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Abstract

Obesity is associated with significant comorbidities and financial costs. While behavioral

interventions produce clinically meaningful weight loss, weight loss maintenance is chal-

lenging. The objective was to improve understanding of the neural and psychological mech-

anisms modified by mindfulness that may predict clinical outcomes. Individuals who

intentionally recently lost weight were randomized to Mindfulness-Based Stress Reduction

(MBSR) or a control healthy living course. Anthropometric and psychological factors were

measured at baseline, 8 weeks and 6 months. Functional connectivity (FC) analysis was

performed at baseline and 8 weeks to examine FC changes between regions of interest

selected a priori, and independent components identified by independent component analy-

sis. The association of pre-post FC changes with 6-month weight and psychometric out-

comes was then analyzed. Significant group x time interaction was found for FC between

the amygdala and ventromedial prefrontal cortex, such that FC increased in the MBSR

group and decreased in controls. Non-significant changes in weight were observed at 6

months, where the mindfulness group maintained their weight while the controls showed a

weight increase of 3.4% in BMI. Change in FC at 8-weeks between ventromedial prefrontal

cortex and several ROIs was associated with change in depression symptoms but not

weight at 6 months. This pilot study provides preliminary evidence of neural mechanisms

that may be involved in MBSR’s impact on weight loss maintenance that may be useful for

designing future clinical trials and mechanistic studies.
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Introduction

As obesity rates in the United States continue to rise [1, 2], the number of obese adults is

expected to rise in the US by 2030 by an additional 65 million [3]. A risk factor for multiple

serious disorders, including cancer [4], cardiovascular disease [5], and metabolic syndrome

[6], obesity has established itself as one of the leading causes of morbidity and mortality both

in the US and across the globe [7, 8]. Furthermore, obesity is responsible for trillions of dollars

in economic losses annually through medical costs, disability, and lack of productivity [9].

Weight loss can be an effective method to combat these obesity-related comorbidities [3,

10, 11], and a variety of effective weight loss strategies exist [12]. Maintenance of weight loss,

however, remains more intervention-resistant [13, 14]. Obese individuals typically regain one-

third of the weight loss by the end of the first year following treatment [15, 16], and by 3–5

years they have frequently returned to baseline weight [17]. Thus, it is important to develop

treatment strategies that address factors associated with weight regain. Although findings are

mixed [18], there is compelling evidence from weight loss maintenance studies that psycholog-

ical factors, particularly stress and depression, are significant predictors [16, 19–21]. Failure to

adequately address the impact of these factors on weight regain may explain the low success

rates of existing interventions.

Mindfulness-based interventions have potential utility in weight loss and weight mainte-

nance [22, 23]. Mindfulness is defined as the awareness that arises from attending to one’s

own internal and external state in the present moment in a non-judgmental way [24]. Mind-

fulness meditation is a form of mental training focused on observing changing patterns of

internal and external experience and reducing reactivity to aversive experience [25, 26]

through enhanced self-regulation [27, 28]. The effectiveness of mindfulness-based interven-

tions, in particular MBSR, for reducing aversive symptoms such as depression and anxiety is

well-established [29]. Given that these symptoms increase the risk of unhealthy behaviors,

MBSR may support maintenance of weight loss following successful initiation of health behav-

ior change [22].

Although studies of interventions for weight loss that incorporate mindfulness training

have yielded mixed results, a recent systematic review and meta-analysis concluded that these

interventions demonstrate moderate effectiveness [30]. However, the majority of these inter-

ventions involve varying combinations of meditation practices with training in mindful eating

and elements of traditional weight management programs such as educational and/or behav-

ioral skills training for improving diet and physical activity [31–34]. The contribution of mind-

fulness to the outcomes of these studies is unclear, leaving unanswered the value of the

training in non-reactive, present-moment awareness for self-regulation [23].

An important first step in studying interventions such as mindfulness is understanding the

impact of the intervention on relevant neurobiological targets, and the relationship of this

impact to clinical outcomes [35]. This type of mechanism-focused research can advance the

study of behavioral interventions, and inform the design of clinical trials to test efficacy. For

example, neuroimaging, including functional magnetic resonance imaging (fMRI), has proven

useful in elucidating neurobiological mechanisms in neuropsychiatric disorders [36–39], and,

more importantly, the change in behavior and treatment response over the course of psycho-

therapy or other interventions [40–42]. Neuroimaging, including resting state (RS) fMRI, can

also predict real-word dietary behaviors [43, 44].

Neurobiological changes associated with mindfulness training have recently been identi-

fied, pointing to possible biological mechanisms that could inform future clinical studies of

effectiveness [45]. The best studied mindfulness intervention, Mindfulness-Based Stress

Reduction (MBSR), is associated with functional connectivity (FC) changes in attention,
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sensory awareness, emotional regulation and dysregulation, and top-down control via the

frontal lobe and the default mode network [46–49]. As such, fMRI could be an invaluable tool

in identifying the impact of MBSR on neural circuit-level targets, thereby tailoring mindful-

ness interventions for individual effectiveness, tracking treatment progress, and optimizing

overall outcomes at the population level.

