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Abstract

Rett syndrome (RTT) is an autism spectrum developmental disorder caused by mutations in the X-linked methyl-CpG
binding protein 2 (MECP2) gene. Excellent RTT mouse models have been created to study the disease mechanisms, leading
to many important findings with potential therapeutic implications. These include the identification of many MeCP2 target
genes, better understanding of the neurobiological consequences of the loss- or mis-function of MeCP2, and drug testing in
RTT mice and clinical trials in human RTT patients. However, because of potential differences in the underlying biology
between humans and common research animals, there is a need to establish cell culture-based human models for studying
disease mechanisms to validate and expand the knowledge acquired in animal models. Taking advantage of the
nonrandom pattern of X chromosome inactivation in female induced pluripotent stem cells (iPSC), we have generated
isogenic pairs of wild type and mutant iPSC lines from several female RTT patients with common and rare RTT mutations.
R294X (arginine 294 to stop codon) is a common mutation carried by 5–6% of RTT patients. iPSCs carrying the R294X
mutation has not been studied. We differentiated three R294X iPSC lines and their isogenic wild type control iPSC into
neurons with high efficiency and consistency, and observed characteristic RTT pathology in R294X neurons. These isogenic
iPSC lines provide unique resources to the RTT research community for studying disease pathology, screening for novel
drugs, and testing toxicology.

Citation: Ananiev G, Williams EC, Li H, Chang Q (2011) Isogenic Pairs of Wild Type and Mutant Induced Pluripotent Stem Cell (iPSC) Lines from Rett Syndrome
Patients as In Vitro Disease Model. PLoS ONE 6(9): e25255. doi:10.1371/journal.pone.0025255

Editor: Anton Wutz, Wellcome Trust Centre for Stem Cell Research, United Kingdom

Received June 13, 2011; Accepted August 30, 2011; Published September 26, 2011

Copyright: � 2011 Ananiev et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: GA was supported by a postdoctoral training grant (T32AG027566). ECW was supported by a predoctoral training grant (5T32GM07133) and a
graduate student fellowship from the Friends of the Waisman Center. HL was supported by a predoctoral fellowship from the Stem Cell and Regenerative
Medicine Center at University of Wisconsin at Madison. This work was partially supported by a grant from National Institutes of Health (P30HD03352 to the
Waisman Center). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: qchang@waisman.wisc.edu

Introduction

Rett syndrome (RTT) is a debilitating autism spectrum deve-

lopmental disorder that predominantly affects females [1,2]. RTT

patients often experience normal development for the first 6–18

months of their lives, which is followed by a rapid developmental

regression between the ages of 1 to 3 years. Major symptoms of

RTT include reduced head growth, social withdrawal, loss of

previously acquired skills including purposeful hand use and

expressive language, gait ataxia, stereotypic movement of the

hands, and autonomic dysfunctions such as respiratory distress [3].

At an estimated prevalence of 1 in 10,000–15,000 girls, RTT is

the second most common cause of X-linked mental retardation

(XLMR).

Mutations in the X-linked methyl-CpG binding protein 2

(MECP2) gene were identified to account for almost all of the

classic RTT cases [4,5,6,7]. MeCP2 is involved in modulating

chromatin structure and gene transcription through its binding to

methylated DNA [8]. To study RTT disease mechanisms, mouse

models have been generated by engineering Mecp2 gene deletions

[9,10,11]. Male mutant mice that lack either the entire Mecp2 gene

[10] or the essential methyl-DNA binding domain [9] develop

normally until 5 weeks of age when RTT-like symptoms are first

observed, including reduced brain weight, hindlimb clasping and

impaired locomotor function. These mice later develop respiratory

abnormalities [12] and die prematurely around 8–10 weeks of age.

Female mutant mice heterozygous for these deletions also display

RTT-like symptoms, yet the onset is typically much later than in

their male counterparts. At the cellular level, the most noticeable

pathologies in these mice are the decrease in the size of neuronal

nuclei [9] and the reduced complexity of neuronal dendritic

arborization [13,14,15,16], which are also observed in human

autopsy samples [17].

Although they have been extremely useful in studying the

molecular mechanism of RTT, mouse models may have

limitations in mimicking human RTT mutations and in drug

screening. To date, almost all the available RTT mouse models

are loss-of-function alleles that either lacks the whole gene or

harbors large deletions in the Mecp2 gene [9,10,11]. In contrast,

many human RTT patients carry missense mutations in the

MECP2 gene. Moreover, 92% of new drugs that pass preclinical

tests, including tests on animals, fail to reach the market either
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because of safety or efficacy failures (US FDA: Report on Challenge and

Opportunity on the Critical Path to New Medical Products, March 2004).

