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Abstract

Callous-unemotional behavior (CU) is currently under consideration as a subtyping index for conduct disorder diagnosis.
Twin studies routinely estimate the heritability of CU as greater than 50%. It is now possible to estimate genetic influence
using DNA alone from samples of unrelated individuals, not relying on the assumptions of the twin method. Here we use
this new DNA method (implemented in a software package called Genome-wide Complex Trait Analysis, GCTA) for the first
time to estimate genetic influence on CU. We also report the first genome-wide association (GWA) study of CU as a
quantitative trait. We compare these DNA results to those from twin analyses using the same measure and the same
community sample of 2,930 children rated by their teachers at ages 7, 9 and 12. GCTA estimates of heritability were near
zero, even though twin analysis of CU in this sample confirmed the high heritability of CU reported in the literature, and
even though GCTA estimates of heritability were substantial for cognitive and anthropological traits in this sample. No
significant associations were found in GWA analysis, which, like GCTA, only detects additive effects of common DNA
variants. The phrase ‘missing heritability’ was coined to refer to the gap between variance associated with DNA variants
identified in GWA studies versus twin study heritability. However, GCTA heritability, not twin study heritability, is the ceiling
for GWA studies because both GCTA and GWA are limited to the overall additive effects of common DNA variants, whereas
twin studies are not. This GCTA ceiling is very low for CU in our study, despite its high twin study heritability estimate. The
gap between GCTA and twin study heritabilities will make it challenging to identify genes responsible for the heritability of
CU.
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Introduction

Callous-unemotional behavior (CU) – defined by low levels of

empathy, absence of guilt and emotional unresponsiveness – is

currently under consideration as a subtyping index for conduct

disorder in DSM-V [1] and may have independent diagnostic

value, even in the absence of a conduct disorder diagnosis

[2][3][4][5]. CU often occurs in the presence of conduct problems

(see e.g. [6][7]) and predicts vulnerability to psychopathy in

adulthood [8]. Several longitudinal studies of large community

samples now suggest that CU can also occur in the absence of

clinical levels of conduct problems (e.g. [2][3][5][7]). In the cases

where current levels of conduct problems do not reach clinical

levels in children with CU, sub-clinical levels of or later developing

conduct problems are typically observed [2][3][5]. In addition,

and perhaps more interestingly, individuals with CU and non-

clinical levels of conduct problems commonly show elevated levels

of other types of impairment, including poor peer relationships,

low pro-sociality, and increased hyperactivity [2][3][5][7]. CU

therefore has the potential to serve as a useful clinical indicator for

psychiatric vulnerability and psychosocial maladjustment, in

addition to its utility in subtyping children with conduct disorder.

Individual differences in CU are estimated to be moderately to

strongly heritable using the twin design that compares resem-

blance in monozygotic (MZ) twins and dizygotic (DZ) twins in

community samples of children and adolescents (heritability

estimates from .45–.67; see [9] for a recent review). Having

elevated levels of CU is strongly heritable in childhood regardless

of whether CU traits are accompanied by conduct problems or not

[10]. Twin studies suggest that there is considerable overlap in the

genes that influence CU and conduct/externalizing problems, but

that there are also unique genetic influences on CU [11][12][13];

consistent with the finding that high levels of CU have been

observed in the absence of clinical levels of conduct problems [3].

CU is moderately to strongly stable during childhood [14] and
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twin studies suggest that stability in CU/psychopathic behavior is

driven by genetic influences [15][16]. This finding of genetic

stability led us to conduct a new twin analysis focused on a

composite measure of CU across ages 7, 9 and 12 in an attempt to

create a genetically enriched measure of CU.

