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Abstract

The epidermis of Caenorhabditis elegans is an essential tissue for survival as it contributes to 

the formation of the cuticle barrier, as well as facilitates developmental progression and animal 

growth. Most of the epidermis consists of the hyp7 hypodermal syncytium, the nuclei of which 

are largely generated by the seam cells that exhibit stem cell-like behaviour during development. 

How the seam cell progenitors differ transcriptionally from the differentiated hypodermis is 

poorly understood. Here, we introduce Targeted DamID (TaDa) in C. elegans as a method for 

identifying genes expressed within a tissue of interest without cell isolation. We show that TaDa 

signal enrichment profiles can be used to identify genes transcribed in the epidermis and use this 

method to resolve differences in gene expression between the seam cells and the hypodermis. We 

finally predict and functionally validate new transcription and chromatin factors acting in seam 

cell development. These findings provide insights into cell-type-specific gene expression profiles 

likely associated with epidermal cell fate patterning.
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Introduction

Multicellular organisms consist of a plethora of differentiated cell types and tissues that 

perform specialised functions to support organismal physiology. All specialised cells are 

determined through the establishment of distinct patterns of gene expression (Ralston and 

Shaw, 2008). Thus, comparisons of gene expression profiles can uncover the mechanisms 

at play in establishing and maintaining cell identity. Understanding transcriptome changes 

with high spatiotemporal resolution is also central to stem cell biology. Transcriptional 

differences between multipotent progenitors and differentiated cells can reveal the molecular 

basis of acquisition, maintenance and plasticity of cell fate determination (Han et al., 2018)
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The C. elegans epidermis secretes the main constituents of the outer protective cuticle, while 

it facilitates developmental progression between larval stages and animal growth (Chisholm 

and Xu, 2012). A key cell type in the epidermis are the lateral seam cells that display a stem 

cell-like behaviour during post-embryonic development (Joshi et al., 2010). In the newly 

hatched L1 larvae, there are 10 seam cells on each lateral side. Three of those occupy the 

head region (H0-H2), six are in the midbody up to the rectum (V1-V6) and one is located 

near the tail (T) (Sulston and Horvitz, 1977). Throughout post-embryonic development, the 

seam cells perform a series of stem cell-like divisions. They divide both symmetrically at 

the L2 stage to expand their number, and asymmetrically at all larval stages, where one 

daughter acquires the hypodermal cell fate and fuses to the hyp7 syncytium while the other 

maintains the seam cell fate (Fig. 1A) (Joshi et al., 2010; Sulston and Horvitz, 1977). These 

divisions generate 98 out of the 139 nuclei of the hyp7 syncytium (Altun and Hall, 2009), 

while a robust terminal seam cell number of 16 cells per lateral side is maintained with 

minimal variation in the wild-type population (Boukhibar and Barkoulas, 2016; Katsanos et 

al., 2017).

Uncovering genes that may relate to stemness and differentiation within the epidermis 

requires first acquiring cell-type-specific gene expression profiles. A commonly used 

approach to acquire cell-type-specific gene expression profiles relies on cell isolation 

followed by RNA-sequencing (RNA-seq) (Celniker et al., 2009). Although selection of 

cells from crude suspensions by methods like fluorescent activated cell-sorting (FACS) has 

been achieved in C. elegans (Kaletsky et al., 2018; Spencer et al., 2011; Spencer et al., 

2014), cell isolation remains particularly challenging for some tissues like the epidermis. 

This is because the epidermis is tightly attached to the cuticle and anchored to a basal 

lamina, therefore sell sorting is difficult and has been achieved only for adults (Kaletsky et 

al., 2018; Zhang and Kuhn, 2013). Other approaches like INTACT rely on tissue-specific 

nuclei isolation prior to mRNA extraction (Deal and Henikoff, 2011; Steiner et al., 2012), 

however, in this case cytoplasmic mRNAs are not included in the identified transcriptome. 

Tissue-specific extraction of mRNA using transgenic expression of a poly(A)-binding 

protein (PABPC) and sequencing (PAT-seq) has been successfully used in C. elegans, but 

potential drawbacks relate to biases in the recovery of mRNAs based on their poly(A)-tail 

length and toxicity due to high levels of PABPC expression (Blazie et al., 2015; Blazie et 

al., 2017; Yang et al., 2005). More recently, approaches based on single-cell combinatorial 

indexing RNA-seq (sci-RNA-seq) have been developed (Cao et al., 2017). Despite these 

being information-rich, they still remain bioinformatically challenging and costly.

Targeted DamID (TaDa), first developed in flies, avoids cell isolation by revealing 

transcribed genes as genomic regions that associate with a fusion between Dam 

methyltransferase from E. coli and an RNA polymerase subunit (Southall et al., 2013). 

This association leaves methylation marks to the DNA and thus permits the identification 

of genes in cells or tissues of interest for which specific promoters are available to drive 

the expression of Dam-RNA pol fusions. The levels of expression of the Dam-fusions are 

crucial for the success of this experiment (van Steensel and Henikoff, 2000). Constitutive 

or high levels of Dam expression saturate DNA with non-specific methylation reducing the 

power to identify genuine hits and causing toxicity (Southall et al., 2013; van Steensel and 

Henikoff, 2000). This has been addressed by making use of the leaky expression of the 
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Dam-fusion from uninduced conditional promoters. However, in this case gene identification 

is not tissue-specific unless a recombinase-based systems like FLP/FRT or CRE/lox is 

implemented to permit expression from the uninduced promoter within a certain tissue 

(Gómez-Saldivar et al., 2020; Harr et al., 2020; Pindyurin et al., 2016). In TaDa, low levels 

of expression are achieved by utilising a tissue-specific promoter to drive expression of a 

bicistronic mRNA consisting of two consecutive open reading frames (ORFs) interrupted 

by two stop codons and a frameshift (Southall et al., 2013). The Dam-fusion occupies the 

secondary ORF which is translated very infrequently due to ribosomal reinitiation, resulting 

in low protein levels (Kozak, 2001; Southall et al., 2013). The frequency of the reinitiation 

is dependent on the size of the primary ORF (Kozak, 1987; Kozak, 2001), with the length 

of mCherry found to be suitable for this application (Fig. 1B) (Southall et al., 2013). We 

have shown that the TaDa configuration for studies in the C. elegans epidermis successfully 

prevents toxicity and saturated methylation (Katsanos and Barkoulas, 2020 preprint). Here, 

we use TaDa to compare gene expression profiles between epidermal cell types in C. 
elegans. We compare the gene sets we generate with other published datasets to produce 

a comprehensive resource of epidermal transcriptomes for the seam cells and hypodermis. 

Furthermore, we validate our TaDa datasets by identifying new transcription and chromatin 

factors, as well as miRNAs involved in epidermal development.

Results

Generation of epidermal cell-type-specific Dam-fusions for TaDa

To resolve cell-type-specific gene expression profiles in the epidermis, we first sought to 

identify suitable promoters to drive TaDa transgene expression in the seam cells and the 

hypodermis. With regard to the seam cells, we focused on the nucleotide sugar transporter 

gene srf-3, which is expressed in these cells based on single molecule FISH (smFISH) (Fig. 

S1A) and a reporter construct (Höflich et al., 2004). The srf-3 promoter fragment used in 

this published construct included all the upstream region of srf-3 isoform b (srf-3b), from 

the 3’UTR of the upstream gene (txt-19) to the ATG of srf-3b, including the first exon and 

intron of srf-3a (Fig. S1B). We found that a seam cell-specific enhancer element is located 

within the first intron of srf-3a (named here srf-3i1). This element, fused to a minimal 

pes-10 promoter, was sufficient to drive strong and specific GFP expression in the seam 

without any visible expression in other tissues, such as intestinal cells or the germline, where 

expression was observed under the putative promoters of srf-3a and srf-3b isoforms (Fig. 