Because fMRI allows for the observation of brain activation in real time via blood oxygen-

ation level dependent (BOLD) imaging, it provides the opportunity to analyze the FC of vari-

ous brain regions in an actively processing or RS brain [50]. This refers to the concept that

regions of the brain that are functionally interconnected will co-activate in synchrony or pre-

dictable cadence, and thus temporal analysis of fMRI data can be used to determine which

brain regions are functionally linked [51].

Furthermore, higher-level FC analysis can establish functionally linked brain networks, or

“independent components,” (ICs) of interconnected brain regions. This Independent Compo-

nent Analysis (ICA) is a data-driven multivariate analysis technique that uses all of a given

fMRI’s voxels in an image to simultaneously extract multiple ICs [52]. Given its empiric, data-

driven nature, ICA was the analysis method chosen in this study to extract specific function-

ally-derived networks of interest, where, in a standard approach similar to past studies [53] the

connectivity of selected brain regions of interest (ROIs) into these networks could then be

quantified.

We previously published our initial exploratory hypotheses and protocol for this random-

ized controlled trial (RCT) to investigate RS predictors of clinical outcomes following MBSR

in the context of weight loss maintenance [22] (ClinicalTrials.gov NCT02189187). Our pri-

mary aim was to characterize RS changes in response to MBSR and the comparison condition.

We hypothesized that MBSR would be associated with increased RS connectivity compared

with the control condition. Based on previous fMRI research on MBSR, we selected several key

brain regions of interest (ROIs) and ICs to focus our investigation [54–60] (Fig 1). Our second

aim was to investigate the association of RS change post-intervention with 6-month outcomes

for psychological and anthropometric factors. We hypothesized that increased RS connectivity

would be associated with improvement in depressive symptoms and inversely related to

decreases in weight and waist circumference. In the current study, we present findings for our

primary outcomes: 1) Change in RS fMRI signal following the 8-week MBSR intervention; 2)

The association of RS fMRI changes with changes in weight (BMI) and depression symptoms

at 6 months follow up. Exploratory analyses of other factors such as self-reported change in

mindfulness, meditation practice time, and other psychological symptoms and health behav-

iors will be presented in future reports.

Methods

Design and participant selection

The study was approved by the Institutional Review Board at the University of Massachusetts

Medical School. The study including primary hypotheses reported here was registered with

ClinicalTrials.gov (NCT02189187). The overall study design and flow of subject selection are

shown in Fig 2.

Inclusion criteria consisted of individuals who met the following: male or female, right or

left handed, ages 25–60, individuals who intentionally lost >5% body weight during the previ-

ous year, those intending to maintain weight loss, a BMI >25kg/m^2 in the past 2 years and

greater than 20.5kg/m^2 at time of study entry, those under the care of a primary care physi-

cian for at least the last year prior to screening, those able to communicate by telephone, those

who have a healthcare provider, personal trainer, or weight-loss counselor who can complete
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and sign a form indicating the amount and timing of their weight loss or have a dated photo-

graph or weight loss diary. Exclusion criteria included those weighing greater than 300lbs,

prior participation in an MBSR course, regular meditation practice (including yoga, Tai Chi,

contemplative prayer), evidence of psychiatric or cognitive medical disorder, evidence of alco-

hol or substance abuse, inability to safely undergo MRI, structural brain damage as determined

by an independent neuroradiologist, history of eating disorders, those currently on weight loss

medications or those who have had a weight loss surgery, participation in another weight-

related study, regain of>3% bodyweight in 2 months prior to study, childbirth within past 6

months, claustrophobia or other MRI contraindication, and pregnant or planning to become

pregnant. Briefly, recruitment was conducted in the County of Worcester, MA, which has a

population of approximately one million. We based study sample size on the primary outcome

for functional connectivity change. The estimation indicated that 40 participants in each

group were needed for 80% power.

Recruitment involved advertising (internet, flyers and social media), search queries through

the UMass Memorial Medical Center electronic medical record and word of mouth. Potential

Fig 1. Selected ROIs (a) and independent components (b) a. ROIs. Shown in each color: green (in image ii)—medial

OFC, blue (in image i and ii)—dorsal ACC, yellow (in image i)—amygdala, green (in image iii)—anterior insula. b.

Independent components of interest as isolated as discrete ICs from MELODIC ICA. i: anterior DMN, ii: posterior

DMN, iii: salience network, iv: dorsal DMN, v: vmPFC, vi: basal ganglia.

https://doi.org/10.1371/journal.pone.0244847.g001
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subjects were directed to a web-based screening survey for initial eligibility screening and, if

eligible, more detailed phone-based screening was scheduled. Patients of the UMass Memorial

Medical Center authorized a Health Insurance Portability and Accountability Act (HIPAA)

waiver.