The high heritability of CU has led to the first attempts to

identify some of the genes responsible for its heritability. Only a

handful of published candidate gene association studies to date

have focused on CU in children or adolescents

[17][18][19][20][21][22][23][24][25]. However, the sample sizes

have been smaller than 200, fewer than half a dozen candidate

genes have been investigated, and the results of these studies have

been mixed and contradictory. Even adequately powered candi-

date gene studies have a poor record for replication [26][27]. The

poor track record for candidate gene studies has been one reason

why the field has moved towards systematic genome-wide

association (GWA) studies [28]. GWA studies were made possible

by the development of commercially available DNA arrays that

can genotype hundreds of thousands of single-nucleotide poly-

morphisms (SNPs) inexpensively [29]. The SNPs on DNA arrays

are distributed across the 23 pairs of chromosomes in order to tag

all common DNA sequence variation in the genome. Each SNP is

correlated with the target trait as in a candidate gene study but

GWA systematically scans the entire genome for associations and,

crucially, corrects significance levels for multiple testing so that the

accepted level of significance for GWA studies is p,.00000005.

Genome-wide association (GWA) studies for psychiatric pheno-

types have shown that genome-wide ‘‘hits’’ are often in genes that

were not previously hypothesized to influence the phenotype or

not in traditional genes at all [28][29][30]. To our knowledge,

only one GWA study incorporating CU has been published to date

[31], which was from our group and focused on children with a

combination of high CU and conduct problems, using allele

frequencies estimated from DNA pooled across children in the

high group and a control group rather than genotyping each child

individually. Although our DNA pooling GWA study of the

extremes had power to detect genes of large effect size, none of our

associations reached genome-wide significance. The present report

is the first standard genomewide association (GWA) study of

individual differences in CU assessed as a quantitative trait – our

previous GWA study investigated the extremes of co-occurring

CU and conduct problems using DNA pooling.

After more than a thousand published GWA studies across the

life sciences [32], we now know that the largest effect sizes for

GWA associations are likely to be very small, accounting for less

than 1% of the variance of quantitative traits [33]. Although it is

nonetheless useful to exclude the possibility of large effect sizes –

which were found for example in the first GWA studies on

macular degeneration [34] – it now seems unlikely that our GWA

sample of about 3000 children would have the power to identify

genome-wide significant associations of the expected small effect

size. Much has been written about ‘missing heritability’ [35], the

gap between GWA-identified associations and heritability as

estimated in twin studies, with rare variants and non-additive

effects as the most likely culprits [36]. GWA studies have been

limited to the common SNPs used on commercially available

DNA arrays and to additive effects of SNPs considered individ-

ually rather than multiply as they interact in their effect on the

phenotype.

Another reason for the missing heritability gap could be that

twin studies have overestimated heritability. A new method,

implemented in a software package called Genome-wide Complex

Trait Analysis (GCTA), uses DNA alone to estimate genetic

influence from samples of unrelated individuals, not relying on the

assumptions of the twin method [37][38]. GCTA does not identify

specific genes associated with traits. Instead, it uses chance

similarity across hundreds of thousands of SNPs to predict

phenotypic similarity pair by pair in a large sample of unrelated

individuals. The essence of GCTA is to estimate genetic influence

on a trait by predicting phenotypic similarity for each pair of

individuals in the sample from their total SNP similarity. In

contrast to the twin method, which estimates heritability by

comparing phenotypic similarity of identical and fraternal twin

pairs, whose genetic similarity is roughly 1.00 and .50, respectively,

GCTA relies on comparisons of pairs of individuals whose genetic

similarity varies from .00 to .02. GCTA extracts this tiny genetic

signal from the noise of hundreds of thousands of SNPs using the

massive information available from a matrix of thousands of

individuals, each compared pair by pair with every other

individual in the sample; for example, the 3,000-plus individuals

in the present sample provided nearly 5 million pairwise

comparisons.

GCTA genetic similarity is not limited to the genotyped SNPs

themselves, but also includes unknown causal variants to the

extent that they are correlated with the SNPs. Mendel’s second

law of inheritance is that genes (as they are now called) are

inherited independently (a phenomenon now called linkage

equilibrium), but Mendel did not know that genes can be on the

same chromosome, in which case they are not inherited

independently (linkage disequilibrium). This violation of Mendel’s

second law is complicated by the fact that during meiosis, on

average each pair of chromosomes – one from the mother and one

from the father – crosses over (recombines) once; in the

population, genes on the same chromosome are separated by this

process of recombination to the extent that they are not close

together on the chromosome. GCTA provides a lower-limit

estimate of heritability because it misses genetic influence due to

causal variants that are not highly correlated with the common

SNPs on genotyping arrays.