S1C). Concerning the hypodermis, the promoter of the collagen gene dpy-7 is commonly 

used to drive expression in this tissue (Blazie et al., 2017; Brabin et al., 2011; Johnstone 

et al., 1992). However, careful microscopic observation revealed that dpy-7p drives low 

expression levels in dividing seam cells as well (Fig. S1D). We thus constructed a synthetic 

version of this promoter (named dpy-7syn1) where we replaced nucleotides flanking two 

existing GATA binding sites from AGATA, a motif previously seen in promoters of seam 

cell expressed genes (Katsanos et al., 2017),to TGATA sequences that have been associated 

with hypodermal expression as putative binding sites for the transcription factor ELT-3 

(Gilleard and Mcghee, 2001; Shao et al., 2013). The expression driven by dpy-7syn1 
was confined to the hypodermis (Fig. S1E). Taken together, we conclude that srf-3i1 and 
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dpy-7syn1 were the most suitable regulatory elements to drive the expression of transgenes 

for gene expression profiling in the epidermis.

Investigation of cell-type-specific gene expression in TaDa relies on studying genome-wide 

RNA polymerase II occupancy. To acquire such occupancy profiles, Dam was fused to 

the largest RNA polymerase II subunit ama-1/POLR2A, which has been successfully used 

in TaDa experiments in Drosophila (Southall et al., 2013), as well as rpb-6/POLR2F, 

which participates in all RNA polymerase complexes and has been successfully used in 

other DamID-based approaches (Filion et al., 2010). Transgenic lines were created to 

allow expression of these fusions in the epidermis at low levels under the TaDa transgene 

configuration (Fig. 1C). Similar constructs were made with GFP (dam:NLS-GFP) as control 

(Fig. 1C), which are able to capture background levels of methylation, for example because 

of accessible regions of the genome, and thus allow to assess the RNApol occupancy profiles 

against background signal (Aughey and Southall, 2016). The expression of mCherry in 

the transgene cassette was used as proxy to confirm that all single-copy transgenes drove 

expression in the expected cell type (Fig. S2).

The methylation capacity of the fusions was tested by extraction and amplification of 

methylated genomic DNA. In the course of these experiments, we found that the dam:ama-1 
fusion failed to produce sufficient methylation (average of 1.9 million unique reads per 

sample), while dam:rpb-6 fusions produced methylation in both cell types, with an average 

of 17.5 million mappable reads per sample. We decided therefore to pursue gene expression 

analysis using the rpb-6 fusions.

RPB-6 occupancy occurs within coding sequences and reveals spatiotemporal gene 
expression patterns

To analyse gene expression profiles per cell type and stage, we sequenced samples from 

two larval stages (L2 and L4) from as few as approximately 2000 individuals, and generated 

sequence alignment read count-normalised maps. To assess the overall binding profile, 

we compared the read-count scores of GATC fragments across the whole genome, which 

include intergenic areas with potentially lower signal levels if the RPB-6 fusions have 

retained their expected biological function. These comparisons showed separate clustering 

of dam:rpb-6 and control samples based on Pearson correlation heatmaps and principal 

component analysis (Fig. 2A and S3A, B). Correlation coefficient values were lower 

between controls as opposed to dam:rpb-6 samples, as expected due to the less targeted 

nature of methylation in the absence of RPB-6. To evaluate the reproducibility between 

replicates at the level of genes that RPB-6 is expected to occupy, we also examined 

correlations restricted to GATC fragments that reside within protein coding genes, as well 

as read-count signal averaged across protein-coding genes. We found moderate to strong 

correlation between replicates based on average score per protein-coding gene (values of 

0.84-0.97, Fig. 2B) or per individual GATC fragment within genes (values of 0.67-0.93, Fig. 

S3C), highlighting the reproducibility of genic signal acquisition, as well as its somewhat 

reproducible distribution within protein-coding genes.

RPB-6 occupancy TaDa signal can be calculated from stage and promoter-matched 

dam:rpb-6 and dam:NLS-GFP samples as normalised log2(dam:rpb-6/dam:NLS-GFP) 
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scores per GATC fragment of the genome (see example across chromosome I in Fig. 2C). 

For all profiles and stages, we found consistent RPB-6 occupancy preference within genes 

rather than intergenic sequences at the genome-wide level (Fig. 2D). Interestingly, RPB-6 

occupancy showed a preference towards the 3’ of genes and a depletion at the 5’ of genes, 

near the transcription start site (TSS). This differs from the average AMA-1 occupancy 

across genes seen by ChIP-seq, which shows increased occupancy near the TSS region (Fig. 

2D). The difference is unlikely to reflect method-dependent biases, since AMA-1 TaDa in 

Drosophila also showed high average occupancy of TSS and transcription end sites (TES) 

(Southall et al., 2013). C. elegans gene coordinates used to assess average occupancy here 

are based on the longest transcript produced by each gene, however, up to 94% of those 

genes have other isoforms too (Tourasse et al., 2017). Furthermore, the average positional 

occupancy by isoforms of annotated gene sequences, shows a preference for 3’ location (Fig. 

S4A), which could contribute to the difference in localisation between RPB-6 and AMA-1 

occupancy. We therefore tested the occupancy signal across isoforms instead of genes. All 

TaDa and the ChIP-seq profiles exhibited approximately the same patterns of average signal 

enrichment (Fig. S4B), suggesting that the difference in occupancy profiles may stem from 

the use of RPB-6 instead of AMA-1.

To assess the potential biological relevance of the acquired occupancy signals, we focused 

on selected genes known to be expressed in the seam cells or hypodermis. For example, 

seam cell fate promoting factors such as elt-1, egl-18 and elt-6 (Gilleard and Mcghee, 2001; 

Gorrepati et al., 2013; Koh and Rothman, 2001) were found to be significantly expressed by 

TaDa in the seam cells (Fig. 3A). Furthermore, srf-3 and the groundhog genes grd-13, grd-3 
and grd-10, all known to be expressed in the seam cells, but not the hypodermis (Aspock 

et al., 1999; Cao et al., 2017; Höflich et al., 2004), showed higher signal enrichment and 

significant occupancy in the seam cells (Fig. 3A). On the other hand, genes that are known 

to be enriched in the hypodermis, such as the transcription factor elt-3, the osmotic stress 

factor osm-7 (Wheeler and Thomas, 2006) and the warthog family member wrt-8 (Aspock 

et al., 1999) were enriched in hypodermal profiles (Fig. 3B). Other factors, such as nhr-25 
that is known to be expressed in both tissues (Gissendanner and Sluder, 2000), showed 

signal enrichment and significant occupancy in all profiles (Fig. 3B). Finally, the seam cell 

expressed terminal differentiation fusogen aff-1, which mediates fusion of the seam cells 

into a single syncytium at the late L4 stage (Sapir et al., 2007), was significantly occupied 

by RPB-6 at the L4 stage, but not at L2 (Fig. 3C). Similarly, the collagen gene col-19, which 

is primarily expressed in the early adult hypodermis (Liu et al., 1995), was found to show 

strong signal enrichment at the L4 stage (Fig. 3C). These results indicate that TaDa can be 

used to resolve spatiotemporal patterns of gene expression in C. elegans.

TaDa-identified genes match epidermally-expressed genes and relate to epidermal tissue 
functions

To convert genome-wide TaDa signal into gene expression information, we performed gene-

calling to calculate an average RPB-6 occupancy value for every protein-coding gene. As 

higher frequency of transcription may produce more methylation on average, we reasoned 

that average occupancy values could potentially inform about the levels of gene expression. 

