
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13443  | https://doi.org/10.1038/s41598-021-92737-4

www.nature.com/scientificreports

Expansion of inflammatory 
monocytes in periphery 
and infiltrated into thyroid tissue 
in Graves’ disease
Xinxin Chen1,2, Yanqiu Wang1, Yicheng Qi1, Jiqi Yan3, Fengjiao Huang1, Mengxi Zhou1, 
Weiqing Wang1, Guang Ning1, Yulin Zhou1* & Shu Wang1*

Monocytes are important mediators of immune system and are reported to be altered in autoimmune 
disorders. Little is known about the pathological role of monocytes in Graves’ disease (GD). Thus, we 
investigated monocytes in periphery and thyroid tissue in GD. Untreated GD patients were enrolled 
and followed up until remission. Monocytes were significantly increased and positively correlated with 
anti-thyrotropin receptor antibody (TRAb) in untreated GD (rcounts = 0.269, P < 0.001; rpercentage = 0.338, 
P < 0.001). Flow cytometry showed CD14++ CD16+ monocytes were increased and CD14++ CD16- 
monocytes were decreased in untreated GD (both P < 0.001). Skewed monocyte subsets were 
recovered in GD with remission. Serum B cell-activating factor (BAFF) was positively correlated with 
TRAb (r = 0.384 and P = 0.001). CD14++ CD16+ monocytes expressed higher level of BAFF in untreated 
GD (P < 0.05). The frequency of CD14+ monocytes and CD14+ CD16+ monocytes were significantly 
higher in GD thyroid tissue than in normal thyroid tissue (both P < 0.001). Our study suggested 
CD14++ CD16+ monocytes were significantly expanded and involved in the production of TRAb via 
secreting a higher level of BAFF in periphery. Besides, monocytes infiltrated into thyroid tissue and 
thus could serve as an important participant in GD pathogenesis.

Graves’ disease (GD) is an organ-specific autoimmune disease characterized by the presence of anti-thyrotro-
pin receptor antibodies (TRAbs) in the  circulation1. TRAbs can bind to thyroid stimulating receptor (TSHR) 
expressed on thyroid follicular cells and stimulate thyroid follicular cells to produce and release excessive amounts 
of thyroid  hormones2. GD is a multifactorial disease caused by the interplay among susceptibility genes, envi-
ronmental factors and  immunity1. Immunity plays a central role in the production of TRAbs. Many studies 
validated the activated T/B cells both in periphery and in the thyroid gland in GD  patients1,3–5. In contrast to the 
well-defined roles of T/B cells in the pathophysiology of GD, little is known about that of monocytes. Monocytes 
are key components of the innate immune system. In the steady state, monocytes circulate in the blood and 
increase and infiltrate into tissue during inflammation. By presenting antigens to T cells and secreting inflamma-
tory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), IL-4, IL-6, B cells activator factor 
(BAFF), monocytes are key regulators that promote the activation of T and B  cells6. In autoimmune disease, 
monocytes and these specific cytokines may participate in initiating and propagating immune  responses7.

On the basis of CD14/CD16 expression, human monocytes can be classified into three subsets: CD14++ CD16- 
(classical monocytes), CD14++ CD16+ (intermediate monocytes), and CD14+ CD16+ (nonclassical mono-
cytes) 8–9. CD14++ CD16- monocytes account for the majority of circulating monocytes in the steady state, 
and they are not the predominant cytokine-producing monocytes in humans. The latter two monocyte subsets 
(CD14++ CD16+ and CD14+ CD16 +) are also known as inflammatory monocytes. Alteration in monocyte sub-
sets is associated with a plethora of autoimmune diseases, such as rheumatoid arthritis, Crohn’s disease, multiple 
sclerosis, and systemic lupus  erythematosus10–13. In multiple sclerosis, the expansion of classical (CD14++ CD16-) 
and nonclassical monocytes (CD14+ CD16 +) are sensitive markers of inflammation and could help to identify 
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relapsing–remitting multiple sclerosis  earlier14. However, very few studies have focused on the subsets of mono-
cytes in GD. The first report analyzing the phenotypic characteristics of monocytes was published in 1998 and 
found that CD14+ CD16+  DRhigh monocytes were abundant and correlated with CD4 + CD45 + RO + memory 
lymphocytes in GD  patients15. The increased CD14+ CD16+  DRhigh monocytes were thought to be involved in 
the repeated presentation of autoantigens or mimetic antigens to helpers T cells in GD.