This highlights the potential differences in the underlying biology

between humans and common research animals. Therefore there

is a need to establish cell culture-based human models for studying

disease mechanisms to validate and expand the knowledge gained

from animal models. Groundbreaking work from the Yamanaka

group showed that it is feasible to generate induced pluripotent

stem cells (iPSC) from mouse embryonic fibroblasts [18] and

human fibroblasts [19] by retrovirus mediated expression of four

key stem cell transcription factors: OCT4, SOX2, c-Myc, and KLF4.

The Thomson group independently demonstrated that iPSCs

could be generated from human adult fibroblasts [20] by lentivirus

mediated expression of overlapping but different combination of

stem cell factors: OCT4, SOX2, NANOG, and LIN28. These early

studies have established the iPSC technology as a novel tool to

model human diseases and screen for drugs. Since then, patient-

specific iPSCs have been successfully generated for several diseases

[21,22,23,24], including Rett syndrome [25,26,27,28,29]. Taking

advantage of the nonrandom pattern of X chromosome

inactivation in female iPSCs [30], we have generated several

novel isogenic pairs of wild type and mutant iPSC lines from

patient fibroblasts carrying common RTT mutations, as well as

from an unrelated healthy individual. We show here that all

female RTT iPSC lines have highly skewed XCI pattern, and

clonally express either the wild type or the mutant, but not both,

alleles of the MECP2 gene. Both the wild type and mutant RTT

iPSC lines can be consistently and efficiently differentiated into

neurons. For phenotypic characterization, we focused our study on

the R294X neurons and their isogenic wild type controls, because

iPSCs with this common RTT mutation have not been described

previously. Our extensive analysis revealed that the R294X

neurons were smaller than their isogenic controls, which is a

characteristic RTT pathology observed in both RTT patients and

Mecp2 mutant mice.

Results

Generation and characterization of iPSC lines from RTT
patient fibroblasts

Three female RTT patient fibroblast lines, as well as 1 female

fibroblast line from an unrelated healthy individual, were obtained

from the Coriell Institute for Medical Research. Among these

Coriell fibroblast lines, GM17880 was derived from 5-year-old

female RTT patient carrying the T158M mutation (Threonine

158 to Methionine, missense, present in 9–11% of RTT patients),

GM07982 was derived from a 25-year-old female patient carrying

the V247X mutation (Valine 247 to stop codon, nonsense, very

rare in RTT patients), GM11270 was derived from a 8-year-old

female patient carrying the R306C mutation (Arginine 306 to

Cysteine, missense, present in 4–7% of RTT patients), and

AG07306 was derived from a 28-year old healthy female. In

addition, fibroblast line RS0502 was derived at the Waisman

Center of the University of Wisconsin-Madison from an 11-year-

old female patient carrying the R294X (Arginine 294 to stop

codon, nonsense, present in 5–6% of RTT patients). The exact

location of each of these mutations in relation to known functional

domains of MeCP2 protein is illustrated in Figure S1. iPSCs from

all above described fibroblast lines were generated by simultaneous

infection with either lentiviruses encoding OCT4, NANOG, SOX2

and LIN28 as described in [20] or retroviruses encoding OCT4,

SOX2, c-Myc and KLF4 [19]. 15–20 independent iPSC lines were

established and expanded from each of the original fibroblast lines.

Detailed characterization revealed that these iPSC lines had the

characteristic human embryonic stem cell (hESC) morphology

(Figure 1, leftmost column), carried the parental RTT mutations at

the DNA level (Figure S2), expressed the same set of pluripotency

markers as the hESCs did (Figure 1), had normal karyotypes

(Figure S3), showed extensive demethylation in the promoter of

the endogenous Oct4 locus (Figure S4), and formed teratomas

when injected into NOD-SCID mice (Figure S5). In addition,

retroviral expression of reprogramming factors was silenced in all

R294X iPSC lines examined (Figure S6). For comparison

purposes, a previously reported iPSC line, iPS-IMR90-4, and a

hESC line, H9, were included in some of these experiments.