Moderate to strong positive correlation was observed when comparing TaDa expression 
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values across stages and cell types (Fig. 4A), which denotes some similarity across the 

TaDa-identified transcriptomes at a quantitative level. Quantitative datasets have been 

produced for the seam cells and hypodermis by combinatorial barcoding and single-cell 

transcriptome clustering at the L2 stage (Cao et al., 2017). Interestingly, gene ranking by 

TaDa based on RPB-6 occupancy for all cell types and stages broadly aligned with the 

ranking of these genes based on cell type-matched sci-RNA-seq expression values (Fig. 4B).

Expressed genes per cell type and developmental stage were identified based on statistically 

significant RPB-6 occupancy across their sequence. This analysis revealed 2227 genes at the 

L2 and 2446 genes at the L4 stage for the seam cells, and 2756 genes at the L2 and 2681 

genes at the L4 stage for the hypodermis (Fig. 5A, B and Table S1). In both cases, there 

was significant overlap in the gene sets between stages (Fig. 5A, B). To test whether TaDa 

identification of expressed genes is subject to any biases, we investigated how expressed 

and non-expressed genes may differ in their GATC numbers and gene length. We found 

that expressed genes were longer and had more GATCs, which is not particularly surprising 

due to the reliance of this method on available GATC sequences (Fig. S5A). The very same 

tendency, however, was seen when gene expression was determined based on sci-RNA-seq 

(Fig. S5B). This analysis also revealed that TaDa-identified genes showed higher expression 

based on RNA-seq (Fig. S5A), and that sci-RNA-seq expressed genes showed higher TaDa 

expression values (Fig. S5B).

To assess the potential biological relevance of these gene sets, we pursued first gene 

ontology (GO) and tissue enrichment analysis. Both cell types were enriched for terms 

pertaining to the synthesis of the cuticle and moulting (Page, 2007) (Fig. 5C, D). The seam 

cell gene sets showed significant enrichment for neuronal GO terms, which are related to 

this cell type because some seam cell daughters generate neural precursors (Chisholm and 

Hsiao, 2012; Sulston and Horvitz, 1977) (Fig. 5C). The seam cells also give rise to sensory 

rays of the male tail (Sulston et al., 1980), which may be reflected with the significantly 

enriched term “male anatomical structure morphogenesis”. Likewise, the gene sets from the 

hypodermal dpy-7syn1 expression domain showed enrichment for the term “multicellular 

organism growth”, which is consistent with the fact that the syncytial hypodermis is a major 

driver of growth in C. elegans (Chisholm and Hsiao, 2012) (Fig. 5D). Similarly, when 

assessing enrichment for tissues with known expression profiles by a tissue enrichment 

analysis, the “epithelial system” was found to be significantly enriched for all gene sets 

(Chisholm and Hsiao, 2012) (Fig. 5E, F). As for tissue over-representation terms, the “PVD” 

neuron that arises from the V5 seam cell was found to be significantly enriched in the seam 

cell gene sets, along with the seam cell precursor cells “ABarpppaa”, “ABprapapa” and 

“ABarppapp” and “hyp4”, “hyp5”, “hyp6” in the case of the hypodermis (Fig. 5E, F).

To search for putative motifs driving the expression of enriched genes, we used a region of 2 

kb upstream to the TSS of genes found in the intersections between the L2 and L4 profiles. 

Interestingly, a TGATAA motif was found to be significantly enriched in the hypodermal 

gene sets, which shows similarity to the binding motif for the hypodermal transcription 

factor ELT-3 (p=5.81×10-6) (Fig. 5G). For the seam cell datasets, we found an AGATAG 

motif (Fig. 5G), similar to that of the ELT-1-related human GATA2 factor (p=7.44×10-4). 

Notably, an AGATAG motif is found in the intron 1 of srf-3a, as well as in the promoter 
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region of lin-22 and, when deleted, seam cell expression of lin-22 is decreased (Katsanos et 

al., 2017). Taken together, the GO term enrichment and motif enrichment analyses suggest 

that the acquired expression profiles via TaDa represent genes transcribed in the epidermis.

TaDa-determined gene lists show extensive overlap with other published datasets

We first compared the TaDa-acquired gene lists for the seam cells and hypodermis to 

datasets derived from tissue-specific nuclear RNA experiments (Serizay et al., 2020). 

We found that our TaDa datasets contain ubiquitously expressed and epidermal genes as 

expected (Fig. S6A). We therefore compared our data against transcriptomes for epidermal 

cell types derived via other methods, such as sci-RNA-seq and PAT-seq. In PAT-seq, 

epidermal tissue specificity was achieved by mRNA-tagging via expression of a poly(A)-

binding protein under a seam cell (grd-10 in this case) or hypodermal (dpy-7) promoter 

(Blazie et al., 2017). All gene-set intersections for the seam cells across methods were 

highly significant (p≤2.2×10-162 with a Fisher’s exact test), with 72.4% of the TaDa-defined 

seam cell genes at L2 and 79% of the L4 genes being present in the sci-RNA-seq dataset 

(Fig. S6B). The overlaps with PAT-seq were smaller (33.8% for L2 and 33.9% for L4), but 

also significant (Fig. S6B). Similar observations were made upon comparing the hypodermal 

datasets, with 76.1% and 79.2% of TaDa genes overlapping with sci-RNA-seq and 67.4% 

and 71.3% overlapping with PAT-seq for L2 and L4 gene-sets respectively (Fig. S6C). Based 

on this considerable agreement, we present here detailed datasets for genes expressed in 

seam cells and hypodermis, as supported by TaDa alone or in combination with the other 

two methods (Table S1).

Sci-RNA-seq and PAT-seq are thought to be quantitative methods that can inform about 

levels of expression for each transcript. We therefore examined correlations between sci-

RNA-seq or PAT-seq and TaDa expression values. The assessment was performed for both 

seam cells and hypodermis using the L2 datasets, which are stage-matched to the sci-RNA-

seq datasets. Interestingly, all comparisons showed statistically significant correlation with 

a weak positive association (Pearson’s correlation test: p<0.0001 for all, Fig. S6D). It is 

therefore interesting that expression levels from these methods tend to align, despite the 

overall differences in what these techniques measure.

TaDa identifies new transcription factors and chromatin regulators acting in seam cell 
development

Next, we compared the TaDa-identified genes across cell types by performing multiple 

intersections. Interestingly, the largest subset was the overlap between all gene sets (1035 

genes) with 37.5-46.4% of genes from each set present in the overlap (Fig. S7A). All 

pairwise and higher order overlaps of gene sets across cell types and developmental stages 

were significant (Fig. S7B). Based on all intersections between TaDa expression profiles, 

we identified a set of genes putatively expressed in the seam cells, but not the hypodermis 

and vice versa. Notably, these TaDa gene sets were enriched for genes identified as being 

specifically expressed in the same cell type using sci-RNA-seq (Fig. S7C, D).

We argued that the seam cell list may contain factors that play a role in seam cell 

development, so we decided to compare it against a list of known transcription and 

Katsanos et al. Page 7

Development. Author manuscript; available in PMC 2022 August 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



chromatin factors in C. elegans and test the function of selected candidates (Table S2). 