Originating from bone marrow-derived progenitor cells, monocytes are precursor cells that may give rise to 
macrophages and dendritic cells in tissues. Monocytes have been found at the site of inflammation in autoim-
mune diseases, such as atopic dermatitis, psoriasis, and rheumatoid  arthritis16–18. The infiltration of monocytes 
into locally inflamed tissue may play important roles in maintaining and amplifying the immune response. 
However, little is known about the presence of monocytes in the local thyroid tissue in GD patients.

Concerning the limited exploration of monocytes in GD, we aimed to explore the pathological roles of mono-
cytes in the peripheral blood and thyroid tissue in GD patients in this study. The correlations of monocytes and 
clinical parameters were analyzed in GD patients before and after antithyroid treatment. In addition, the subsets 
of monocytes, specific cytokines and the presence of monocytes in local tissue were also evaluated in our study.

Methods
Particpants. Patients with new-onset, untreated GD (untreated GD, uGD) were recruited from the outpa-
tient department of Ruijin Hospital affiliated to Shanghai Jiao Tong University Medical School. GD was diag-
nosed based on clinical symptoms and laboratory findings according to the 2016 American Thyroid Association 
(ATA) guidelines for the diagnosis and management of hyperthyroidism and other causes of  thyrotoxicosis19. 
The clinical symptoms included heat intolerance, fatigue, increased appetite, increased sweating, weight loss, 
muscle weakness, tremors, and diffusely enlarged thyroid glands. The laboratory results included increased 
serum concentrations of free thyroxine (FT4) and/or free triiodothyronine (FT3), decreased basal thyroid-
stimulating hormone (TSH) levels, and TRAb positivity. All GD patients in our study were taking antithyroid 
drugs (ATDs) and received regular follow-up in the outpatient department of Ruijin Hospital. ATDs, including 
Methimazole and Propylthiouracil, mainly through reducing the synthesis of thyroid hormones or inhibiting 
the conversion of T4 to T3. The exclusion criteria included age < 15 years; taking any medical regimen affect-
ing thyroid function such as thyroid hormones, glucocorticoids, dopamine, or amiodarone; moderate to severe 
ophthalmopathy; a history of radioisotope therapy for Graves’ disease; pregnancy or lactation; malignant tumor; 
multiple organ disease and other conditions that prevented participation in the follow-up procedure. Age- and 
sex-matched healthy controls (HCs) were also enrolled in our study.

Patients with normal thyroid function but TRAb positivity were defined as having euthyroid (eGD). GD 
patients in remission were defined as those patients with maintenance of normal thyroid function and TRAb-
negative GD (nGD) after ATD withdrawal for at least 1 year according to the 2016 ATA  guidelines19. In our study, 
a total of 83 uGD patients have completed the follow-up procedure until remission. This study was conducted 
in accordance with the Declaration of Helsinki and was approved by the institutional review board of Ruijin 
Hospital affiliated to Shanghai Jiao Tong University Medical School. Written informed consent was obtained 
from each participant.

Laboratory analysis. Routine testing of the peripheral venous blood for white blood cells (including total 
number of white blood cells, monocytes, lymphocytes, and neutrophils) was performed on all participants in 
our study. The test was analyzed by Sysmex XN-9000 (Sysmex Corporation, Kobe, Japan) blood cell analyzer by 
flow cytometry using a semiconductor laser. FT3, FT4, and TSH levels were measured using automated chemi-
luminescent immunoassays (ARCHITECT i2000SR, Abbott Laboratories, Chicago, IL). TRAb level was meas-
ured using electrochemiluminescence immunoassays (Cobas 601 analyzer, Roche Diagnostics). The laboratory 
reference ranges provided by the manufacturer were used in this study, as follows: TSH 0.35–4.94 μIU/mL, FT4 
9.01–19.04 pmol/L, FT3 2.63–5.70 pmol/L, and TRAb < 1.75 IU/L. All tests were calibrated and measured by 
experienced technicians in Clinical Diagnostic Laboratory in Ruijin Hospital.