X chromosome inactivation is not random in female RTT
iPSC lines

Female patients diagnosed with classic RTT are all heterozy-

gous for the MECP2 gene (disease causing gene) on the X

chromosome. Due to random X chromosome inactivation (XCI),

each somatic cell (including the fibroblasts) in these female RTT

patients expresses either the wild type or the mutant, but not both,

alleles of MECP2 gene. Thus the XCI status in iPSCs derived from

RTT patient fibroblasts directly determines which allele of MECP2

is expressed in the neurons differentiated from these iPSCs. And

the expression status of MECP2 directly influences the interpre-

tation of results from phenotypic analyses of neurons differentiated

from RTT iPSCs. We performed several independent assays to

determine the XCI status in all of our RTT iPSC lines. The first is

a well-established methylation sensitive PCR assay to examine the

methylation status of the androgen receptor (AR) locus on the X

chromosome as a surrogate marker of XCI status [31], which has

previously been used to examine XCI status in RTT patient brains

[32] and RTT iPSCs [26,27]. In this assay, without digestion with

methylation sensitive enzymes (uncut traces), both parental alleles

of AR can be readily detected and unequivocally distinguished by

the presence of two different-sized peaks (red and blue) in all the

original RTT fibroblast and iPSC lines (Figure 2). The non-

skewed ratio between the red and blue peaks indicated similar

amplification efficiency of the two parental alleles. After digestion

with methylation sensitive enzymes (cut traces), only the hy-

permethylated AR allele (on the inactivated X chromosome) could

be amplified. In all fibroblast lines, the ratio between the two

parental AR alleles remained non-skewed, suggesting that XCI was

random in the fibroblasts. In contrast, in all iPSC lines (except for

iPS-R306C-MT), this ratio was highly skewed (13:87 in iPS-

R294X-WT, 100:0 in iPS-R294X-MT-1, 81:19 in iPS-R306C-

WT, 2:98 in iPS-T158M-WT, 89:11 in iPS-V247X-WT, and

0:100 in iPS-V247X-MT), suggesting XCI was not random in

these female iPSCs. Furthermore, the same AR allele remained

hypermethylated throughout directed neural differentiation from

these iPSCs (Figure 2E and data not shown), indicating the XCI

status remained unchanged from iPSCs to neurons. One of the

R306C iPSC lines appeared to have less skewed XCI. This is most

likely the result of insufficient separation of the smaller peak

(173 bp) from the stutter peak (173 bp) of the bigger allele

(176 bp). This technical hurdle is very difficult to overcome,

because the two real peaks are only different by 3 base pairs.

Similar difficulty in assaying the two AR alleles in the R306C iPSC

lines has also been reported by the Ellis group [27]. In addition

to the AR assay, we screened for heterozygosity of two single

nucleotide polymorphisms (SNPs) in the XIST transcripts from the

X chromosome. Both SNPs were recently described by the Plath

group [30]. We found the R294X, R306C and T158M fibroblasts

were heterozygous for one of the two SNPs in the XIST transcript.

In the SNP assay, transcription of the two parental alleles of XIST

in iPSCs generated from R294X, R306C and T158M fibroblast

Isogenic Rett Syndrome iPSC Lines
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lines can be unequivocally distinguished by sequencing. These

sequencing results again revealed nonrandom XCI in these female

iPSC lines, because transcription from only one XIST allele could

be detected in each line (Figure 3A). However, the allele-specific

expression of XIST RNA does not necessarily mean that the

inactive X chromosome is coated by XIST RNA in all cells.

Finally, we directly examined allele-specific transcription of the

MECP2 gene in all the RTT iPSC lines described above. RT-PCR

assays were performed to amplify fragments of the MECP2 gene

that contained the respective RTT mutations from RNA samples

isolated from RTT iPSC lines. PCR amplicons were designed to

span an intron to distinguish amplification of cDNA from that of

genomic DNA. For missense and nonsense mutations, direct

sequencing of the PCR fragments were performed to distinguish

transcription from the mutant and the wild type alleles of the

MECP2 gene. For deletions (705delG in iPSC lines derived from

GM07982, causing a frame shift and mutation V247X), individual

clones of the PCR fragments were randomly chosen and

sequenced to distinguish transcription from the mutant and the

wild type alleles of the MECP2 gene. In all RTT iPSC lines, we

were able to detect transcription of either the wild type or the

mutant, but not both, alleles of the MECP2 gene (Figure 3B). This

clonal pattern of MECP2 transcription was maintained at several

key stages (embryoid body, neuroepithelium, and neurosphere)

throughout the process of directed neural differentiation from the

iPSCs (Figure 3C). Collectively, our detailed analyses of 3 gene loci

physically spread across the X chromosome (Figure S1) suggest all

RTT iPSC lines generated in this study have nonrandom XCI and

Figure 1. RTT iPSCs express the same set of pluripotency markers as previously characterized hESC and hiPSCs lines. Representative
images of hESC (H9) and hiPSC colonies stained with antibodies against pluripotency markers Sox2, Oct4, Nanog, Ssea4, and Tra-1-81, and processed
for alkaline phosphatase reaction. Each row represents colonies from one hESC or hiPSC line. iPS-XX-WT was derived from a healthy female. Each
column represents one pluripotency marker. BF stands for bright field. Scale bars = 200 mm.
doi:10.1371/journal.pone.0025255.g001
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exclusively express either the wild type or the mutant allele of

MECP2. Our results are consistent with two recent reports that

showed iPSC generated from female human fibroblasts [30],

including RTT patient fibroblasts [27], were clonal in XCI status.