We found 58 transcription factors in the overlap, including well-known transcription factors 

expressed in seam cells like elt-1, ceh-16, egl-18, elt-6 and nhr-73 (Cassata et al., 2005; 

Koh and Rothman, 2001; Miyabayashi et al., 1999; Gorrepati et al., 2013; Huang et al., 

2009; Koh and Rothman, 2001; Smith et al., 2005). We selected a subset for which there 

was no prior evidence for a function in seam cell development to perform a small-scale 

RNAi screen using terminal seam cell number as the phenotypic readout, which reflects the 

fidelity of developmental patterning. Interestingly, two out of nine RNAi treatments were 

found to have a significant effect on seam cell number (Fig. 6A). The most striking one 

was the knockdown of the E2F transcription factor efl-3, which caused a significant increase 

in average seam cell number from 16.07 in the control to 18 in the RNAi-treated animals 

(p<0.0001 with a one-way ANOVA) (Fig. 6A). To confirm whether efl-3 is expressed 

in seam cells, we studied its expression pattern by single molecule fluorescence in situ 
hybridisation (smFISH). We found evidence for expression in the seam cells, with stronger 

expression in V lineage cells (Fig. 6B, C). This observation validates efl-3 as a seam 

cell-expressed regulator influencing epidermal development.

Within the set of 1090 seam cell genes, we found 35 putative chromatin factors (Table S2), 

a subset of which was also targeted by RNAi. Among the targeted factors, the kinetochore 

binding factor bub-1 was included as a control due to its known functions in multiple 

embryonic and post-embryonic lineages including the seam cells (Wang et al., 2009). 

Other factors included the high mobility group factors (hmg-11, hmg-1.1 and hmg-4), the 

chromodomain helicases (chd-1 and chd-3) and the histone deacetylase (hda-1), as well 

as the SWI/SNF chromatin remodelling complex factor swsn-7. The screen was initially 

attempted with onset of RNAi treatment at the L4 stage of the previous generation to the 

one that is scored, allowing for likely depletion of maternal deposition of the targeted genes. 

We did not find any significant change in the mean seam cell number or the variance in 

the population (Fig. S8). However, for some treatments (bub-1, hda-1, hmg-4, swsn-7 and 

F43G9.12) we observed embryonal lethality, which prompted us to perform post-embryonic 

RNAi for these factors. In this case, bub-1, F43G9.12 and hmg-4 RNAi showed a significant 

increase in seam cell number variance in the population (Fig. 6D). More strikingly, hda-1 
RNAi led to a significant increase in seam cell number (Fig. 6D). This is likely to be due to 

a cell-autonomous role for hda-1 in the seam, as seam cell number increase was reproduced 

with a seam cell driven hda-1 hairpin construct (Fig. 6E). Taken together, our results show 

that TaDa can be used to predict new factors influencing epidermal development.

TaDa reveals miRNAs with potential epidermal functions

As TaDa allows the discovery of small RNAs expressed in a tissue without any modification 

in the experimental protocol, we finally investigated miRNA expression in epidermal cell 

types. Out of the 256 annotated mRNAs of the C. elegans genome 64 showed expression 

in the seam cells and/or the hypodermis by TaDa. More specifically, 35 miRNA genes 

were found to be significantly occupied in the seam cell datasets at L2, 39 at L4 and 28 

in the hypodermal dataset at L2 and 39 at L4 (Fig. 7A). Intersections of those miRNA 

revealed that most were shared across expression domains likely indicating housekeeping 

or broad epidermal functions, while others were uniquely expressed in one cell type (Fig. 
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7A). For example, the miRNA cluster mir-42, mir-43 and mir-44 was found to be expressed 

only in the seam cells in both stages while mir-47, was found to be expressed only in the 

hypodermis in both stages (Fig. 7B), which is consistent with previous reports for epidermal 

gene expression for these miRNAs based on transcriptional reporters (Kinser et al., 2021; 

Martinez et al., 2008). To address whether these miRNAs may have functions in epidermal 

development, we overexpressed them in the epidermis using the same promoters we used 

for TaDa. The miRNAs mir-42, mir-43, mir-44 form an operon on their genomic locus on 

chromosome II (Martinez et al., 2008) so all three miRNAs were over-expressed as a single 

unit. Interestingly, both the mir-42, mir-43, mir-44 cluster and mir-47 significantly increased 

seam cell number variance when overexpressed within their endogenous domain, and not 

when they were overexpressed in the other epidermal cell type (Fig. 7C). These findings 

underscore the value of TaDa in revealing not only protein-coding genes, but also miRNAs 

expressed in a tissue of interest.

Discussion

RPB-6 occupancy profiles reveal genes expressed in closely related cell types

We introduce here TaDa as a method to study tissue-specific gene expression profiles in C. 
elegans. This method is based on investigating genome-wide occupancy of RPB-6, a subunit 

that participates in all RNA polymerase complexes, as a proxy to identify transcribed genes 

in the tissue of interest without cell isolation. We focus on the C. elegans epidermis, for 

which gene expression profiles are less studied compared to other tissues. We demonstrate 

that we can resolve gene expression profiles in epidermal cell types and use these data to 

predict new regulators influencing epidermal development.

Analysis of the RPB-6 occupancy profiles revealed enrichment within genes, with the 

average RPB-6 signal being depleted near the TSS and increased closer to the 3’ end. 

This localisation is consistent with a recent report (Gómez-Saldivar et al., 2020), but does 

not fully match AMA-1 occupancy peaks near the TSS and the TES of genes previously 

observed in ChIP-seq in C. elegans or TaDa in Drosophila (Araya et al., 2014; Southall et 

al., 2013). The AMA-1 Drosophila homologue RpII215 has produced methylation patterns 

in a fusion with Dam in the TaDa configuration (Southall et al., 2013). However, we 

found that dam:ama-1 fusions produce very little methylation in C. elegans, which was also 

observed in attempts to express this transgene in other C. elegans tissues (Gómez-Saldivar 

et al., 2020). We speculate that inherent difference in the function of these subunits may 

explain the localisation patterns of methylation. RPB-6 is known to stabilise the transcribing 

polymerase on the DNA (Ishiguro et al., 2000), so the structural conformation of the 

initiation complex may obstruct DAM:RPB-6 from methylating GATCs in the vicinity of 

the start site. Instead, as transcription starts and the polymerase disengages from various 

components of the initiation complex (Hahn, 2004), the DAM:RPB-6 fusion may gain 

access to methylate DNA over the rest of the gene sequence.
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Strengths and weaknesses of TaDa as a method for tissue-specific gene expression 
profiling in C. elegans

Two other methods have produced so far comparable information for gene expression 

profiles in the seam cells and the hypodermis, namely PAT-seq and sci-RNA-seq (Blazie 

et al., 2017; Cao et al., 2017). Comparisons between these methods and TaDa revealed 

good agreement, with extensive qualitative overlaps, for example ≥72.4% of the total genes 

identified by TaDa were also identified with sci-RNA-seq. This is encouraging especially 

since TaDa is measuring a distinct biological quantity as a proxy of gene expression, so 

some differences between datasets were anticipated.

All methodologies have their own strengths and weaknesses. Both sci-RNA-seq and PAT-seq 

rely on a larger amount of starting material (Blazie et al., 2017; Cao et al., 2017). With 

TaDa, even for the seam cells that constitute a small fraction of the total cells (32/~1000), 

we were able to acquire an average of 17.5 million unique reads starting from a moderately-

sized population of around 2000 individuals. Furthermore, the TaDa bicistronic mRNA 

design minimises Dan-fusion expression levels and thus overcomes transgene-associated 

animal toxicity (Katsanos and Barkoulas, 2020 preprint). This is a limitation in PAT-seq 

due to high expression of a poly(A)-binding protein, which can influence the acquired gene 

expression profiles (Yang et al., 2005). Moreover, TaDa allows to profile tissue-specific 

expression of small RNAs within the same experiment, which cannot be achieved by RNA 

sequencing-based approaches without introducing specialised protocols for RNA isolation or 

small RNA tagging (Alberti et al., 2018; Lu et al., 2007). On the other hand, DamID-based 

methods have limited ability to capture dynamic changes in gene expression as it is difficult 

to rule out methylation carry-over. Another key advantage of sci-RNA-seq over TaDa is 

that a single experiment allows the elucidation of transcriptomes for all cell types of C. 
elegans, which makes sci-RNA-seq cost effective relative to the wealth of information that 

it can create. Nevertheless, attribution of single cell transcriptomes to specific cell types in 

sci-RNA-seq relies on specific gene markers and can be challenging for certain cell types 

that do not cluster sufficiently apart (Cao et al., 2017).