A difference between GCTA estimates and twin-study estimates

of heritability is that GCTA only estimates additive genetic effects,

whereas the twin method captures nonadditive as well as additive

genetic effects. Additive genetic effects are caused by the

independent effects of alleles, which add up in their effect on a

trait; nonadditive genetic effects are those that interact. Because

GCTA adds up the effect of each SNP, it does not include gene-

gene interaction effects; the twin method captures nonadditive as

well as additive genetic effects because the DNA sequence of

identical twins is virtually identical and thus they share all genetic

effects, including nonadditive ones (see [39] for details). GCTA has

been used to estimate heritability as captured by genotyping arrays

for height [37], weight [40], psychiatric and other medical

disorders [41][42][43], and personality [44]. We have used

GCTA to estimate heritability for cognitive abilities using DNA

alone and to compare these results to twin study heritability

estimates from the same sample using the same measures at the

same ages [45].

However, GCTA offers far more than a check on twin study

heritability estimates – it provides important clues about missing

heritability. Because GCTA estimates of genetic influence are

limited in the same way as GWA studies to the additive effects of

common DNA variants, GCTA will underestimate twin study

heritability to the extent that nonadditive effects or rare variants

are influential. Moreover, for this same reason, GCTA estimates of

heritability rather than twin study estimates of heritability create a

ceiling for GWA attempts to identify associations. Here we report

the first GCTA estimate of genetic influence and compare it to a

twin study heritability estimate using the same measure in the

GWAS of Callous-Unemotional Traits
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same sample in order to increase the precision of the comparison

between them.

In summary, the overall aim of this research was to compare

twin study heritability to GCTA heritability and to the results of

GWA for CU assessed as a quantitative trait. The comparison of

these three components of genetic influence has important

implications for finding missing heritability.

Materials and Methods

Ethics Statement
Ethical authorization, including authorization to work with

children, was given by The Joint South London and Maudsley and

the Institute of Psychiatry Research Ethics Committee (05/

Q0706/228). Parents were given a letter describing the general

purpose of the study and written parental consent was required. It

was made clear that participation was voluntary and participants

could withdraw from the study whenever they wished.

Sample
The sample was drawn from the Twins Early Development

Study (TEDS), a multivariate longitudinal study which recruited

over 11,000 twin pairs born in England and Wales in 1994, 1995

and 1996 [46], whose families are representative of the UK

population [47]. Twins with severe medical problems or severe

birth complications or whose zygosity could not be determined

were excluded from the sample. To decrease heterogeneity of

ancestry, the sample was restricted to families who identified

themselves as white and whose first language was English.

In order to make our twin sample as comparable as possible to

our GCTA and GWA samples, we selected those twin pairs for

whom one member of the twin pair was chosen for the GCTA and

GWA analyses. For GCTA and the discovery sample of the GWA

analysis, we included unrelated individuals by selecting only one

member of each twin pair for whom GWA genotyping and CU

data were available. For the GCTA analysis, we verified that the

unrelated individuals were less genetically related than fourth-

degree relatives (genetic relatedness ..025), the standard GCTA

exclusion criterion.

Based on these selection criteria, our twin analyses included

1099 MZ pairs and 1787 DZ pairs. Our GCTA and GWA

discovery sample included 2,930 children; the slightly smaller

number of twin pairs was caused by twin pairs for whom the co-

twin did not have CU data.

Genotyping Protocol
DNA was extracted from buccal cheek swabs and sent to the

Wellcome Trust Sanger Institute, Hinxton, UK for genotyping as

part of the Wellcome Trust Case Control Consortium 2 (https://

www.wtccc.org.uk/ccc2/). A total of 3,747 DNA samples from

unrelated children in TEDS were sent for genome-wide DNA

array genotyping used in our GCTA and GWA analyses. In total,

3,665 samples were successfully hybridized to Affymetrix Gene-

Chip 6.0 SNP genotyping arrays (http://www.affymetrix.com/

support/technical/datasheets/genomewide_snp6_datasheet.pdf)

using experimental protocols recommended by the manufacturer

(Affymetrix Inc., Santa Clara, CA). The raw image data from the

arrays were normalized and pre-processed according to the

manufacturer’s guidelines (http://www.affymetrix.com/support/

downloads/manuals/genomewidesnp6_manual.pdf).