472 subject were initially recruited to the study. A total of 253 individuals completed online

screening for eligibility. 50 lost interest and did not complete the phone screen. Additional

exclusions included: 115 individuals that did not meet the minimum 5% weight loss in the past

year; 3 that were currently enrolled in a weight loss study, 8 that had a past weight loss surgery,

Fig 2. Study flow diagram. Left half of the figure shows the study phases, while the right half shows the flow of patients and numbers in each group at each of the

corresponding study phase. This design is based upon our previously described model [22].

https://doi.org/10.1371/journal.pone.0244847.g002
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2 MRI exclusion, 7 who engaged in current meditation or yoga practice, 11 who had partici-

pated in an MBSR class previously, and 8 that had diabetes. Forty-two of those screened and

found eligible declined to participate when told of the time commitment required for the

8-week classes, and 18 individuals could not be scheduled. Ninety-one participants passed all

exclusion criteria and were invited to attend the initial visit. Of these, 59 attended the baseline

visit and 57 were randomized.

Of the 57 subjects randomized, 5 were either unable to complete initial MRI, or dropped

out during the 8-week intervention. 52 returned for the 8-week follow-up visit, and all 52 com-

pleted the 6-month follow-up visit (91% retention). 83% of participants completed 5 or more

sessions, and 73% completed 6 or more.

Randomization

Study participants, who were blind to the hypotheses, were randomized to either the MBSR or

the healthy living course (HLC) based on a permuted blocks randomization scheme [22]. Sam-

ple sizes consisted of 29 in the MBSR group and 28 in the HLC group. Randomization and

investigators blinding was implemented using sealed envelopes and unique identification

numbers by the study coordinator. In addition to the participants who were aware of which

intervention they were receiving but not the study hypotheses, only the study coordinator

among the research team was non-blinded to participant assignment until the study conclu-

sion. MBSR teachers at the Center for Mindfulness were not aware of who in their classes were

study participants. HLC teachers were aware that classes were being offered as part of the

research study, but were blinded to study hypotheses.

Interested subjects initially presented to the study site (visit 1) for initial informed consent

for that visit, randomization, screening, and administration of a Structured Clinical Interview

for the Diagnostic Statistical Manual IV (SCID-IV) interview. At visit 2, after written informed

consent was obtained, subjects completed self-report psychological and behavioral measures,

and anthropometric measures were obtained (see Fig 2), followed by a fMRI scan. Within 2

weeks of baseline data collection, participants started their assigned intervention (MBSR or

HLC courses). Class attendance was recorded for participants in both conditions, and partici-

pants in the MBSR condition reported practice time. A second assessment was conducted

within 2 weeks of completion of the interventions and included anthropometric and self-

report measures and fMRI imaging. A third assessment was conducted 6 months after visit 2

and included self-reported and anthropometric measures only.

Experimental vs control interventions

As described elsewhere [22], the study included an experimental (MBSR) and an HLC control

condition [61] (Pbert et al., 2012), matched on course format (small group), length (8 weeks),

number of sessions (eight 1.5 hour sessions plus a day-long retreat), small-group format, and

process (didactic teaching and group discussion). The MSBR course was taught by certified

teachers from the UMass Center for Mindfulness in eight weekly classes and one all-day

retreat, with homework including formal meditation practices and informal practices during

daily life. HLC classes were taught by trained health educators using a structured curriculum.

HLC classes were audio recorded, and 10% of classes were reviewed for quality and fidelity to

the curriculum.

Assessments

Anthropometric and psychological measures (Fig 2) were administered at baseline, first follow

up (within 2 weeks post-intervention) and second follow up (6 months following the first
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follow up). These measures are listed in Fig 2 and in the protocol paper. In addition, fMRIs

were conducted at baseline and at the first follow up assessment. All MRI data were acquired

on a GE 3 Tesla scanner with a 12-channel coil. High resolution structural images were

acquired using a using a magnetization-prepared rapid acquisition with gradient echo

(MPRAGE) pulse sequence with the following parameters: TR/TE¼ 2.1 s/2.25 ms, slices¼ 128,

matrix¼ 256 256, flip angle¼ 12, resolution¼ 1.0 1.0 1.33 mm. Gradient echo echo-planar

images sensitive to BOLD contrast were acquired using the following parameters: TR/ TE¼
2.0 s/30 ms, flip angle¼ 90, slices¼ 34, voxel size¼ 3.5mm isotropic. During the 6:04 minute

RS fMRI scan participants were asked to remain awake with their eyes open FMRI and was

carried out as described in our previous manuscript [22] (Fulwiler et al., 2016). We used region

of interest-based analysis to observe FC differences over time between regions and ICs of inter-

est (see results section for further discussion).