Taking advantage of the nonrandom XCI, we were able to screen

and identify isogenic pairs of iPSC lines (expressing either the wild

type or the mutant allele of MECP2) generated from the same

RTT patient carrying the R294X, R306C, or V247X mutations.

Similar to previously reported results [27], all iPSC lines derived

from the T158M fibroblast expressed the wild type allele of

MECP2 (one example shown in Figure 3). The complete results of

the XCI screening and the allele-specific transcription of MECP2

were summarized in table S1.

Neuronal differentiation and phenotypic characterization
of one pair of isogenic RTT iPSC lines

Of the isogenic pairs of RTT iPSC lines generated in our study,

R306C iPSCs have been phenotyped previously [26]. Although

V247X iPSCs have not been studied before, this mutation is

extremely rare. In addition, the clinical profile of the V247X RTT

patient is not well established. Thus, we decided to focus our

phenotypic analysis on the R294X isogenic pair, because this is a

common RTT mutation with an established clinical profile.

Moreover, RTT iPSCs with the R294X mutation have not been

generated and characterized before. For directed neural differen-

tiation, we adopted a well established and widely used protocol

[33]. Briefly, embryoid bodies (EB) were formed via enzymatic

disassociation of mature iPSC and hESC colonies from the mouse

feeder layer and subsequent suspension culture. Seven days after

dissociation, the EBs were plated down for differentiation into

neuroepithelia (NE). At day 17, the neuroepithelial cells were

mechanically dissociated and grown into neurospheres (NS) in

suspension. At day 23, neurospheres were broken into small

clusters and plated on laminin-coated surface to make neurons.

Neurons migrating from the dissociated neurosphere clusters were

visible ,2 hours post plating. As expected, both iPS-R294X-WT

and iPS-R294X-MT-1 line were able to differentiate into neurons

at an efficiency comparable with those observed with H9 and iPS-

IMR90-4 (Figure 4). Uniformity and high yields were achieved at

key stages of the directed differentiation, including EB, NE, and

NS (Figure 4 and data not shown). At the NE stage, characteristic

neuronal rosettes exhibited uniform expression of Pax6 (Figure 4),

a marker of neural progenitor cells. Neurons derived from the

above describe iPSC lines and the hESC line H9 also showed

robust expression of beta III tubulin, a marker for postmitotic

neurons (Figure 4). No difference in differentiation efficiency was

observed between iPS-R294X-WT and iPS-R294X-MT-1, which

is consistent with the normal early/embryonic neuronal develop-

ment observed in human RTT patients and in RTT mouse

models.

One characteristic RTT pathology at the cellular level is the

smaller brain/neuron size observed in RTT patients (as reviewed

in [3]) and Mecp2 mutant mice [9]. We next performed a detailed

analysis of the nuclear size of neurons differentiated from iPS-

R294X-WT and iPS-R294X-MT-1 (Figure 5A). We decided to

quantify the nuclear size because it is easier to measure, its

measurement is more reliable, and that it is well correlated with

cell body size. As expected, the nuclear size of R294X neurons

(neuron-R294X-MT-1) was 17% smaller than the isogenic wild

type control neurons (Figure 5B, 2061618 vs. 2493624,

p = 9.9610243). To rule out possible phenotypic variation caused

by epigenetic differences among different iPSC lines, we

differentiated two additional mutant iPSC lines from the same

patient into neurons (neuron-R294X-MT-2 and neuron-R294X-

MT-3), examined their nuclear size, and found that they are both

,9% smaller than the isogenic wild type control neurons

(Figure 5B, 2273623 vs. 2493624, p = 5.4.9610211 and

2267650 vs. 2493624, p = 1.661024).

Discussion

Two recent studies have reported the generation and pheno-

typic analyses of iPSCs from RTT patients. The Muotri group

[26] generated iPSC lines from RTT patients and an unrelated

healthy individual (control), observed random XCI in most of their

RTT iPSC lines, and compared phenotypes in neurons differen-

tiated from RTT iPSC lines and control iPSC and hESC lines.