Genotypes for the Affymetrix arrays were called using

CHIAMO (https://mathgen.stats.ox.ac.uk/genetics_software/

chiamo/chiamo.html). Where there was a sufficient quantity of

DNA, samples were also re-genotyped on a panel of 30 SNPs

(including 26 autosomal SNPs present on the Affymetrix array,

and 4 SNPs on the X chromosome to verify gender) using the

Sequenom iPlex Gold assay (Sequenom Inc., San Diego, CA).

Quality Control: Samples
We identified and removed samples whose genome-wide

patterns of diversity differed from those of the collection at large,

interpreting these differences as possibly due to biases or artifacts.

Outlying individuals were identified on the basis of call rate,

heterozygosity, relatedness and ancestry using a Bayesian cluster-

ing approach [48].

To obtain a set of putatively unrelated individuals we used a

hidden Markov model (HMM) to infer identify by descent along

the genome between pairs of individuals. Among pairs of closely

related individuals, we excluded the member of the pair with the

lowest call rate, iteratively repeating this procedure to obtain a set

of individuals with pairwise identity by descent less than 5% [48].

Of the individuals genotyped, samples were excluded because of

low call rate or heterozygosity outliers (377), unusual hybridization

intensity (9), atypical population ancestry (59), sample duplication

or relatedness to other sample members (83), and gender

mismatches (13). In addition, 54 samples were excluded because

fewer than 90% of genotypes were called identically on the

genomewide array and Sequenom panel. The remaining samples

were consistent with previous genotyping. In total, 513 samples

were excluded by these quality control criteria. The remaining

sample of 3,152 individuals included 1,446 males and 1,706

females. Of this sample, 2,930 children had valid data for CU at

age 7, 9, or 12, and 2,140 had data at two or more ages.

Quality Control: SNPs
An index of information (Fisher) for the allele frequency at each

of 932,533 called SNPs was calculated using SNPTEST version

2.1.1 [49]. Autosomal SNPs were excluded if this information

index was below 0.975, if the minor allele frequency was less than

1%, if greater than 2% of genotype data were missing, or if the

Hardy Weinberg p-value was lower than 10220. Association

between the SNP and the plate on which samples were genotyped

was calculated and SNPs with a plate effect p-value less than 1026

were also excluded. In addition, SNPs were manually filtered for

call quality by visual inspection of the hybridization intensity plots

using EVOKER software (http://sourceforge.net/projects/

evoker/). The above filters removed 22.7% of the SNPs, leaving

699,388 autosomal SNPs for further analysis.

SNP Imputation
In order to increase the number of SNPs used in our GCTA

and GWA analyses, imputation was carried out using the

IMPUTE version 2 software [50] on the genotype data after

application of quality control procedures, using a two-stage

approach with both a haploid reference panel and a diploid

reference panel. For the haploid reference panel we used HapMap

phase II and III SNP data on the 120 unrelated CEU trios. 5,175

WTCCC2 controls were genotyped on both Affymetrix 6.0 and

Illumina Human1.2M-Duo arrays (Illumina Inc., La Jolla, CA),

and these were used for the diploid reference panel. Imputed SNPs

were retained for analysis if they were genotyped using the

Affymetrix 6.0 array, if they were genotyped using the Illumina

Human1.2M-Duo array and obtained an information score

$0.90, or if they were imputed and obtained an information

score $0.98. Using these criteria, 1,024,929 imputed SNPs were

retained for the GCTA and GWA analyses, in addition to the

699,388 measured SNPs described above.

GWAS of Callous-Unemotional Traits
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CU Trait Measures
CU at 7, 9, and 12 years of age was assessed by each child’s

school teacher using a paper (or at 12, online) questionnaire.

Teacher ratings were obtained towards the end of the academic

year when the class teacher had known the child for most of the

academic year. In the U.K. there are no systematic differences

with regard to placing mono- versus dizygotic twins to same or

different classes. The percentage of twins rated by the same

teacher is 65% at age 7, 58% at age 9, and 33% at age 12.