Cell isolation and culture. Peripheral blood samples were collected from GD patients and healthy controls. 
The peripheral blood mononuclear cells (PBMCs) were isolated via Ficoll-Hypaque density gradient centrifuga-
tion (Sigma Aldrich, St. Louis, MO, USA). Monocytes were purified from Ficoll-enriched PBMCs using human 
CD14 microbeads (Stemcell Technologies, Canada). The purification of monocytes was carried out according 
to the manufacturer’s instructions. Freshly isolated PBMCs or CD14+ monocytes were cultured in RMPI 1640 
supplemented with 10% fetal bovine serum, 1% penicillin at 37 °C and in a 5%  CO2 atmosphere.

Flow cytometry. PBMCs were rinsed twice with staining buffer and re-suspended in staining buffer. Then, 
the cells were incubated with specific extracellular antibodies for 30 min. The following monoclonal antibodies 
were used for monocyte phenotypic characterization: CD14-FITC and CD16-PE (BioLegend, San Diego, CA, 
USA). After fixation and permeabilization using Cytofix/Cytoperm Kit (BD, Biosciences), cells were stained 
with anti-BAFF-APC (BioLegend, San Diego, CA, USA) for 30 min to investigate the expression of BAFF on 
monocytes subsets. After staining with monoclonal antibodies, cells were washed twice with staining buffer and 
re-suspended in staining buffer. Appropriate isotype controls were used (showed in supplemental Fig. S1). All 
samples were acquired using LSRFortessa X-2 (BD bioscience). The data were analyzed using FlowJo software 
(Tree Star, Inc., San Carlos, CA, USA), and the mean fluorescence intensity (MFI) was adopted for the expression 
of BAFF on monocytes.
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RNA extraction and quantitative real-time polymerase chain reaction (PCR). Total RNA was 
isolated from monocytes using trizol reagent (Invitrogen) according to the manufacturer’s protocol. In total, 1 μg 
of RNA was converted into first-strand cDNA with the first-strand cDNA Synthesis Kit (Promega, Madison, WI, 
the USA) according to the manufacturer’s instructions. Real-time quantitative PCR was performed using SYBR 
Master Mix (Takara, Shiga, Japan) on a LightCycler 480 system (Roche, Pleasanton, CA, USA). Human GAPDH 
was used as an endogenous control for sample normalization. The results are presented as the fold expression 
relative to that of GAPDH. The following PCR primers were used: for human GAPDH, forward 5′-TGA TGA 
CAT CAA GAA GGT GGT GAA G-3′ and reverse 5′-TCC TTG GAG GCC ATG TGG GCCAT-3′; for human BAFF, 
forward 5′- ACA GAA AGG GAG CAG TCA CG-3′: and reverse 5′-GAC AGA GGG GCT TTC CTT CC-3′.

Analysis of serum B cell-activating factor (BAFF) levels by ELISA. BAFF levels were measured in 
the serum of 56 uGD patients, 12 nGD patients and 14 HCs using commercially available ELISA kits according 
to the manufacturer’s instructions. The ELISA kit for human BAFF cytokine was purchased from R&D Systems. 
The minimum detectable dose of each kit ranged from 62.5 to 4000 pg/mL, with intra- and inter-coefficients of 
variation of < 10%.

Immunofluorescence. Thyroid tissues were obtained from six patients with GD and three patients with 
thyroid nodules (no Graves’ disease history and TRAb < 1.75  IU/L) in the department of Thyroid Surgery at 
Ruijin Hospital. The thyroid tissues were fixed with formalin and embedded with paraffin. Serial tissue sec-
tions  (5  μm) were dewaxed and stained for immunofluorescence analysis. The thyroid tissue sections were 
blocked with 10% normal goat serum (Vector Laboratories) for 30  min. Primary antibodies were incubated 
overnight at 4 °C and amplified with the appropriate secondary antibodies. The primary and secondary antibod-
ies used in this study are shown in Supplemental Table S1. After incubation with the secondary antibodies, the 
sections were sealed with DAPI Fluoromount-G (Southernbiotech, Birmingham, AL, USA). The images were 
acquired via fluorescence microscopy (LSM710, Zeiss, Germany). The images in each figure were presented 
both as single-color stain and the merged image. Thus, the localization of two markers on similar and different 
cells can be visualized. Cells that co-expressed CD14 (green) and CD16 (red) markers in a similar location were 
yellow. For quantification of cells in histologic sections, up to 3 pictures of each section of thyroid tissues were 
taken. The results were shown as the counts of positive cells per high power field (HPF).