The Ellis group [27] generated iPSC lines from female RTT

patients carrying mutations different from those included in the

Muotri study, observed nonrandom XCI in all of their iPSC lines,

and compared cell size in mutant neurons differentiated from an

iPSC line with a rare deletion of almost the entire MECP2 gene

and their isogenic controls. These studies appear to contrast each

other in the XCI status of female RTT iPSC lines. This is a critical

issue because the MECP2 gene, mutations in which cause RTT, is

located on the X chromosome. Thus the XCI status in RTT iPSC

lines directly determines which allele of MECP2 is expressed in the

neurons differentiated from these iPSC lines. And the expression

status of MECP2 directly influences the interpretation of results

from phenotypic analyses of neurons differentiated from such

RTT iPSC lines. In our study, we found nonrandom XCI in all of

our female RTT iPSC lines. Our results are consistent with the

finding of the Ellis group, as well as the original discovery of

nonrandom XCI in female human iPSC lines [30]. To rule out

potential difference in reprogramming procedures, we used two

methods (Yamanaka factors delivered by retroviruses and

Thompson factors delivered by lentiviruses) to generate iPSCs

from 3 female RTT patients with common mutations (R294X,

R306C, and T158M) and 1 female RTT patients with a rare

mutation (V247X), and observed nonrandom XCI in a total of 23

iPSC lines regardless of the reprogramming methods used or the

inherent RTT mutations. However, at this early stage of iPSC

technology development, there are likely many unknown technical

variations across different labs that may have caused the different

XCI status in female iPSCs generated in these studies.

There may be certain advantages in using isogenic pairs of wild

type and mutant disease-specific iPSC lines and their derivatives to

studying disease mechanism. For instance, comparison within the

isogenic pair may reduce the phenotypic variation across different

iPSC lines from individuals with diverse genetic background.

Figure 2. Nonrandom XCI pattern, as indicated by allele-specific methylation of the AR locus, in female human iPSC lines. The AR
assay was used to examine the XCI pattern in RTT fibroblast and iPSC lines. (A) Results from the R294X fibroblast and iPSC lines. (B) Results from the
R306C fibroblast and iPSC lines. (C) Results from the T158M fibroblast and iPSC lines. (D) Results from the V247X fibroblast and iPSC lines. (E) Results
from the neuroepithelia (NE-V247X-MT) and neurospheres (NS-V247X-MT) differentiated from iPS-V247X-MT. Uncut traces detected presence of both
parental AR alleles: 165 bp and 171 bp for the R294X lines; 173 bp and 176 bp for the R306C lines; 171 bp and 180 bp for the T158M lines; and
165 bp and 180 bp for the V247X lines. Cut traces only detected the hypermethylated AR allele on the inactivated X chromosome, which was
resistant to digestion by the methylation-sensitive restriction enzyme HhaI. The source of genomic DNA was labeled to the left of each trace. The
ratio between the two AR alleles was at the top of each trace. The molecular weight standard was provided under each trace.
doi:10.1371/journal.pone.0025255.g002
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Figure 3. Clonal and allele-specific expression of XIST SNPs and MECP2 in female human iPSC lines. (A) Representative sequencing traces
of SNP analysis to distinguish allele-specific transcription of XIST in iPS-R294X-MT-1, iPS-R294X-WT, iPS-R306C-MT, iPS-R306C-WT, and iPS-T158M-WT.
SNP rs1894271 (C or T) was examined in iPS-R294X-MT-1, iPS-R294X-WT. SNP rs16992442 (C or T) was examined in iPS-R306C-MT, iPS-R306C-WT, and
iPS-T158M-WT. (B) Representative sequencing traces of regions of the MECP2 gene that contain RTT mutations to distinguish allele-specific
transcription of MECP2 in iPS-R294X-MT-1, iPS-R294X-WT, iPS-R306C-MT, iPS-R306C-WT, and iPS-T158M-WT, iPS-V247X-MT, and iPS-V247X-WT. MT
denotes expression of the mutant MECP2 allele. WT denotes expression of the wild type MECP2 allele. (C) Representative sequencing traces of the
region of the MECP2 gene that contains RTT mutation V247X (705delG) to distinguish allele-specific transcription of MECP2 at the stages of embryoid
body, neuroepithelia and neurosphere during directed neural differentiation from iPS-V247X-MT.
doi:10.1371/journal.pone.0025255.g003
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However, the failure to reactivate the inactivated X chromosome

clearly demonstrates the incomplete reprogramming of the

somatic epigenome, which may interfere with subsequent

phenotypic analyses. As a first step to assess phenotypic variation

caused by epigenetic difference among iPSC lines, we analyzed

neurons differentiated from 3 isogenic mutant R294X iPSC lines.