Teachers are familiar with a broad range of children and have

expertise regarding normative child development. Teacher ratings

have been found to show higher internal consistency and stability

than parent ratings [51], and twin analyses indicate that teacher

ratings are free of rater bias typically found in parent ratings [52].

In line with this, teacher ratings for CU show better internal

consistency (e.g. a= .74 at age 7), indicating reliable detection of

the latent construct of interest; parent ratings of CU show much

poorer levels of internal consistency (e.g. a= .45 at age 7). Finally,

the means and variances for the CU scale are typically lower for

parents than for teachers, indicating that parents are poorer at

discriminating children high in CU [53]. These problems with the

parent rating scales led us to focus on the teacher ratings. The CU

score was calculated as the total for seven items used in previous

heritability analyses of CU (e.g. [10][13]). These were original

Antisocial Process Screening Device [54] CU items (e.g. ‘Does not

show feelings or emotions’) or Strengths and Difficulties Ques-

tionnaire [55] items selected to reflect CU (e.g. ‘Considerate of

other people’s feelings’ (reverse scored)). The sampling frame for

CU at 7 and 12 included all children in TEDS. The sampling

frame for CU at 9 included only children born between January

1994 and August 1995. For the purposes of twin and GCTA

analysis, we calculated a composite variable from the mean of

available teacher reports of CU at 7, 9, and 12 years. This

composite required that at least one measurement be non-missing.

Statistical Analysis: Twin
MZ and DZ twin intraclass correlations were calculated and

standard twin model-fitting was used to estimate additive genetic

(A), common or shared environment (C), and residual or non-

shared environment (E) [39]. Although twin model-fitting is

usually referred to as ACE models, in fact the twin design – unlike

GCTA, discussed in the next section – can include non-additive as

well as additive genetic effects. In quantitative genetics, estimates

of heritability that include non-additive as well as additive genetic

effects is called broad heritability, in contrast to narrow heritability,

which is limited to additive genetic effects. In twin analysis, the

additive genetic model assumes that DZ twins are half as similar as

MZ twins because the genetic relatedness of DZ twins is 50% for

additive genetic effects, whereas the relatedness of MZ twins is

100%. This twofold greater genetic resemblance of MZ as

compared to DZ twins is the reason why heritability is often

estimated by doubling the difference between MZ and DZ

correlations. (For example, MZ and DZ correlations of 0.80 and

0.40, respectively, imply 80% heritability).

In contrast, the hallmark of non-additive genetic effects is that

the DZ correlation is less than half the MZ correlation because

epistatic (inter-locus) gene-gene interactions scarcely contribute to

DZ similarity but are shared entirely by MZ twins. If non-additive

genetic effects are important, the twin method will detect these

effects, although its ability to estimate these effects is limited. For

example, if MZ and DZ twin correlations are 0.80 vs. 0.20,

respectively, simply doubling the difference between MZ and DZ

correlations – an additive genetic model which would be

inappropriate given the non-additive pattern of twin correlations

– would yield a heritability estimate of 120%. However,

heritability cannot exceed the MZ twin correlation, so that the

heritability estimate in this example would be constrained to be

80%. Model-fitting would show that the ACE model does not fit

the data in this example. An allowance is made for non-additivity

in a twin model called ADE, in which ‘D’ refers to dominance

(intra-locus allele-allele interaction). In the ADE model, domi-

nance discounts DZ resemblance from 50% for the A parameter to

25% for the D parameter. However, this adjustment does not

cover the extreme epistatic case in which the DZ correlation could

be zero despite a high MZ correlation. However, even in this

extreme case – for example an MZ correlation of 0.80 and a DZ

correlation of 0.00 – twin model-fitting would detect genetic

influence and would cap the heritability estimate at 80%, as

suggested by the MZ correlation of 0.80.

In summary, the twin design can detect the presence of non-

additive genetic effects, although it is limited in its ability to

distinguish additive and non-additive genetic effects. Greater detail

about distinguishing additive and non-additive genetic variance in

twin designs is available (e.g. [39]). As is usual in twin analyses,

residualized scores were used that were independent of age and sex

because age and sex are perfectly correlated across pairs, which

would be misinterpreted as C in twin analyses. The OpenMx

package for R was used for twin maximum-likelihood model-

fitting using full-information matrices [56].