The total number of genes identified by TaDa per cell type and stage was smaller compared 

to sci-RNA-seq. This may indicate decreased sensitivity of TaDa to detect small genes or 

genes with low expression. TaDa relies on the availability of GATC sites, which may be 

limited within certain genes. A key example is the bHLH Hes-like lin-22 transcription factor, 

which is expressed in the seam cells (Katsanos et al., 2017), but was not detected by TaDa 

in the epidermis. This gene only contains 2 GATC sites 2 kb apart and methylation of both 

sites would be required for the occupancy to pass the significance threshold. However, lack 

of available GATC sites within genes is unlikely to be pervasive in C. elegans where the 

average length of GATC fragments within protein-coding genes is only 518.4 bp and the 

median 183 bp. Furthermore, we showed that similar biases in detecting expressed genes as 

a function of gene length are likely to exist in datasets generated using RNAseq methods 

too. Genes missing from high-throughput datasets is a quite common feature; for example, 

it is of note that PAT-seq seam cell datasets do not include core seam cell genes like elt-1, 

ceh-16, srf-3, as well as all new genes identified via TaDa and validated in this study.
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Functional validation of TaDa-predicted transcription factors, chromatin factors and 
miRNAs reveals novel regulators of epidermal development

We validated TaDa predictions using targeted RNAi screens. Although partial RNAi effect 

could account for the absence or no significant phenotype for some transcription or 

chromatin factors targeted, we were able to identify new genes involved in epidermal 

development. Regarding transcription factors, we identified a new role for efl-3 in seam 

cell patterning. Its human homologue, E2F7, is an atypical E2F that is thought to act 

as a repressor by competing with other E2F genes for binding to targets (Di Stefano 

et al., 2003; Endo-Munoz et al., 2009; Li et al., 2008). In C. elegans, EFL-3 is known 

to supress cell-death in the VA and VB cells of the ventral cord (Winn et al., 2011). 

Seam cell daughters undergo endoreduplication before adopting the hypodermal fate, and 

E2F7 has been linked with the regulation of polyploidization in specialised mammalian 

cells (Lammens et al., 2009). Terminal seam cell number counting lacks resolution to 

fully understand the developmental basis of the defect upon efl-3 knockdown, so further 

experiments are required to dissect the exact function of EFL-3 in the epidermis. Based 

on the observed increase in seam cell number upon RNAi knock-down, we speculate that 

EFL-3 is likely to facilitate cell differentiation in the epidermis.

In the case of the chromatin factors, perturbation of hmg-4, F43G9.12 and hda-1 by RNAi 

was shown to affect terminal seam cell number. First, hmg-4 is a member of the histone 

chaperone FACT (facilitates chromatin transcription) complex, homologue of the human 

SSRP1, and has been shown to be expressed in multiple somatic tissues (Kolundzic et al., 

2018; Suggs et al., 2018). The FACT complex has been shown to act as a cell fate barrier 

in C. elegans and mammalian systems (Kolundzic et al., 2018). In C. elegans, it has been 

mostly studied in the context of regulating cell cycle timing in the embryo, where hmg-4 
acts redundantly with its paralog hmg-3, as well as in the intestine where it is thought to 

maintain inaccessible chromatin states to prevent gene expression activation related to cell 

fate reprograming (Kolundzic et al., 2018; Suggs et al., 2018). F43G9.12 is a homologue of 

the mammalian PAXBP1 (PAX3 and PAX7 binding protein 1). In mice, it has been shown to 

act by binding to the paired-box transcription factors Pax3 or Pax7 and the histone 3 lysine 

4 (H3K4) methyltransferase complex, which are required for the proliferation of myoblasts 

via regulating cell cycle genes (Diao et al., 2012). It is interesting that these two chromatin 

factors appeared to modulate seam cell number variance without altering the mean, which 

may reflect regulation of a broad array of genes with potentially opposing functions in the 

epidermis. Finally, hda-1 encodes a histone deacetylase and is the homologue of the human 

HDAC1 and HDAC2. Although hda-1 has not been studied in the seam cells, it is required 

for the development of the male sensory rays (Choy et al., 2007) that arise from seam cell 

divisions. Furthermore, hda-1 has been shown to instruct correct transcriptional programs 

during embryogenesis by associating with POP-1 (Calvo et al., 2001), which has established 

roles in seam cell development as a key effector of the Wnt/β-catenin pathway. HDA-1 

is linked to differentiation events, for example during the transition of the anchor cell 

towards an invasive fate (Matus et al., 2015). Work on the mammalian hda-1 homologues 

has highlighted diverse roles in haematopoiesis that are context and co-factor-dependent 

(Wang et al., 2020). It is therefore conceivable that HDA-1 acts in the epidermis to drive cell 

differentiation or maintenance of the differentiated state.
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We finally took advantage of the use of RPB-6 in TaDa, which allows us to capture 

total transcription (Gómez-Saldivar et al., 2020), to identify miRNAs expressed in specific 

epidermal cell types. For example, we found evidence that the mir-42, mir-43 and 

mir-44 cluster is specifically expressed in the seam cells, while mir-47 is expressed in 

the hypodermis. Previous work has indicated that mir-42 and mir-43 are predominantly 

expressed during embryonic development, whereas mir-44 expression persists in larvae (Lau 

et al., 2001). Therefore, the overexpression phenotype in the seam cells may stem from a 

shift in the timing of miRNA expression or may be due to a threshold effect. In the case 

of mir-47, it is particularly interesting that expression in the hypodermis, but not the seam 

cells, causes a seam cell phenotype in a non-cell autonomous manner. Further investigation 

is required to identify the targets of these miRNAs and dissect their mode of action. Our 

findings highlight the potential of TaDa to contribute to our understanding of tissue-specific 

gene networks underlying cell fate decisions in different developmental contexts.

Materials and Methods

C. elegans maintenance

The C. elegans strains used in this study were maintained according to standard protocols 

(Corsi, 2006) on Nematode Growth Medium (NGM) plates, grown monoxenically on a 

lawn of E. coli OP50 at 20 °C. For TaDa experiments, strains were grown on a lawn of a 

dam-/dcm- E. coli mutant of the K12 strain (New England Biolabs, C2925). The laboratory 

reference N2 strain was used as the reference strain. A complete list of strains used in this 

study is available in Table S3.

Molecular cloning

To test the specificity of hypodermal promoters, pIR6 (pdpy-7::unc-54 3’UTR) was digested 

with EcoRI and SmiI to remove the pdpy-7 promoter and linearise the plasmid. Using oligos 

MBA270 and MBA271 the promoter of dpy-7 was amplified while altering 2 GATA sites 

on the 5’ and the 3’ of the sequence to form the dpy-7syn1 promoter which was inserted by 

Gibson in the digested pIR6 to form the pIR16(dpy-7syn1::unc-54 3’UTR) plasmid. pIR16 

was linearised with SmiI digestion and the sequence of mCherry-H2B was amplified using 

oligos DK46 and DK47 from a pre-existing pENTR mCherry-H2B plasmid and inserted by 

Gibson in pIR16 to form pDK18 (dpy-7syn1::mCherry-H2B::unc-54 3’UTR).

