaotic regime. However, we hypothesize that, in patients
with COPD, impairment of directionality translates at least
in part alterations at the synaptic level.

Relationships of Granger causality with clinical data

During inspiratory loading, we found a bidirectional
communication between the MP and RMC regions in the
control group. The dyspnea negatively correlates with the
statistical flow from the MP to RMC, the higher the dysp-
nea perception, the lower the flow. Both the MP and RMC
neural structures of the network are required for the dysp-
nea perception. At a low level of load-induced dyspnea,
the main subcortical structures involved in the dyspnea
perception in normal subjects are the medulla, the cerebel-
lum and the Insula [Peiffer et al., 2001]. At a high level of
load-induced dyspnea, the sensorymotor cortex is acti-
vated [Von Leupoldt et al., 2008]. In controls, one would
also have expected a positive relationship between the
dyspnea perception and the flow from the RMC to the
MP. However, it did not reach statistical significance with
the 15 control subjects. During inspiratory loading in
COPD, there was a significant positive relationship
between the causal flow from the LMC to the MP regions
and FEV1/FVC, the lower the pulmonary function, the
lower the information flow. This finding reinforces our
Granger causality results since the motor cortex is the
causal sink of the network rather than the causal source.
In patients, the motor network is already overburdened at
rest and is becoming overwhelmed during inspiratory
loading, justifying why the information flow is minimal in
disease condition.

Study Limitations

We selected the seed regions based on significant BOLD
signal alterations detected during block design imaging
with the controls>COPD contrast. Therefore, this
approach did not include the thalamus among seed regions
although its role in gating respiratory sensory information
to the cortex has been described in response to CO2 stimu-

lation or during air hunger in healthy individuals [Evans
et al., 2002; Pattinson et al., 2009]. We removed the noise
from the resting state data using independent component
analysis (ICA) as implemented in MELODIC (FSL soft-
ware). This method has limitations as the determination of
the proper dimensionality: a too restricted decomposition
might fail in separating the noise from the biological signal
whereas in case of a high model order dimensionality, ICA
results may be split into a number of subnetworks, which
may be difficult to identify and classify. We chose to con-
strain the number of components to 30, as the percentage
of signal variance determined by the components was
80 6 5% for all participants (Supporting Information Fig.
S1A). The MP seed region is located in a region activated
during inspiratory loading in the lateral part of the medulla
and pons at the level of the Fissura Pontomedullaris (Fig. 1
and Supporting Information Fig. S10). It encompassed an
important structure responsible for respiratory rhythmo-
genesis, the pre-B€otzinger complex (Supporting Informa-
tion Fig. S10). The diameter of the complex is around 5 to
6 mm, in the lateral region of the rostral medulla, 9 mm
from the obex, below Fissura Pontomedullaris [Schwar-
zacher et al., 2011]. However, deciphering the brainstem
region through fMRI is a difficult task. The Granger causal-
ity results in the control group show that the MP region is
the source of the entire respiratory network, as expected
for a pacemaker. This important functional argument rein-
forces the location of the MP seed as involving the nuclei of
respiratory rhythmogenesis. Besides, we did not perform
the right HM-block design in all participants but rather car-
ried out the task in one control and one patient. However,
the coordinates of the cerebral activation area resulting
from the hand movement (HM) was in agreement with a
previous study [Sarfeld et al., 2012].

We found no between-group differences in gray matter,
white matter or seed region volumes, indicating that the
patients had no cerebral atrophy, as reported previously
[Dodd et al., 2012]. However, we cannot exclude the possi-
bility that structural white matter abnormalities related to
vascular alterations influenced our findings [Dodd et al.,
2012; Lahousse et al., 2013]. We excluded patients with a
history of stroke or other cardiovascular events to minimize
any effect of cerebral vascular alterations on the results.

Future Directions

Our findings may open up new therapeutic avenues for
COPD. Although brain networks are constrained by an
anatomical structure, the strength of functional connectiv-
ity between network regions is dynamic. The intrinsic
activity of the brain can be modulated using TMS [Eldaief
et al., 2011]. Future works should determine how TMS of
the brain, at different frequencies, affects the cortical net-
works, and, more specifically, the connectivity of the sen-
sorimotor and the insular cortical areas. The results may
indicate ways to improve respiratory muscle performance
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[Joundi et al., 2012], above all during increased loading, or
clinical symptoms such as dyspnea in patients with
COPD.
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