Statistical analysis: GCTA
We used the software package Genome-wide Complex Trait

Analysis (GCTA; [38]) to estimate genetic influence from pair-by-

pair similarity across all of the SNPs on the DNA array. We

applied GCTA analysis to a composite variable from the mean of

available teacher reports of CU at 7, 9, and 12 years, the same

variable used in the twin analysis. This univariate phenotype was

submitted to GCTA [38] in order to estimate by restricted

maximum likelihood the proportion of variance explained by the

genome-wide panel of SNPs. Both genotyped and imputed SNPs

were included in the analysis. Individuals were deleted from the

analysis if their estimated relatedness with another member of the

dataset exceeded 0.025. Sex, birth year/school year cohort, and 8

principal components of the genotype data were included as

covariates in the GCTA analysis.

Statistical Analysis: GWA
Genome-wide association (GWA) analysis was conducted using

a linear regression approach implemented in SNPTEST v2.0 [57]

under an additive model. This approach uses a frequentist method

to account for uncertainty of genotype information [49]. Because

even small differences in allelic frequency within subgroups in the

population can generate false-positive results, eight principal

components representing population ancestry were used to control

for population stratification. Sex and DNA sample plate number

were also included as covariates. Results were visualized using

Manhattan plots, quantile-quantile (Q-Q) plots, and genotype-

phenotype plots, generated in R [58]; a regional association plot

created using LocusZoom [59].

Following SNP quality control and SNP imputations, described

earlier, we performed several preliminary analyses prior to GWA

analysis. First, principal component analysis (PCA) was used to

attenuate GWA biases due to population structure. PCA was

conducted on a subset of 105,556 autosomal SNPs post QC,

selected after pruning to remove SNPs in high linkage disequilib-

rium (r2.0.2) and to exclude high linkage disequilibrium genomic

regions so as to ensure that only genome-wide effects were

detected [60]. Application of the Tracy-Widom test indicated that

GWAS of Callous-Unemotional Traits

PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e65789



eight principal components were significant using a threshold of

p,0.05. We caution that the inclusion of principal components as

covariates may not be sufficient to remove biases in estimation due

to population structure [61]. Our second preliminary analysis

involved normalizing CU trait scores by transforming the ranked

data to the quantiles of a standard Normal distribution using the

van der Waerden transformation [62], and taking the residuals

after regressing the resulting score on age at measurement.

For the GWA analysis, each autosomal SNP was tested for

association with CU at 7, 9, and 12 using a multivariate method

that was similar in its essentials to the test of a longitudinal

composite but required slightly less restrictive statistical assump-

tions. Using a linear regression framework, we calculated score

statistics to test a hypothesis that the SNP had an equal effect on

CU at each age. The test evaluated a single parameter and hence

had 1 degree of freedom. Sex, birth year/school year cohort, and

the first eight principal components of the genotype data were

included as covariates in the regression model. The statistical

framework was able to account for missingness in the outcome

variables as a function of these covariates, assuming that data for

these covariates were missing at random [63]. The test was

implemented as a custom library for R (http://www.cran.r-

project.org).

Probability values were adjusted by genomic control [64]

separately for genotyped SNPs, SNPs that were genotyped in the

WTCCC2 controls and imputed in the TEDS sample, and SNPs

that were imputed in both WTCCC2 controls and the TEDS

sample.

Results

Twin analysis
Tables 1–3 present twin correlations and the results of model-

fitting analyses for the composite CU trait. The difference in the

MZ and DZ twin correlations suggests substantial genetic

influence. The DZ correlation is about half the MZ correlation,

suggesting no influence of shared environment or non-additive

genetic variance, unless these two factors mask each other’s effect.

Model-fitting results confirm the results gleaned from the MZ and

DZ twin correlations. A model that includes only A and E,

excluding C, fits the data best. Model-fitting parameter estimates

for the full ACE model indicate substantial heritability (0.64 6

0.03) and negligible shared environmental influence (0.00 6 0.02).