To study the expression pattern of the putative seam cell specific promoter of srf-3, 3 

versions of the promoter were amplified from N2 lysate. The promoter of isoform a 

was amplified using DK33 and DK34 oligos and was used in a Gibson assembly along 

with pCFJ151 as backbone, C. elegans optimized GFP amplified from JH01 (Heppert et 

al., 2016) with DK35 and DK36 oligos, H2B amplified from the pENTR mCherry-H2B 

plasmid mentioned above using oligos DK37 and DK38 and unc-54 3’UTR amplified with 

DK39 and DK40 oligos from pIR6. The resulting construct was pDK16 (srf-3ap::GFPo-
H2B::unc-54 3’UTR + cb-unc-119). This was then digested with NheI/XmaJI to remove 

the promoter and replace it with the isoform b promoter srf-3bp, amplified using oligos 

DK33 and DK59 or, the srf-3 intron 1, amplified with oligos DK64 and DK65 and 

fused by fusion PCR to the pes-10 minimal promoter amplified with DK66 and DK67 
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from L3135 (Fire Lab vector Kit) to create pDK26(srf-3bp::GFPo-H2B::unc-54 3’UTR) 

and pDK32(srf-3i1::pes-10::GFPo-H2B::unc-54 3’UTR). In this study, the srf-3i1:pes-10 
promoter is generally referred to as srf-3i1 for simplicity.

To build the constructs for epidermal RNApol TaDa, the srf-3i1::pes-10 promoter was 

amplified with DK89 and DK90 from pDK32 and the dpy-7syn1 with DK113 and DK114 

from pDK18 and donor vectors were produced via a BP reaction (pDK44 and pDK61 

respectively). pDK7 (Katsanos and Barkoulas, 2020 preprint) digested with PaeI was used to 

insert rpb-6 amplified with DK27 and DK28 from N2 lysate and NLS-GFP amplified form 

pPD93_65 with DK43 and DK44, downstream and in-frame with dam. The two intermediate 

plasmids were inserted in parallel LR reactions with pDK44 and pDK61 to finally produce 

4 different plasmids, pDK54(srf-3i1::pes-10::mCherry::Dam-myc:NLS-GFP::unc-54 3’UTR 
+ cb-unc-119), pDK55(srf-3i1::pes-10::mCherry::Dam-myc:rpb-6::unc-54 3’UTR + cb-
unc-119), pDK64(dpy-7syn1::mCherry::Dam-myc:NLS-GFP::unc-54 3’UTR + cb-unc-119) 

and pDK65(dpy-7syn1::mCherry::Dam-myc:rpb-6::unc-54 3’UTR + cb-unc-119). To test 

ama-1 for TaDa the p304(cb-unc-1119 + phsp-16::ama-1:Dam::unc-54 3’UTR) plasmid 

(kindly donated by Peter Meister) was converted into a TaDa versatile vector with 

a gateway docking site for easy promoter insertion by digesting with XmaJI/PteI to 

remove the existing promoter along with a part of Dam. From pDK7 using the primers 

DK41 and DK42 a compatible Gibson amplicon containing attR4-L1::mCherry::dam(part) 
was amplified and used in a Gibson assembly with the above vector to produce 

pDK20(cb-119 + attR4-L1::mcherry::Dam-myc::ama-1::unc-54 3’UTR). pDK20 was used 

in LR reactions with pDK44 and pDK61, as above, to produce pDK46(cb-unc-119 
+ srf-3i1::pes-10::mCherry::Dam-myc:ama-1::unc-54 3’UTR) and pDK62(cb-unc-119 + 
dpy-7syn1::mCherry::Dam-myc:ama-1::unc-54 3’UTR).

To produce a seam cell hda-1 hairpin construct, a fragment from the hda-1 gene overlapping 

the 2nd and 3rd exons was amplified using oligos DK247 and DK248. The amplicon 

was inserted with a Golden Gate reaction in pDK157 (srf-3i1-mut::Δpes-10::outron::non-
palGGBpiI::srf-3a intron5::non-paIGGEsp3I::p10 3’UTR) (Hintze et al., 2021)) to 

produce pDK158(srf-3i1-mut::Δpes-10::outron::>hda-1 fragment>::srf-3a intron5::<hda-1 
fragment<::p10 3’UTR).

To assemble the miRNA overexpression constructs, the vectors pDK127 carrying a 

dpy-7syn1 promoter and p10 3’UTR and pDK82 carrying a srf-3i1::Δpes-10 promoter 

and p10 3’UTR were both digested with XmaJI and PacI to remove sequences between 

the promoter and 3’UTR. The miRNAs mir-42, mir-43 and mir-44 were amplified 

together to ensure correct processing using oligos DK217 and DK218 as well as 

DK219 and DK218. The two amplicons were inserted in the above digested pDK82 

and pDK127 respectively to form pDK133(srf-3i1::Δpes-10::mir-42-44::p10 3’UTR) and 

pDK147(dpy-7syn1::mir-42-44::p10 3’UTR). Similarly mir-47 was amplified using the 

pairs of oligos DK220 and DK221 as well as DK222 and DK221 to produce a 

pDK127 and a pDK82 compatible product that were inserted by Gibson assembly to 

create pDK139(srf-3i1::Δpes-10:::mir-47::p10 3’UTR) and pDK148(dpy-7syn1::mir-47::p10 
3’UTR). A complete list of the oligos used in this study is available in Table S4.
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Transgenesis

Transient transgenesis by formation of multicopy extra-chromosomal arrays through 

microinjection was achieved following established protocols (Corsi, 2006; Evans, 2006; 

Mello et al., 1992). Stable transgenic lines with single-copy locus-specific inserted 

transgenes were produced for the purposes of this study employing the Mos1-mediated 

single-copy insertion (MosSCI) method (Frokjaer-Jensen et al., 2014) and standard protocols 

(Nance and Frøkjær-Jensen, 2019). The EG6699 strain was used to obtain all single-

copy insertions of this study. To improve screening “reverse chunking” was performed 

(O’Connell, 2010) and all resulting lines were molecularly confirmed for single-copy 

insertions using oligos NM3880 and NM3884. All the transgenes generated in this study 

as well as the make-up of injection mixes used are presented in Table S5.

Microscopy

For phenotyping, live animals were mounted on fresh 2% agarose pads containing 100 μM 

NaN3 for immobilisation on glass slides. The slides were then imaged using an inverted 

Ti-eclipse fully motorised epifluorescence microscope (Nikon) with a metal halide light 

source fitted with an iKon M DU-934 camera (Andor) controlled via the NIS-Elements 

software (Nikon). Scoring of the terminal seam cell number phenotype was performed for 

the lateral side most proximal to the objective in late-L4 or early adult animals, carrying the 

SCMp::GFP marker.

To perform smFISH, animals were synchronised by bleaching and were subsequently grown 

at 20 °C for 18 hours to reach the late L1 and 25 hours for the L2 asymmetric seam cell 

division stage confirmed by microscopy. Animals were fixed and smFISH was performed 

according to established protocols (Barkoulas et al., 2013; Katsanos et al., 2017) using 

probes made up of pools of 38-48 oligos fluorescently labelled with Cy5 (sequences of 

probe oligos are listed in Table S4). Imaging was performed using the set up outlined above 

with settings as previously described (Katsanos et al., 2017), while analysis and probe signal 

quantification was performed using a custom MATLAB (MathWorks) pipeline (Barkoulas et 

al., 2013).