Our results showed that although there was variation among

neurons from the three mutant lines, they were all significantly

smaller than neurons differentiated from the isogenic wild type

R294X iPSC line. Future analysis of additional isogenic wild type

iPSC lines from the same patient will define the phenotypic

variation among wild type lines, and conclusively answer the

question of whether epigenetic difference among iPSC lines may

mask genotype-dependent phenotypes.

To date, more than 200 mutations have been identified in the

MECP2 gene, all of which causes RTT. Since no clear genotype-

phenotype correlation has been established between a certain

mutation and the resulting spectrum of disease symptoms, it is

necessary to generate and analyze RTT iPSC lines with different

mutations (varying in the nature of mutation and the location of

the mutation), when using RTT iPSCs and their derivatives to

studying disease mechanisms. Compared with RTT iPSC that

carry rare RTT mutation (such as the deletion mutation in [27]),

our R294X isogenic pair carries a common RTT mutation that is

identified in ,5% of RTT patients. At the molecular level, the

MeCP2R294X protein may retain some of the important functions

of the wild type protein (i.e. binding to methylated DNA because it

still has the MBD domain), while lack other functions. Therefore,

difference in the spectrum of phenotypes and the underlying

mechanisms may exist between the R294X neurons and the

MECP2 null neurons described in [27].

In summary, we have established two novel isogenic pairs of

RTT iPSC lines with either a common (R294X) or a rare (V247X)

RTT mutation, and characterized the R294X pair. Together with

the RTT iPSC lines generated by the Muotri group [26] and the

Ellis group [27], these unique isogenic pairs of iPSC lines generated

in our study are valuable tools for the RTT research community.

Materials and Methods

All work related to generating iPSC from fibroblast lines from

the Coriell Institute for Medical Research (Camden, NJ) has

been approved by the Stem Cell Research Oversight (SCRO)

Committee at the University of Wisconsin-Madison (protocol #
SC-2009-0006), and has been exempted from Institution Review

Board (IRB) review (IRB protocol # M-2009-1424).

Figure 4. Isogenic pairs of wild type and mutant RTT iPSC lines efficiently differentiate into post mitotic neurons. Left 4 columns:
representative transmitted light microscropy images at key stages of the directed neuronal differentiation. Each row represents differentiation from
one hESC or hiPSC line. Each column represents one key stage of the differentiation. Right 2 columns: representative fluorescence images of
expression of neuroepithelial marker PAX6 and postmitotic neuron marker beta III tubulin (Tuj). Each row represents differentiation from one hESC or
hiPSC line. Scale bars = 200 mm.
doi:10.1371/journal.pone.0025255.g004
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The work related to generating iPSC from patient RS0502 has

been approved by the IRB at University of Wisconsin-Madison

(protocol # H-2009-0110). Written informed consent was

obtained from patient RS0502/her guardian. All procedures were

in accordance with the Helsinki Declaration and established

guidelines at University of Wisconsin-Madison.

Cell culture and generation of iPSCs
RTT patient (GM11270, GM17880, and GM07982) and an

age-matched control female (AG07306) fibroblast lines were

obtained from the Coriell Institute for Medical Research

(Camden, NJ), and cultured according to the repository protocols.

RS0502 fibroblast line was derived from a patient biopsy

performed at the Waisman center (Madison, WI). Retroviruses

containing the transcription factors OCT4, SOX2, KLF4 and c-Myc

[19] were used to generate iPSCs from fibroblast line RS0502.

Lentiviruses containing the transcription factors OCT4, SOX2,

NANOG, and LIN28 [20] were used to generate iPSCs from all

other fibroblast lines. Briefly, lentiviruses were produced and

titered according to previously published protocols [34]. 1–26105

fibroblasts were transduced with a mixture of OCT4, SOX2,

NANOG, and LIN28 lentiviruses, and were plated on mouse

embryonic fibroblasts. Cells were fed daily with hES media

supplemented with 100 ng/ml recombinant zebra fish bFGF, or

recombinant human FGF2. At day 10 cells were switch to MEF

conditioned media supplemented with FGF2. Distinct iPSC

colonies appeared as early as 21 days. The average time of colony

picking was 30 days post infection. Initial colonies were

mechanically picked and split for the first 4–6 passages. Following

the initial mechanical splitting, cells were switched to hES media

with 4 ng/ml FGF and passaged using 1 unit/ml dispase (Invitrogen).

Media compositions were as follows. hES media: DMEM/F12

with 20% KOSR, 16NEAA, 16pen/strep, and 1 mM L-glutamine

(all from Invitrogen) and 0.1 mM b-mercaptoethanol. Neuronal

induction media (NIM): DMEM/F12 with 1% N2, 16NEAA, 16
pen/strep and 2 mg/ml heparin (Sigma H3149). Neurobasal media

(NBM): Neurobasal media with 1% N2, 2% B27 and 16pen strep

(all from Invitrogen).