Data pre-processing

Prior to statistical analyses, preprocessing was performed on raw functional images using the

FMRIB (functional MRI of the brain) Software Library [62–64] (FSL) release 5.3 including:

motion correction, slice-timing correction, non-brain removal and spatial smoothing

(FWHM 5mm Gaussian kernel). ICA AROMA, an independent component analysis-based

denoising tool, was then used to remove motion-related components and other components

of no interest (e.g., respiration and artifacts) from the fMRI data [65]. No subjects were

removed from the analysis due to excessive motion in the scanner. Denoised data were then

temporally filtered using a Gaussian-weighted least-squares straight line fit with a highpass

cutoff = 150 s. fMRI data were registered to MNI152 standard space is done in two steps. First,

the fMRI data were aligned to the high-resolution structural image using 6 degree-of-freedom

(DOF) affine transformation. Second, the structural scan was aligned with MNI152 standard

brain using non-linear registration. Finally, transformation of the functional results into MNI

space was done following concatenation of the two alignments into a single matrix. All spa-

tially normalized fMRI data were re-sampled to 2mm3 resolution.

Statistical modeling

Independent component analysis. FSL MELODIC [Multivariate Exploratory Linear

Decomposition into ICs [62]] was used to perform an ICA of the fMRI data from all subjects

and sessions (pre- and post-intervention). Pre-processed functional data was masked with

MNI152 brain image to ensure exclusion of non-brain data, before inputting them into

MELODIC. MELODIC decomposes the spatially normalized fMRI data from all subjects (e.g.

concatenated into a single data matrix) into a set of ICs, with each IC being a distributed set of

brain regions with a temporal trace that describes the evolution of that particular spatial pat-

tern over time. The number of spatio-temporal patterns estimated by the group ICA was

selected as the model order that gave resting state networks with the highest spatial cross corre-

lation with the network spatial maps reported by Smith et al. (2009) [66] which are available at

https://www.fmrib.ox.ac.uk/datasets/brainmap+rsns/. The FMRIB Analysis Group at Oxford

suggests that approximately 30 ICs is the “optimal” number to avoid overfitting and underfit-

ting thus, 30 ICs were used in the analysis [63].

Dual regression. For group ICA, each IC is comprised of a spatial map and a correspond-

ing time course and represents a spatio-temporal pattern of activity that is common to the

entire set of participants. To estimate the spatial patterns and timecourses for each subject

(which capture the between-subject variability), dual regression [67] (Nickerson et al., 2017)

was applied as follows. Before conducting dual regression, the melodic maps were thresholded
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to ± Z score of 2.3 (cluster significance P < .05). Each IC was then normalized to maximum

value 1 by dividing each component by its maximum Z score to account for differences in the

scale of the spatial maps. In the first stage of dual regression, the group ICA maps were

regressed onto each subject’s fMRI data to identify the timecourses of each network within

each participant. In the second stage of the dual regression, these timecourses are normalized

to unit variance and are then regressed against the participant’s fMRI data to estimate the

unique set of network maps in each participant.

Group analysis. As our objective to investigate the connectivity changes of a priori ROIs

(medial OFC, dorsal ACC, amygdala, anterior insula) with a priori networks (anterior DMN,

posterior DMN, salience network, dorsal DMN, vmPFC and basal ganglia) with intervention,

we extracted connectivity values (average regression weights) of each ROI from the subject-

specific spatial maps output from the second stage of dual regression for each subject. A group

x time x hemisphere repeated measures ANOVA was then carried out for each of the ROI-IC

pairs. All analyses were performed in SPSS v24.

Results

Baseline group comparisons

Table 1 describes baseline characteristics of participants in the MBSR and the HLC study con-

ditions. No significant differences were found in baseline demographic, anthropometric, psy-

chological or behavioral measures (Table 1).

Change in resting state connectivity following the 8-week interventions

The connectivity between each of the 4 ROIs and each of the five ICs of interest (namely the

estimated marginal means values) were analyzed individually for a group x time interaction

using repeated measures ANOVA. A third category of hemisphere was added to the interac-

tion to assess lateralization. A group x time interaction was found between the amygdala and

vmPFC (Fig 3) (p = 0.046), with no interaction with hemisphere (p> 0.6), showing that FC

Table 1. Sample characteristics of the 57 included study participants.