Targeted DamID

Strains for TaDa experiments were separated into two biological replicates and were grown 

on dam−/dcm− plates. For each replicate, nine 55 mm dam−/dcm− plates fully populated 

with gravid adults were bleached to isolate embryos that were seeded on new dam−/dcm− 

plates that were incubated at 20 °C. Half of the resulting populations were collected in M9 

buffer after 24 hours at the L2 stage, and the other half after 48 hours at the L4 stage. This 

was followed by thorough washing of the resulting animal pellets with M9, as previously 

described (Katsanos and Barkoulas, 2020 preprint). Genomic DNA was extracted from each 

sample representing a biological replicate for each Dam-fusion at a given developmental 

stage and GATC-methylated fragments were isolated and PCR amplified according to an 

adapted targeted DamID protocol for C. elegans (Katsanos and Barkoulas, 2020 preprint). 

Library preparation and Next Generation Sequencing on an Illumina® HiSeq 4000 platform 

was performed by GENEWIZ on the resulting products.
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Calculation of TaDa signal profiles for RPB-6 occupancy and gene-calling

FASTQ files representing single-end reads for each sample and replicate were mapped 

on the C. elegans genome. Sequence alignment read-count maps were generated and 

normalised log2(dam:rpb-6/dam:NLS-GFP) ratio scores were calculated per GATC fragment 

of the genome using the perl script damidseq_pipeline v1.4.5 (Marshall and Brand, 2015) 

(available at https://github.com/owenjm/damidseq_pipeline). The pipeline was used calling 

Bowtie 2 v2.3.4 (Langmead and Salzberg, 2012) to map reads on C. elegans bowtie indices 

from assembly WBcel235 (available from illumina iGenomes page), Samtools v1.9 (Li et 

al., 2009) for alignment manipulations, and a GATC-fragment interval file across the C. 
elegans genome in GFF format (Katsanos and Barkoulas, 2020 preprint). For every cell 

type at a given developmental stage, each of the dam:rpb-6 and dam:NLS-GFP fusions 

were represented by two replicates permitting the performance of four pairwise genome-

wide log2(dam:rpb-6/dam:NLS-GFP) calculations. Those were averaged into a single signal 

profile of log2(dam:rpb-6/dam:NLS-GFP) enrichment scores per GATC of the genome for 

every cell type and developmental stage which were used for all downstream processing. 

Visualisation of the signal tracks and other genomic features presented in this study was 

performed using the SignalMap NimbleGen software (Roche) and IGV (Robinson et al., 

2011).

To identify transcribed genes based on the enrichment of the RPB-6 occupancy signal 

over gene bodies the Rscript polii.gene.call (Marshall and Brand, 2015) (available at https://

github.com/owenjm/polii.gene.call) was used. The averaged signal profiles described above 

were used as input along with a genomic interval file listing genes and coordinates from the 

release 93 annotation of the WBcel235 assembly. A false discovery rate (FDR) lower than 

0.05 was used as threshold to call expressed genes. The outputted gene lists were updated to 

the Ensemble release 99 annotation post-processing (complete lists of expressed genes per 

cell type and developmental stage are presented in Table S1). To call expressed miRNAs 

using the RNA pol TaDa signal profiles, the miRNA genomic coordinates used here were 

extended 500 bp upstream and 500 bp downstream to expand their size for better FDR 

assignment.

Pearson’s correlation and principal component analysis

The Pearson’s correlation between samples was assessed using the deeptools3 (Ramírez et 

al., 2016) multiBamSummary (--binSize 300 or using a bed file of GATC coordinates within 

protein coding genes) and plotCorrelation (--corMethod pearson, -- whatToPlot heatmap 

or scatterplot, --skipZeros, --removeOutliers) tools on Galaxy (https://usegalaxy.eu/). 

Correlations here were calculated using mapped read-count signal either binned on genome-

wide GATCs, genic GATC fragments or across protein coding genes. Principal component 

analysis was performed using the deeptools3 plotPCA tool on the multiBamSummary 

matrices. For both analyses, regions with very high or equal to zero values were excluded to 

prevent artificial inflation of correlation levels.

Aggregation plots of signal localisation

Aggregation plots were generated using the SeqPlots GUI application (Stempor and 

Ahringer, 2016) with settings specified individually for each presented result. Aggregation 
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plots represent signal averages for every 10 bp bins in regions of specified length around 

positional features of the genome. Start and end coordinates of genes based on the largest 

transcript are used here as the transcriptional start sites (TSS) and transcriptional end sites 

(TES) and are anchored to two positions of the X-axis and their genic sequence is pushed 

or stretched to a specified pseudo-length. For each bin around the feature an average is 

calculated across all the features to generate the aggregation plot line. When a shaded 

area is shown, it represents the 95% confidence interval. When z-scores are presented on 

the Y-axes, these have been calculated as deviations from the mean signal seen across the 

plotted region.

Assessment of overlaps between gene sets

Statistical significance of overlaps between sets of coding genes was calculated using either 

a hypergeometric distribution test on http://nemates.org/MA/progs/overlap_stats.html or a 

Fisher’s exact test using the R software package SuperExactTest (Wang et al., 2015). For 

both tests, the sampling pool was set to 20191, the number of annotated coding genes in 

the Ensemble release 99 of the WBcel235 assembly. Representation of overlaps was either 

in the form of Venn diagrams generated using http://bioinformatics.psb.ugent.be/webtools/

Venn/ or in the form of the output of the SuperExactTest package.

Gene set enrichment analysis

Identification of enriched gene ontology terms or association with tissue specific expression 

for the gene sets identified in this study was performed using a tool available on Wormbase 

(Angeles-Albores et al., 2016; David Angeles-Albores, Raymond Y. N. Lee) using a q-value 

threshold of 0.1. For significant GO terms presented here the −log10q value is plotted.

Motif identification in promoters of genes found to be expressed by TaDa

To identify motifs associated with promoters of genes expressed in the seam cells or the 

hypodermis based on RPB-6 TaDa experiments, the respective identified gene sets were 

converted to NCBI Refseq ID names using SimpleMine. The Refseq IDs list was used 

as input for the perl script findMotifs.pl of the HOMER v4.11.1 platform (Heinz et al., 

2010) using a prefabricated Caenorhabditis elegans promoter set and looking for motifs 6, 

8 or 10 bp long (options: worm -len 6,8,10) within the 2 kb sequence upstream of the 

TSS of each gene. The homer-generated positional weight matrices were converted into 

transfac matrices using the RSAT (Nguyen et al., 2018) Metazoa convert matrix tool (http://

rsat.sb-roscoff.fr/convert-matrix_form.cgi) and were imported to Weblogo3 (Crooks et al., 

2004) (http://weblogo.threeplusone.com/) for logo drawing.

RNAi by feeding

Knockdown of seam cell expressed transcription and chromatin factor genes was performed 

by feeding animals on lawns of bacteria expressing dsRNA targeting each gene of interest 

(clones are commercially available from Source Bioscience and are listed in Table S6). 

Bacteria were grown overnight and then seeded directly onto NGM plates containing 1 μM 

IPTG, 25 μg/ml ampicillin and 6.25 μg/ml tetracycline. 5 L4 animals of the JR667 strain 

were transferred on RNAi plates and were allowed to lay progeny that were observed for 
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phenotypic effects and scored for terminal seam cell number at the L4 and early adult stage 

of the subsequent generation. Embryonic lethal or developmental arresting treatments were 

performed post-embryonically by seeding synchronised by bleaching embryos on RNAi 

plates. Control treatments were performed in parallel, by feeding animals on lawns of the 

same strain of HT115 bacteria.

Statistical analysis

Statistical analysis for comparisons between quantitative datasets was performed using 

GraphPad Prism 7 (www.graphpad.com). To test differences in the mean between seam 

cell scorings an unpaired two-tailed t-test was performed when the comparison was between 

two datasets and a one-way Analysis of Variance (ANOVA) was performed when multiple 

datasets were compared. One-way ANOVA was followed by a Dunnet’s post hoc test when 

the mean of multiple datasets was compared to that of a control. To compare distributions 

where density plots are shown, a Kolmogorov-Smirnov two-sided test was performed in R. 