Neuronal differentiation
iPSCs and hESCs were differentiated to neurons as previously

described [33]. Briefly, embryoid bodies (EB) were formed via

enzymatic disassociation of mature iPSC and hESC colonies from

the mouse feeder layer. The colonies were grown in suspension for

four days and were fed daily with hES media without FGF. EBs

were subsequently cultured in suspension for an additional three

days, feeding every other day with Neuronal induction media

(NIM). Seven days after dissociation, the EBs were plated down

into six well tissue culture plates using NIM supplemented with

10% FBS (HyClone). 12 to 16 hours after plating, the FBS

supplemented media was replaced with NIM without serum. The

attached EBs were fed with NIM every other day for 10 days and

allowed to differentiate into neuroepithelial cells. At day 17, the

neuroepithelial cells were mechanically dissociated, and grown

into neurospheres in a suspension of NIM with 2% B27. At day 23

to make neurons, neurospheres were incubated with accutase

(Innovative Cell Technology) for 3 minutes at 37uC and broken

into small clusters by mechanical force. Neurosphere particles

were plated on 48 well tissue culture plates precoated with 20 mg/

ml mouse laminin for 2 hours. Neurons migrating from the

dissociated neurosphere clusters were visible ,2 hours post

plating.

Immunocytochemistry
All cells were fixed for 20 minutes with 4% paraformaldehyde,

and permeabilized for 30 minutes with 1% triton X100 (Sigma).

Primary antibodies were incubated overnight at 4uC. Primary

antibody dilutions are: anti-Oct4 1:200 (Santa Cruz sc-5279),

Figure 5. Analysis of nuclear size in neurons differentiated from isogenic pairs of R294X iPSC lines. (A) Representative high
magnification images of neurons (neuron-R294X-WT and neuron-R294X-MT-1) derived from the isogenic pair of iPS-R294X-WT and iPS-R294X-MT-1 to
demonstrate the characteristic neuronal morphology under transmitted light (left), which was used in combination of beta III tubulin
immunoreactivity (middle) to identify neurons for measuring DAPI stained nuclear area (right). The green dots in the DAPI images indicate neuronal
nuclei identified for size analysis. Scale bar = 200 mm. Scale bar applies to all panels in this figure. (B) Bar graph of neuronal nuclei area measurements
using artificial units. Average nuclear area measurements from R294X neurons (red, neuron-R294X-MT-1, -2, and –3 were differentiated from three
isogenic iPSC-R294X-MT lines, respectively, and analyzed 3 days after plating) and their isogenic controls (blue, neuron-R294X-WT was differentiated
from the isogenic iPSC-R294X-WT line). Error bars represent standard error of the mean (SEM). The total number of nuclei measured in each line was
shown on the bar. All p values are from two-tailed Student’s t-tests.
doi:10.1371/journal.pone.0025255.g005
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anti-Sox2 1:500 (R&D systems AF2018), anti-NANOG 1:500

(R&D systems AF1997), anti-Ssea4 1:20 (DSHB), anti-Tra-1-81

1:500 (Millipore MAB4381), anti-beta III tubulin 1:500 (Sigma

T8660), anti-Pax6 1:5000 (DSHB). DAPI was 1:10000.

Neuronal nuclei measurement
Fixed neuronal cultures (3 days after plating) were immuno-

stained for beta III tubulin, counterstained with DAPI, and

imaged at 406magnification. Neurons were identified by beta III

tubulin immunoreactivity and characteristic neuronal morphology

under transmitted light. The nuclear area was measured by

circling the DAPI stained nuclei in Adobe Photoshop CS4

Extended.

Karyotyping
G-band chromosome analysis of the iPSC lines was conducted

by the cytogenetics lab at the WiCell Research Institute (Madison,

WI).

Teratoma formation
Teratoma formation and histological analysis of teratoma were

conducted by the WiCell Research Institute (Madison, WI). A

certified pathologist was consulted for identification of the three

germ layers.

Allele-specific transcription of MECP2 and XIST
RNA was prepared using the SV Total RNA Isolation kit

(Promega). cDNA was made using the qScript cDNA SuperMix

(Quanta Biosciences), and used as PCR template to examine

allele-specific transcription of MECP2 and XIST. To eliminate the

possibility of genomic DNA being amplified, the MECP2 PCR

primers were designed to span an intron. Primers: Forward GC-

AAAGCAGAGACATCAGAA, reverse 1 (for T158M, V247X)

CAGATCGGATAGAAGACTCC, reverse 2 (for R294X, R306C)

GCCCAGGGCTCTTACAGGTC. XIST SNP assay was per-

formed as previously described [30]. Purified PCR products were

directly sequenced.