Statistical analysis. All statistical analyses were performed using IBM SPSS Statistics for Windows, ver-
sion 19.0. P < 0.05 were considered statistically significant. Descriptive data are presented as mean ± SD. Differ-
ences between groups were calculated using t-tests or Mann–Whitney U tests. Correlations among the different 
variables were analyzed via Pearson’s or Spearman’s correlation analysis.

Compliance with ethical standards. All procedures performed in studies involving human participants 
were in accordance with the ethical standards of review board of Ruijin Hospital affiliated to Shanghai Jiao Tong 
University Medical School and with the 1964 Helsinki declaration and its later amendments or comparable ethi-
cal standards. Written informed consent was obtained from each participant.

Results
Percentages and absolute counts of monocytes and correlations with clinical parameters in 
patients with GD. A total of 83 uGD patients and 30 healthy controls were analyzed in our study. A total 
of 72.3% uGD patients were females (n = 60), and 27.7% of the uGD patients were males (n = 23). uGD patients 
had increased FT3 and FT4 levels and a decreased TSH level in the serum, whereas thyroid function returned to 
normal in eGD patients and nGD patients were negative for TRAbs after antithyroid drug treatment (Table 1). 
Both the absolute counts and the percentages of monocytes in patients with uGD were significantly higher than 
those in HCs (Table 1, all P < 0.001). Under antithyroid drug treatment, the percentages and absolute counts of 
monocytes gradually decreased in patients with eGD or nGD and were not significantly different from those in 
HCs. Correlation analysis showed that both the absolute counts and percentages of monocytes were positively 
correlated with TRAbs in uGD patients (Table 2; rcounts = 0.269, P < 0.001; rpercentage = 0.338, P < 0.001). The absolute 
counts and percentage of monocytes were positively correlated with FT3 and FT4 and inversely correlated with 
TSH in patients with GD (Table 2).

Increased BAFF expression in monocytes and its correlations with clinical parameters in 
GD. Both the absolute counts and percentages of monocytes were strongly correlated with TRAbs in GD 
patients. We analyzed the expression of BAFF which was mostly secreted by monocytes and is involved in pro-
moting the production of antibodies in B cells. We observed significantly elevated BAFF mRNA levels in mono-
cytes from patients with uGD and those from HCs (Fig. 1a, P < 0.05). BAFF mRNA levels recovered to normal 
in patients with nGD (P < 0.05). The serum BAFF levels in individuals with uGD were significantly higher than 
those in HCs and of nGD patients (Fig. 1b, both P < 0.05). In addition, serum BAFF levels were positively cor-
related with TRAb levels (Fig. 1c, r = 0.384 and P = 0.001).

Monocyte subsets in the peripheral blood of patients with GD and healthy controls. Monocyte 
subsets were evaluated by flow cytometry. According to the expression of CD14 and CD16, the peripheral blood 
monocytes were classified into three subsets: CD14++ CD16+ , CD14+ CD16+ , and CD14++ CD16-. The gating 
strategy for the monocyte subsets is shown in Fig. 2a,b. CD14++ CD16+ monocytes were barely seen in HCs 
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Table 1.  General characteristics of the study population. HC healthy controls, uGD untreated GD, eGD 
euthyroid GD, nGD TRAb-negative GD, FT3 free triiodothyronine, FT4 free thyroxine, TSH thyroid 
stimulating hormone, TRAb thyrotropin receptor antibody. Compared to HC, aP < 0.001; compared with uGD, 
bP < 0.001; compared with eGD, cP < 0.001; compared to HC, dP < 0.05; P value was determined by Mann–
Whitney U test.