The significance level used throughout the study is p<0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A targeted DamID approach for cell-type-specific gene expression profiling in the 
epidermis.
(A) Illustration of the postembryonic seam cell divisions for each of the initial 10 seam 

cells of the hatched L1 animal. Symmetric divisions are denoted by horizontal red lines 

and asymmetric with black lines. (B) The design for seam cell-specific gene expression 

profiling by TaDa includes a seam cell-specific promoter followed by a primary ORF of 

mCherry, two STOP codons, a frameshift (nucleotide in blue) and the coding sequence of 

the Dam-RNApol fusion. Expression from this transgene produces a bicistronic mRNA, 
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which leads to very low levels of Dam-RNApol fusion protein by rare ribosomal reinitiation 

of translation at the secondary ORF. The result is seam cell-specific GATC-methylation 

(yellow marks) within transcribed genes. (C) Schematic showing the key features of single-

copy transgenes used in this study for RNApol occupancy probing by TaDa in the seam cells 

(srf-3i1::pes-10 promoter, left) and hypodermis (dpy7syn1 promoter, right).
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Figure 2. Genome-wide RPB-6 occupancy profiles show high correlation and signal preference 
for gene bodies.
(A) Principal component analysis on normalised sequence-aligned read count maps for 

all samples shows tight clustering of dam:rpb-6 samples that form a separate group from 

control fusion samples for both cell types. (B) Summary heatmap of Pearson correlations 

between all dam:rpb-6 samples based on averaged read-count normalised scores per protein-

coding gene. (C) Examples of averaged signal enrichment profiles for dam:rpb-6 occupancy 

across chromosome I at the L2 and L4 stage. Locations of protein coding genes is indicated 
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with black bars above. (D) Aggregation plots showing average TaDa RPB-6 signal for 

the seam and hypodermis or whole animal ChIP-seq AMA-1 signal. Regions up to 3 kb 

upstream of the TSS to 3kb downstream of the TES in 10 bp bins are shown. All protein 

coding genes are pushed into a pseudo-length of 3 kb for the L2 and L4 samples. Note that 

TaDa RPB-6 samples show increased average signal within gene sequences with preference 

for 3’ regions and depletion near the TSS, while the AMA-1 ChIP-seq signal shows peaks of 

increased average enrichment both over the TSS and towards the 3’ of genes.
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Figure 3. Signal enrichment across genes with known cell type specificity.
(A-C) Examples of the signal enrichment profiles over genes showing statistically 

significant RPB-6 occupancy (FDR<0.05). (A) The genes elt-1, egl-18/elt-6, srf-3, grd13 /
grd-3/ grd-10 show expression in the seam cells. (B) The genes elt-3, osm-7 and wrt-8 
show expression mostly in the hypodermis and nhr-25 in both cell types. (C) expression 

of aff-1 and col-19 is higher at L4, consistent with the temporal regulation of these genes. 

The Y-axes represent normalised log2(dam:rpb-6/dam:NLS-GFP) scores (data range: -2 – 4). 

Scale bars indicate 5 kb in all panels and genes, as well as GATC sites are shown in black.
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Figure 4. Quantitative assessment of discovered transcriptomes.
(A) Correlation scatterplots between cell types and developmental stages of TaDa RPB-6 

occupancy values per gene, across all protein coding genes. Dots correspond to individual 

genes and are colored based on the sample where they are found to be expressed (FDR < 

0.05) as indicated. The Pearson’s correlation coefficient r for each comparison is also shown. 

(B) Comparison of TaDa RPB-6 occupancy values for all cell types and developmental 

stages with cell type-matched sci-RNA-seq expression values (Cao et al., 2017). Protein 

coding genes are ranked on the X-axis from left to right based on their RPB-6 occupancy 
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value shown on the left Y-axis. This ranking is compared to the averaged sci-RNA-seq 

expression value in bins of 500 genes shown on the right y-axis. Note similar ranking 

between TaDa and superimposed sci-RNA-seq expression levels.
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Figure 5. TaDa-identified sets of expressed genes for seam cells and hypodermis are enriched for 
relevant GO terms and tissues.
(A-B) Venn diagram of sets of genes found to be expressed in the seam (A) or hypodermis 

(B) by TaDa based on significant RPB-6 occupancy at L2 and L4 stage. (C-D) Plots of 

selected significantly enriched gene ontology terms for the seam (C) and hypodermis (D) for 

the L2 (top) and L4 (bottom) gene sets. (E-F) Plots of selected over-represented tissues with 

expression patterns significantly enriched for similarity to the seam (E) or the hypodermis 

(F) gene sets at the L2 (top) and L4 (bottom) stage. (G) De novo-identified motifs enriched 
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in the sequences up to 2 kb upstream of the TSS of genes in the intersection between genes 

expressed at L2 and L4 for the seam (left) and hypodermis (right). These motifs were found 

enriched only in the cell type for which they are presented.

Katsanos et al. Page 31

Development. Author manuscript; available in PMC 2022 August 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 6. TaDa identifies new regulators of seam cell patterning.
(A) Quantification of seam cell number at the late L4 stage of RNAi treated animals carrying 

the seam cell marker SCMp::GFP (34≤n≤59 animals per treatment). (B) Quantification of 

efl-3 smFISH mRNA spots per seam cell of late L1 animals (n=38). (C) Representative 

smFISH from three independent experiments in WT at the late L1 stage, showing efl-3 
expression (black spots) in the seam cells marked by SCMp::GFP. (D) Quantification of 

seam cell number in post-embryonic RNAi treatments for the chromatin factors indicated 

on the X-axis at the late L4 stage of animals carrying the SCMp::GFP reporter (36≤n≤73). 

(E) Expression of an hda-1 hairpin in the seam cells (n=33) increases seam cell number in 

comparison to controls that do not carry the hairpin (n=36). In A and D sets of treatments 

performed on the same day are grouped by dashed lines. In A, B, D and E, red line indicates 

the mean. Error bars are ± SD for A, D and E and ± SEM in B. Seam cell scorings were 

repeated at least twice. Black stars indicate statistically significant differences to the mean 
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with either a one-way ANOVA and a Dunnett’s post-hoc (A, D) or a two-tailed t-test (E). 

Red stars indicate statistically significant differences in variance with a Levene’s median 

test. In all cases * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. Scale bar is 20 μm in C.
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Figure 7. TaDa identifies miRNAs expressed in the epidermis with putative developmental 
functions.
(A) Venn diagram listing all miRNAs found to be expressed by TaDa in each cell type 

and stage. (B) Signal enrichment in both cell types at the L4 stage around the locus 

of mir-42, mir-43, mir-44 only in the seam profiles and around mir-47 only in the 

hypodermis profiles. The Y-axes represent log2(dam:rpb-6/dam:NLS-GFP) scores (data 

range: -2 – 4) and the scale bar is 5 kb. (C) Quantification of seam cell number by counting 

SCMp:GFP nuclei at the late L4 stage in animals overexpressing either mir-47 or the mir-42, 
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mir-43, mir-44 cluster in both cell types. Note an increase in seam cell number variance 

upon overexpression within the native expression domain compared to controls without 

the extrachromosomal array (21≤n≤53 for controls, 31≤n≤47 for transgenics). Seam cell 

scorings were repeated twice. Red lines indicate the mean and error bars are ± SD. Red 

stars indicate statistically significant differences in variance with a Levene’s median test, * 

p<0.05, ** p<0.01.
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