MBSR Group HLC Group

Demographic Characteristics N 29 28

Age 44.5 SD = 9.70 44.5 SD = 10.65

Sex (% Female) 76% SD = .43 87% SD = .34

Race (% White) 79% 87%

Mean years of education 17.2 SD = 2.23 17.0 SD = 2.32

Handedness (% Right-handed) 90% SD = .30 70% SD = .47

Baseline Questionnaire Characteristics
CESD 5.79 SD = 3.85 7.93 SD = 5.45

PSS-14 16.52 SD = 3.48 20.14 SD = 3.24

Internal disinhibition subscale of the Eating Inventory 2.48 SD = 1.83 3.15 SD = 2.10

Baseline Anthropometric Characteristics
Weight (lbs) 177.1 SD = 36.39 178.8 SD = 39.29

Waist Circumference (cm) 93.1 SD = 11.22 93.1 SD = 11.95

BMI 28.4 SD = 4.50 29.4 SD = 5.90

Abbreviations: MBSR: Mindfulness-Based Stress Reduction, HLC: healthy living course, CESD: Center for

Epidemiologic Studies Depression scale, PSS-14: Perceived Stress Scale 14, BMI: body-mass index.

https://doi.org/10.1371/journal.pone.0244847.t001
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was strengthened in the MBSR and reduced in the HLC control group over the 8-week course.

No significant main effect of group or hemi x group was observed. Post-hoc analyses revealed

that this interaction was driven by a significant group difference at 8 weeks (p = 0.010) rather

than the non-significant baseline differences (p>0.6). No other significant group x time inter-

action was found for any other ROI x component of interest, with or without an effect of

hemisphere.

Association of connectivity and 6-month anthropometric and

psychometric outcomes

There were no statistically significant changes in the measured anthropometric metrics

(weight, BMI, waist circumference) and psychological variables (depression, stress, internal

disinhibition) from baseline to 6-month follow up. However, post-hoc analysis revealed that

the mean weight of MBSR participants remained about the same (losing 0.7 lbs, or 0.4% of

body weight and 0.1kg/m2, or 0.5% of BMI, and 3.2cm, or 3.5% of total waist circumference),

while increasing in the HLC group (gaining 5.9 lbs or 3.2%, BMI by 1.0kg/m2 or 3.4%, and

waist circumference by 1.2cm or 1.2%). No statistically significant differences between the

groups were observed in psychological or eating measures.

Our second primary aim was to investigate the association of FC change with changes in

psychological and anthropometric outcomes [22]. A paired t-test of the association between

Fig 3. Change over time in functional connectivity between the amygdala and the ventromedial prefrontal cortex, in the left (blue lines), right (red lines) and combined

(purple lines) hemispheres (hemi) of both the Healthy Living Course (HLC) group (dashed lines) and Mindfulness-Based Stress Reduction course (MBSR) group (solid

lines). Higher estimated marginal mean values denote higher functional connectivity.

https://doi.org/10.1371/journal.pone.0244847.g003
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connectivity change at 8 weeks and weight and depression at 6 months did not reveal between-

group differences. However, using a single all-subject analysis combining both groups and

standard linear regression, a significant correlation was found for decrease in FC at 8-weeks

(between vmPFC and a cluster of structural regions that contained the precuneus, inferior

frontal gyrus, and parietal operculum), and increased CESD score change (in either direction)

at 6 months (p = 0.02). Other significant correlations were found between increased 8-week

FC change in basal ganglia and the cluster consisting of hippocampus, nucleus accumbens,

and OFC and increased 6-month CESD change (p = 0.032); and increased 8-week FC change

in the salience network and occipital and inferior temporal gyrus and increased CESD change

(p = 0.02). Conversely, lower connectivity between ventromedial prefrontal cortex and the

cluster containing precuneus, inferior frontal gyrus, and parietal operculum was associated

with increased CESD score change (p = 0.02). No associations were found between FC changes

and 6-month anthropometric changes.

Discussion

The goal of the present study was to identify neural processes modified by MBSR that may be

associated with weight loss maintenance and related emotional symptoms. We also examined

changes in RS following MBSR vs. a rigorous control condition and, in an exploratory analysis,

examined the association of these changes with depression symptoms and weight stability at

6-month follow-up. We confirmed our hypothesis that change in functional connectivity

would be greater in the MBSR group compared to the comparison group. Specifically, this sig-

nificant effect for FC changes was for amygdala-vmPFC connectivity, in agreement with previ-

ous studies. Secondly, our exploratory analysis of the association between FC change at 8

weeks and clinical outcomes found that FC change is associated with change in depression

symptoms at 6-month follow-up.

Neural targets of mindfulness and relevance to weight loss studies

Our findings are consistent with studies in other populations which show that mindfulness

training leads to changes in medial prefrontal-amygdala connectivity critically implicated in

the regulation of emotion. In one study, a mindfulness strategy for regulating emotional

response was associated with regulation of amygdala activation by medial prefrontal cortex, in

contrast to emotion suppression involved connectivity with dorsolateral prefrontal cortex [68].

In other studies, MBSR training led to decreased amygdala reactivity accompanied by

increased amygdala-vmPFC functional coupling [69] and improvement in anxiety symptoms

that were correlated with increased amygdala-vmPFC coupling [70]. Considering these reports

of increased functional coupling, our finding of increased RS connectivity following MBSR

strengthens the evidence for the importance and specificity of the amygdala-vmPFC connec-

tion as a marker of MBSR treatment progress, efficacy, and outcomes.