Bisulfite PCR analysis of the OCT4 promoter
Bisulfite conversion of genomic DNA was performed with the

Ez-DNA Methylation kit (Zymo). A CpG island region of the

OCT4 promoter was amplified using previously published primers

and conditions [20]. Fragments were cloned using the pGEM-T

Easy vector (Promega) and subsequently sequenced.

The human androgen receptor assay
The human androgen receptor assay was preformed as

previously described [31]. Briefly, 500 ng of genomic DNA was

digested to completion with the methylation sensitive restriction

enzyme Hha I. Both the cut and uncut samples were used as

template in PCR reactions, using primers flanking the polymor-

phic repeats upstream of the human androgen receptor locus.

PCR amplification was performed as previously described [27]

using a forward primer labeled with 6-FAM on the 59end. The

fluorescently labeled PCR amplicons were resolved on a genetic

analyzer. The GeneScan data was analyzed and the peak area a

measured using ABI Peak Scanner software.

Confirmation of retroviral transgene silencing
Retroviral transgene silencing was assessed via qPCR using

primers and methodology as previously described [35]. RNA

isolated from retrovirus infected fibroblasts three days after

transduction was used as a reference control. RNA was prepared

using the SV Total RNA Isolation kit (Promega). cDNA was made

using the qScript cDNA SuperMix (Quanta Biosciences). A

StepOnePlus real-time PCR system (Applied Biosystems) was

used for amplification and quantification.

Statistical analysis
For all statistical analyses in this report, an F-test was first

performed to determine whether the samples had equal or unequal

variance. Then the Student’s t-test (2-tailed) was performed

assuming either equal or unequal variance as determined by the

F-test. The threshold of statistical significance was set at p = 0.01.

Supporting Information

Figure S1 Schematic drawings of the MeCP2 protein
and the X chromosome. Top: Schematic representation of the

location of the RTT mutations in relation to the known functional

domains within the MeCP2 protein. Bottom: Schematic repre-

sentation of the physical location of the AR, XIST and MECP2 loci

on the X chromosome.

(TIF)

Figure S2 Representative sequencing traces from geno-
mic DNAs isolated from several iPSC lines generated
from RTT patients to confirm these lines carry the same
mutations and are heterozygous for these mutations as
found in the original fibroblast cell lines.

(TIF)

Figure S3 Karyotyping of selected RTT iPS cell lines
was performed at early (passage 6) and late (passage 24)
passages for iPS-V247X-MT, mid passage (passage 14)
for iPS-T158M-WT, and late passage (passage 21) for
iPS-XX-WT. Normal karyotype was observed in all of the lines.

(TIF)

Figure S4 Demethylation of the OCT4 promoter, an
epigenetic characteristic of hESCs, was observed in
iPSC lines generated in the current study. The methylation

status of the 5 CpG sites within the OCT4 promoter in T158M

fibroblasts and selected iPSC lines from the present study is

shown. Each row of circles represents sequencing result from one

clone of the bisulfite PCR product, while each circle represents a

CpG site in the promoter. Open circles indicate unmethylated

CpG, filled circles indicate methylated CpG, and grey circles

indicate ambiguous calls regarding methylation status at that

CpG.

(TIF)

Figure S5 Teratomas were formed by subcutaneously
injecting SCID mice with selected iPSC lines. Shown are

representative histology images of these teratomas. Each row

represents images from one iPSC line as labeled on the left. Each

column represents images of one tissue/germ layer as labeled on

the top. All teratomas derived for the present study contained

tissues developed from all three germ layers: cartilage/mesoderm,

neuronal tissue/ectoderm and gut epithelium/endoderm.

(TIF)

Figure S6 Silencing of retroviral transcription was
examined in all R294X iPSC lines using realtime PCR.
Retroviral expression of reprogramming factors (Exo Oct4, Exo

Sox2, Exo Klf4, and Exo cMyc) in retrovirus infected fibroblasts

(FB+virus) was used as control and set as 1. Retroviral expression

of these factors in uninfected R294X fibroblast (FB-R294X),

human embryonic cell line H9 (hES-H9), and four R294X iPSC
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lines were normalized against the control. Data are presented as

means 6 SEM.

(TIF)

Table S1 Summary of studies of XCI status screening
and allele-specific expression of MECP2 in multiple RTT
iPSC lines. WT: wild type allele of MECP2. MT: mutant allele of

MECP2. Cut off for skewed is 80:20. N/A: not applicable.

(DOC)
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