Variables HC uGD eGD nGD

N (F/M) 30(20/10) 83(60/23) 83(60/23) 83(60/23)

Age (years) 31.68 ± 5.83 36.54 ± 12.76 38.42 ± 12.79 40.33 ± 11.87d

FT3 (pmol/L) 4.51 ± 0.45b 25.54 ± 14.01 4.45 ± 0.76b 4.19 ± 0.45b

FT4 (pmol/L) 13.56 ± 1.27b 36.79 ± 12.66 10.95 ± 2.62b 13.44 ± 1.82b

TSH (mIU/L) 1.88 ± 0.79b 0.0076 ± 0.093 1.91 ± 4.35b 1.91 ± 1.08b

TRAb (IU/L) 0.51 ± 0.20b 16.46 ± 12.95a 11.97 ± 11.77ab 0.66 ± 0.26bc

WBC (×  109/L) 6.30 ± 1.34 6.17 ± 2.76 6.34 ± 1.69 6.76 ± 1.95

N% 59.30 ± 6.46b 52.63 ± 10.97 56.67 ± 8.98b 58.11 ± 11.99b

L% 32.42 ± 6.24 34.79 ± 9.23 33.89 ± 7.75 32.17 ± 8.39

M% 5.58 ± 1.38b 10.56 ± 6.6a 6.74 ± 1.92b 6.23 ± 1.73b

N (×  109/L) 3.74 ± 0.88 3.39 ± 1.81 3.86 ± 3.45b 4.07 ± 1.52b

L (×  109/L) 2.03 ± 0.52 2.10 ± 0.70 2.11 ± 0.63 2.11 ± 0.58

M (×  109/L) 0.36 ± 0.13 b 0.62 ± 0.28a 0.45 ± 0.41b 0.43 ± 0.15b

Table 2.  The correlation between monocytes and thyroid function parameter and antibody to thyrotropin 
receptor (TRAb) in Graves’ disease. Correlations were analyzed via Spearman’s correlation analysis. FT3 free 
triiodothyronine, FT4 free thyroxine, TSH thyroid stimulating hormone, TRAb thyrotropin receptor antibody.

Parameters

Percentage of monocytes Absolute count of monocytes

r P r P

FT3 0.372 P < 0.001 0.285 P < 0.001

FT4 0.342 P < 0.001 0.283 P < 0.001

TSH − 0.142 P < 0.001 − 0.143 P < 0.001

TRAb 0.338 P < 0.001 0.269 P < 0.001

Figure 1.  B cell activating factor (BAFF) expression in monocytes and serum and its correlation with TRAb. 
(a), BAFF mRNA expression in the monocytes of healthy controls (n = 10), patients with untreated GD (n = 24) 
and patients with negative TRAb GD in remission (n = 6) using real-time PCR; (b), ELISA assay for BAFF 
expression in the serum of healthy controls (n = 14), patients with untreated GD (n = 56) and GD patients in 
remission (n = 12); (c), correlation analysis of TRAb and serum BAFF levels in patients with untreated GD; 
**P < 0.001.
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(Fig. 2c), CD14++ CD16+ monocytes were expanded in patients with uGD (Fig. 2d) and decreased in patients 
with nGD (Fig. 2e). The frequency of CD14+ CD16+ monocytes showed no significant difference among the 
three groups (Fig. 2f). The frequency of CD14++ CD16+ monocytes was significantly elevated in patients with 
uGD, while the frequency of CD14++ CD16+ monocytes was significantly recovered in patients with nGD 
(Fig. 2g, P < 0.001). Also, the frequency of CD14++ CD16- monocytes was significantly decreased in patients 
with uGD (Fig. 2h, P < 0.001).

Considering the elevated level of BAFF in the serum of patients with uGD, we investigated the expression 
patterns of BAFF in monocytes subsets. BAFF was expressed on monocytes in all of the 3 subsets. Flow cytom-
etry showed that the MFI of BAFF on CD14++ CD16+ monocytes in uGD was significantly higher than that on 
CD14+ CD16+ monocytes and CD14++ CD16- monocytes (Fig. 2i, P < 0.05). Correlation analysis showed that 

Figure 2.  Characterization of the monocyte subsets in healthy controls and patients with Graves’ disease. 
(a,b) showed the gating strategy for monocytes, (c–e) representative dot plots of CD14 and CD16 expression 
on monocytes from healthy controls, untreated GD patients and GD patients in remission; (f) showed 
the percentages of CD14+ CD16+ monocytes (non-classical monocytes), (g) showed the percentages of 
CD14++ CD16+ monocytes (intermediate monocytes) and (h) showed the percentages of CD14++ CD16- 
monocytes (classical monocytes) from healthy control subjects (n = 10), untreated GD (n = 24) and negative 
TRAb GD in remission (n = 6), (i) showed the mean fluorescence intensity (MFI) of BAFF on different 
monocytes subsets; *P < 0.05, **P < 0.001.
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the frequency of CD14++ CD16+ monocytes was positively correlated with the TRAb level (Table 3; r = 0.845 
and P = 0.002).