The impact of mindfulness on these pathways may be particularly relevant to understand-

ing how mindfulness-based interventions may be helpful for sustaining the behavioral changes

required for weight loss maintenance, especially in light of evidence that stress and negative

emotion disrupt the neural network supporting response inhibition [71]. Training to improve

attentional focus through mindfulness meditation includes attending to thoughts and emo-

tions while avoiding habitual reactivity to them. In addition to its role in emotion generation,

the amygdala plays an important role in the salience network, placing it at the intersection of

goal-directed behavior, “wanting”, and emotional triggers of habitual responses. The vmPFC

has been implicated in self-control and reward processing through extensive connections with

the amygdala and other subcortical structures [55, 72, 73]. Mindfulness training has been
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shown to modulate value signals in the vmPFC and reduce activation in response to reward

[74, 75]. The concept that mindfulness strengthens top-down executive control is not novel,

and has been extensively discussed in the literature [70, 76–79]. However, to our knowledge

this is the first report of connectivity change following mindfulness training among individuals

who have recently achieved weight loss. Top-down executive control of subcortical structures

including the amygdala and striatum by PFC subserves goal-directed behavior and is disrupted

by stress or negative emotion, allowing the salience network to drive behavior, promoting

habitual emotional responses [80]. Mindfulness meditation is believed to enhance emotion

regulation at least in part through its effect on executive control to maintain guidance of

behavior in line with personal goals over impulsive reactions to unpleasant emotions [79].

For vulnerable individuals, the habitual response to negative or stressful emotions may be

eating palatable food which provides immediate, albeit short-term, relief [81]. Recent evidence

provides support for the amygdala and PFC as key links between emotion dysregulation and

eating behavior [58, 60, 82]. Amygdala activity increases in response to images of high-calorie

foods compared to non-food images [57], in line with its role in the reward pathway. Further-

more, activation of both the amygdala and the vmPFC is increased after the consumption

high-fat versus lean foods [83]. The PFC is implicated in self-control, and decreased activity of

the medial PFC predicts weight gain in obese individuals [84]. Thus, for an experimental medi-

cine approach to refining mindfulness interventions for emotion regulation and behavior

change research [35], neuroimaging markers such as connectivity between amygdala and

medial PFC may prove useful for optimizing the intervention and identifying subpopulations

most likely to respond (see Gabrieli et al. [85])for a review of the neuromarker approach). As

obesity is the cumulative result of a range of specific eating behavior traits [86], understanding

neural targets specific to different subgroups will be essential. For example, we have reported

preliminary evidence that MBSR leads to reduced emotional eating especially for those with

high emotional eating scores at baseline [87]. There may be specific neural targets for emo-

tional eaters vs. other subtypes of overeaters.

Association of connectivity changes with clinical outcomes

Our second primary aim was to examine whether pre-post change in FC would predict

6-month change in weight and depression symptoms. A correlation with weight was not

found. On the other hand, we report for the first time that FC change is associated with change

in depression symptoms at 6-month follow-up. This finding was not specific to MBSR as our

sample size was too small to detect differences between groups. Given this sample size issue,

despite non-significant changes over time in our collected anthropometric and psychologic

measures, this lack of statistical significance does not necessarily preclude real group differ-

ences in these anthropometric and psychologic measures. The finding included several ROI’s

but did not include amygdala-vmPFC connectivity.

Depression symptoms were chosen as a clinical measure because they have been linked to

unsuccessful weight loss and weight loss maintenance outcomes, although findings have been

mixed [19, 88–90], and are a marker of the effect of MBSR on emotion regulation. However,

our recent systematic review of emotion regulation measures in mindfulness studies found

that the CESD was not as reliable as measure of depression symptoms compared to clinician-

rated scales (Kimmel, et al.; manuscript in preparation).

That amygdala-vmPFC connectivity change was not associated with either depression

symptoms or weight metrics at 6 months indicates that this marker may not have utility for

mindfulness interventions in the general weight loss population. However, future studies may

examine its association with clinical outcomes in specific subpopulations. In contrast, vmPFC
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connectivity with other areas such as a cluster that included the IFG was correlated with

depression symptoms. The IFG plays a critical role in attentional control and various forms of

response inhibition, including emotional inhibition [91], and disruption of IFG FC by negative

emotion is believed to be responsible for the adverse effect of negative emotion on response

inhibition [71]. Further work is warranted on the roles of both amygdala and vmPFC connec-

tivity in behavioral mechanisms of weight loss.

Study strengths and limitations

This study had a number of strengths. The two groups were well-matched in terms of baseline

demographic, psychometric and anthropometric characteristics, with no statistically signifi-

cant baseline differences. The comparison condition was well-matched to the experimental

condition on course length, style, and number of sessions, employing both a small-group for-

mat that included didactics and group discussion. In addition, we employed a 6-month follow-

up for testing the effect of interventions on clinical outcomes.

A significant limitation is that recruitment goals were not achieved resulting in the trial

being underpowered. Our primary outcomes were powered on a sample size of 80 participants,

but only 52 participants completed the study. Thus, while the sample size allowed us to detect

a significant group difference in functional connectivity change in pre-selected regions of

interest in the MBSR group as predicted, between group changes in clinical outcomes were not

significant and we were unable to confirm the hypothesis that functional connectivity changes

would predict clinical outcomes in the MBSR group. This limitation is not uncommon in trials

involving mindfulness-based interventions, in part because the intervention demands a large

investment by participants. After expressing initial enthusiasm for the study, many potential

recruits declined to participate because of the time requirement for the interventions.

Another limitation of the study is the largely white and female demographics of the sample,

especially in light of evidence that race, sex, and socioeconomic status may strongly affect

weight loss outcomes [92–94]. In addition, although baseline differences between groups were

not significant, the magnitude of differences in some variables may have been important and

should be adjusted for in future studies with a larger sample. Our initial hypotheses were

exploratory, so FC between several regions of interest and independent components were

tested. Thus, a limitation of this study is the use of multiple testing which may inflate false pos-

itives. Furthermore, this study did not address the continued longitudinal follow-up of FC

throughout weight loss maintenance, and whether long-term success in weight loss mainte-

nance is correlated to connectivity markers. In addition, the study did not establish a quantita-

tive approach to using FC as a biomarker. A more in-depth approach correlating clinical

measures to FC would be needed to establish amygdala-PFC connectivity as a measure with

clinical utility. Finally, without data on participants’ practice of mindfulness between sessions,

we do not know the actual “dose” of mindfulness received.

Conclusions

The present study provides evidence that mindfulness training in people who have lost weight

and intend to keep it off leads to increased RS FC in a neural circuit involved in emotion regu-

lation. These findings are consistent with previous research suggesting that short-term training

in mindfulness meditation alters the neural circuitry of emotion regulation, specifically con-

nectivity between the amygdala and vmPFC. While connectivity change in this circuit was not

associated with later clinical outcomes, preliminary evidence suggests an association between

other vmPFC connectivity changes and depression symptoms which may be relevant to weight

loss maintenance.

PLOS ONE Mindfulness in weight loss changes brain functional connectivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0244847 January 11, 2021 12 / 18

https://doi.org/10.1371/journal.pone.0244847


Supporting information

S1 Checklist. CONSORT 2010 checklist of information to include when reporting a rando-

mised trial�.

(DOC)

S1 Fig. CONSORT 2010 flow diagram.

(DOC)

S1 File.

(DOCX)

Acknowledgments

The authors thank Drs. Shaokuan Zheng, Wei Huang, Guillaume Poirier, and Poornima

Kumar for technical assistance; Dr. Asimina Lazaridou, Marcela Hayes, Emily Levoy, Julia Sie-

gel, Garen Koutoujian, Mark Fusunyan, Dr. Gertrude Manchester, and Dr. Nivedita Gour for

their helpful contributions to the study. We thank Drs. Lori Pbert and Sarah Reiff-Hekking,

developers of the Health Living Course, for sharing their expertise with the intervention. We

thank the Conquering Disease Program for help with recruiting. We also extend our sincere

gratitude to the staff and teachers of the Center for Mindfulness for their assistance. The proj-

ect was conducted at the UMMS Advanced MR Imaging Center.

Author Contributions

Conceptualization: Milagros C. Rosal, Jeroan J. Allison, Sharina J. Person, Douglas Ziedonis,

Nanyin Zhang, Jean A. King, Carl Fulwiler.

Data curation: Serhiy Y. Chumachenko, Ryan J. Cali, Jeroan J. Allison, Carl Fulwiler.

Formal analysis: Serhiy Y. Chumachenko, Ryan J. Cali, Jeroan J. Allison, Benjamin C.

Nephew, Nanyin Zhang, Carl Fulwiler.

Funding acquisition: Jean A. King, Carl Fulwiler.

Investigation: Milagros C. Rosal, Sharina J. Person, Douglas Ziedonis, Constance M. Moore,

Nanyin Zhang, Jean A. King, Carl Fulwiler.

Methodology: Milagros C. Rosal, Nanyin Zhang, Jean A. King, Carl Fulwiler.

Project administration: Milagros C. Rosal, Jean A. King, Carl Fulwiler.

Resources: Serhiy Y. Chumachenko, Milagros C. Rosal, Douglas Ziedonis, Nanyin Zhang,

Jean A. King, Carl Fulwiler.

Software: Serhiy Y. Chumachenko.