Monocytes infiltrated into the thyroid tissues of patients with GD. To investigate the pres-
ence of monocytes in thyroid tissue in GD, thyroid tissue samples were stained for CD14 and CD16. CD14+ , 
CD16+ , and CD14+ CD16+ cells were rarely observed in normal thyroid tissue (Fig. 3a–d). CD14+ , CD16+ and 
CD14+ CD16+ cells were found in the thyroid tissues of patients with GD, particularly between the structures 
of the thyroid follicles (Fig. 3e–h). The numbers of CD14+ cells, CD16+ cells and CD14+ CD16+ cells per high 

Table 3.  Correlation between TRAb and percentage of monocyte subsets. Correlations were analyzed via 
Spearman’s correlation analysis.

Nonclassical monocytes Intermediate monocytes Classical monocytes

CD14+ CD16+ (%) CD14++ CD16+ (%) CD14++ CD16− (%)

r 0.562 0.845 − 0.687

P 0.091 0.002 0.500

Figure 3.  CD14 and CD16 expressing monocytes in the thyroid tissues of patients with Graves’ disease. 
Immunofluorescence staining was carried out using the samples of the normal thyroid tissues of patients with 
thyroid nodules (a–d) and patients with Graves’ disease (e–h). The scale was 100 μm. Cells that co-express 
CD14 (green) and CD16 (red) markers in a similar location were yellow in color. The frequency of CD14+ , 
CD16+ and CD14+ CD16+ cells were calculated per high power field (HPF, × 400) in multiple samples: NC 
(n = 3, 15 sections) and GD (n = 6, 30 sections) were shown in (i–k), respectively; **P < 0.001.
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power field (HPF) were higher in GD thyroid tissue than in normal thyroid tissue (Fig. 3i–k; for CD14+ cells, 
P < 0.001; for CD14+ CD16+ cells, P < 0.001). The number of CD16+ cells per HPF was higher in GD thyroid tis-
sue than normal thyroid tissue, although no statistical significance was found.

Discussion
The present study evaluated the pathological role of monocytes in GD patients in Chinese adults. Monocytes are 
important cells of the innate immune system and play specific roles in the control, development and escalation 
of the immunological processes by presenting antigens and secreting specific  cytokines6–8. Abnormal monocyte 
functioning may affect the development of inflammatory diseases. In our study, monocyte levels were signifi-
cantly elevated in the peripheral blood of untreated GD patients. The strong correlation between the levels of 
monocytes and TRAbs suggested the putative pathological roles for monocytes in the production of TRAbs.

Monocytes are a heterogeneous population with phenotypical and functional differences. Based on the expres-
sion of CD14 and CD16 observed by flow cytometry, monocytes can be divided into three different subsets: 
CD14++ CD16- (classical monocytes), CD14++ CD16+ (intermediate monocytes), and CD14+ CD16+ mono-
cytes (nonclassical monocytes)7–8. The expansion of intermediate monocytes has been observed in patients with 
autoimmune disease. Significantly elevated CD14+ CD16 ++ monocyte counts were found in patients with immu-
noglobulin A (IgA) nephropathy with normal renal function and blood cell  counts12. Studies have demonstrated 
that monocytes are closely related to the clinical response in some autoimmune diseases. In untreated patients 
with rheumatoid arthritis, the detection of CD14++ CD16+ monocytes could predict the clinical response to 
methotrexate  therapy13. Expanded monocytes might be a hallmark in relapsing–remitting multiple sclerosis 
and facilitate monitoring of the disease-modifying therapy  response14. In our study, CD14++ CD16+ monocytes 
were significantly expanded in the peripheral blood in uGD patients, while CD14++ CD16+ monocytes were 
barely found in the peripheral blood in HCs. More importantly, positive correlations were observed between 
CD14++ CD16+ monocytes and TRAb level or thyroid function parameters in our study.