Supervision: Benjamin C. Nephew, Jean A. King, Carl Fulwiler.

Visualization: Benjamin C. Nephew, Carl Fulwiler.

Writing – original draft: Serhiy Y. Chumachenko, Sharina J. Person, Benjamin C. Nephew,

Carl Fulwiler.

Writing – review & editing: Serhiy Y. Chumachenko, Ryan J. Cali, Jeroan J. Allison, Sharina J.

Person, Douglas Ziedonis, Benjamin C. Nephew, Carl Fulwiler.

PLOS ONE Mindfulness in weight loss changes brain functional connectivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0244847 January 11, 2021 13 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244847.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244847.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0244847.s003
https://doi.org/10.1371/journal.pone.0244847


References
1. Flegal K.M., et al., Trends in Obesity Among Adults in the United States, 2005 to 2014. Jama, 2016.

315(21): p. 2284–91. https://doi.org/10.1001/jama.2016.6458 PMID: 27272580

2. Hales C.M., et al., Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex

and Age, 2007–2008 to 2015–2016. JAMA, 2018. 319(16): p. 1723–1725. https://doi.org/10.1001/

jama.2018.3060 PMID: 29570750

3. Wang Y.C., et al., Health and economic burden of the projected obesity trends in the USA and the UK.

Lancet, 2011. 378(9793): p. 815–25. https://doi.org/10.1016/S0140-6736(11)60814-3 PMID:

21872750

4. Renehan A.G., et al., Body-mass index and incidence of cancer: a systematic review and meta-analysis

of prospective observational studies. Lancet, 2008. 371(9612): p. 569–78. https://doi.org/10.1016/

S0140-6736(08)60269-X PMID: 18280327

5. Poirier P., et al., Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight

loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Dis-

ease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circu-

lation, 2006. 113(6): p. 898–918. https://doi.org/10.1161/CIRCULATIONAHA.106.171016 PMID:

16380542

6. Dandona P., et al., Metabolic syndrome: a comprehensive perspective based on interactions between

obesity, diabetes, and inflammation. Circulation, 2005. 111(11): p. 1448–54. https://doi.org/10.1161/

01.CIR.0000158483.13093.9D PMID: 15781756

7. Danaei G., et al., The preventable causes of death in the United States: comparative risk assessment of

dietary, lifestyle, and metabolic risk factors. PLoS Med, 2009. 6(4): p. e1000058. https://doi.org/10.

1371/journal.pmed.1000058 PMID: 19399161

8. Cohen A.J., et al., Estimates and 25-year trends of the global burden of disease attributable to ambient

air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 2017.

389(10082): p. 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6 PMID: 28408086

9. Tremmel M., et al., Economic Burden of Obesity: A Systematic Literature Review. Int J Environ Res

Public Health, 2017. 14(4). https://doi.org/10.3390/ijerph14040435 PMID: 28422077

10. Knowler W.C., et al., Reduction in the incidence of type 2 diabetes with lifestyle intervention or metfor-

min. The New England journal of medicine, 2002. 346(6): p. 393–403. https://doi.org/10.1056/

NEJMoa012512 PMID: 11832527

11. Lavie C.J., Milani R.V., and Ventura H.O., Obesity and cardiovascular disease: risk factor, paradox, and

impact of weight loss. J Am Coll Cardiol, 2009. 53(21): p. 1925–32. https://doi.org/10.1016/j.jacc.2008.

12.068 PMID: 19460605

12. Kushner R.F., Weight loss strategies for treatment of obesity. Prog Cardiovasc Dis, 2014. 56(4): p.

465–72. https://doi.org/10.1016/j.pcad.2013.09.005 PMID: 24438739

13. Merrill R.M., et al., Can newly acquired healthy behaviors persist? An analysis of health behavior decay.

Preventing chronic disease, 2008. 5(1): p. A13–A13. PMID: 18082002

14. Ory M.G., et al., The science of sustaining health behavior change: the health maintenance consortium.

Am J Health Behav, 2010. 34(6): p. 647–59. https://doi.org/10.5993/ajhb.34.6.2 PMID: 20604691

15. Wadden T.A., Butryn M.L., and Wilson C., Lifestyle modification for the management of obesity. Gastro-

enterology, 2007. 132(6): p. 2226–38. https://doi.org/10.1053/j.gastro.2007.03.051 PMID: 17498514

16. Wing R.R., et al., Maintaining large weight losses: the role of behavioral and psychological factors. Jour-

nal of consulting and clinical psychology, 2008. 76(6): p. 1015–1021. https://doi.org/10.1037/a0014159

PMID: 19045969

17. Franz M.J., et al., Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical

trials with a minimum 1-year follow-up. J Am Diet Assoc, 2007. 107(10): p. 1755–67. https://doi.org/10.

1016/j.jada.2007.07.017 PMID: 17904936
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