Further studies have been validated in functional studies that the intermediate monocytes had relatively 
higher antigen-presenting activity and a relatively higher proangiogenic  capacity20. These monocytes are con-
sidered to be proinflammatory as they have an increased capacity to produce proinflammatory cytokines, such 
as TNF-α, IL-6, and IL-10 which were previously reported to be elevated in GD  patients1,3,6,21. Secreted by 
monocytes, BAFF is a potent regulator of B cell development and functions, participating in promoting B-cell 
proliferation and antibody  production22–24. In the present study, we found monocytes from patients with GD 
expressed a higher level of BAFF than those from HCs and that serum BAFF was positively correlated with TRAb 
levels. Although BAFF was expressed on monocytes in all 3 subsets, BAFF expression on CD14++ CD16+ mono-
cytes was significantly higher than that on monocytes in the other two subsets. The results were in line with the 
existing literature. Mario et al. reported elevated serum BAFF concentrations in nine patients with GD and 43 
patients with Graves’  ophthalmopathy25. Enhanced BAFF and BAFF-R expression in the infiltrating lymphocytes 
in GD thyroid tissue was also reported 26. It was proposed that new therapeutic approaches for GD patients 
should include B cell immunotherapy, such as administration of anti-CD20  antibody27. Animal evidence has 
shown that BAFF blockade reduces the occurrence of hyperthyroidism in murine models of  GD28. In the clinic, 
BAFF antagonists have been developed and administered to treat autoimmune diseases such as rheumatoid 
 arthritis29–32. Thus, our results indicated that monocytes may be involved in the production of TRAbs by secret-
ing BAFF and that BAFF may become a new interventional target for B cell immunotherapy target in patients 
with GD in the future.

One of the contributions of monocytes to the pathogenesis of autoimmune disease is modulation of the 
adaptive immune system. More importantly, monocytes can migrate into locally inflamed tissue. In local tissue, 
monocytes may differentiate into macrophages and DCs to amplify the local immune response and antigen 
presentation. GD is an antibody-mediated organ-specific autoimmune disease. The immune microenvironment 
within thyroid tissue is critical for the production of TRAb. In our study, the frequencies of CD14+ monocytes 
and CD14+ CD16+ monocytes were significantly higher in GD thyroid tissue than that in normal thyroid tissue. 
Infiltrating CD14+ monocytes and CD14+ CD16+ monocytes were found to be infiltrated particularly between 
the structures of the thyroid follicles. The infiltration of T/B lymphocytes was validated in previous study. Ham-
merstad et al. reported an increase in CD8 + T cells in thyroid tissue during the chronic stage of GD and the 
presence of plasmacytoid dendritic cells (pDCs) at the lesions in thyroid  tissue33. The presence of follicular helper 
T cells (Tfh cells) regulating the antibody production of B cells was also found in GD thyroid  tissue5. Mono-
cytes can activate CD4 + and CD8 + T cells via migration to the draining lymph nodes or stimulate effector and 
memory T cells directly at sites of  inflammation34. In patients with rheumatoid arthritis, monocytes differentiate 
into inflammatory DCs in the synovial fluid and promote a Th17-mediated immune response via the secretion 
of IL-1717. Thus, the immune response within local thyroid tissue will be stimulated, maintained and amplified 
in a microenvironment composed of infiltrating T cells, B cells and monocytes. Monocytes infiltrating in GD 
thyroid tissue might participate in the cross-talk of T lymphocytes and B lymphocytes, promoting antibody 
production in the thyroid microenvironment.

The strength of our study was that we analyzed the monocytes in the periphery of patients with GD at dif-
ferent stages of disease and treatment. Our study is the first to investigate the monocyte subsets and identify the 
presence of monocytes in GD thyroid tissue. In addition, our study established a putative role for monocytes 
in the pathogenesis of GD. The limitation was that sample size was small and we failed to isolate the monocytes 
from thyroid tissue in GD patients which could help us to further investigate the pathological of monocytes in 
thyroid tissue.
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Conclusions
Collectively, our results revealed that CD14++ CD16+ monocytes were significantly increased in patients with 
untreated GD and might participate in the production of TRAbs by secreting relatively higher levels of BAFF. 
The presence of monocytes was identified in the thyroid tissues of patients with GD, which might maintain and 
amplify inflammatory responses in situ. Our study provides insights regarding the pathogenic roles of monocytes 
in the production of TRAbs in GD.
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