GCTA
The GCTA estimate of genetic variance was 0.07, which was

not significant given our sample size. The standard error of 0.12

suggests that the proportion of variance explained by the common

SNPs tagged by our genome-wide genotypes is highly likely to be

less than 20%, which suggests a wide gap with our twin study

heritability estimate of 64%. Unlike twin analysis, GCTA does not

discriminate C and E because each individual is from a different

family. In GCTA, E is a residual term that refers to all variance

(including error of measurement) that cannot be attributed to

additive genetic effects of the common SNPs included on the DNA

array.

GWA Analysis
We tested 699,388 genotyped autosomal SNPs and 1,024,929

imputed autosomal SNPs that passed quality control thresholds.

The analysis included 2,930 children with admissible data for both

genotype and CU. The quantile-quantile (QQ) plot presented in

Figure 1 illustrates the distribution of probability values from the

genomewide test of association with CU. The line indicates the

null hypothesis for the relationship between the observed

distribution of probability values and results expected by chance

alone. The shaded area indicates the 95% confidence interval

around the null values. The resemblance of the distribution of

observed test statistics to the null distribution indicates that the

results are consistent with chance. We observed very little inflation

of the test statistics (l,1.01).

No single SNP achieved genomewide significance using a

conventional significance threshold of p,561028 [65]. The results

for three SNPs achieving suggestive significance at the less

stringent threshold of p,561026 are summarized in Table 4.

The sample size of 2,930 would, in a univariate analysis, be

sufficient to detect a quantitative trait locus (QTL) explaining

1.0% of the variance with 49% power, or a QTL explaining 1.3%

of the variance with 77% power [66]. Individual SNP variants

with lower frequencies, being yet rarer in the population, are also

unlikely to explain such large proportions of variance. The balance

of probabilities therefore suggest that there are no autosomal SNPs

with large effects on CU (.1% of variance).

Table 1. Twin correlations and model-fitting results for a
callous unemotional (CU) trait longitudinal composite.

rMZ (SE) nMZ rDZ (SE) nDZ n total

Ages 7+9+12 composite 0.63 (0.02) 1099 0.31 (0.02) 1787 2886

Annotation: (rMZ) – correlation between Monozygotic twins, (rDZ) – phenotypic
correlation between Dizygotic Twins, (SE) – standard error, (nMZ) – MZ twins
sample size, (nDZ) – DZ twins sample size, (n total) – sample size for all
individuals.
doi:10.1371/journal.pone.0065789.t001

Table 2. Model-fitting estimates for a callous unemotional
(CU) trait longitudinal composite.

A (SE) C (SE) E (SE) N/pairs N/LL

Full ACE
model

0.64 (0.03) 0.00 (0.02) 0.36 (0.02) 2886 3142

AE model 0.64 (0.03) – 0.36 (0.02) 2886 3142

Annotation: (A) – additive genetic, (C) – shared environment, (E) – unique
environment, (SE) – standard error, (N/pair) – sample size of twin pairs where
both siblings had the phenotypic data, (N/LL) – sample size of twin pairs where
at least one sibling had the phenotypic data.
doi:10.1371/journal.pone.0065789.t002

Table 3. Fit statistics for structural equation modeling.

22LL df AIC Dx2 Ddf p

Full ACE
model

15916 5864 4188 – – –

AE model 15916 5865 4186

21.8661021011

Annotation: (22LL) – minus twice log likelihood of the model, (df) – degrees of
freedom, (AIC) – Akaike’s Information Criterion, (Dx2) – difference between
minus twice log likelihoods between the full and the nested model, (Ddf) –
difference in degrees of freedom between the full and nested model, (p) – p-
value.1.
doi:10.1371/journal.pone.0065789.t003
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Discussion

Our twin study heritability estimate of 64% for CU is consistent

with previously published results [9]. In contrast, this first GCTA

estimate of CU heritability based on DNA alone was only 7% –

much lower than expected given that it was calculated using an

identical measure in the same sample.

Although our sample size of nearly 3000 children entails a large

standard error (0.12) for our GCTA heritability estimate (0.07), the

95% confidence interval suggests that the true estimate is GCTA

heritability is less than 20%. In other words, even if the true

GCTA heritability estimate for CU were at the top of this

confidence interval, it would imply a wide gap between the GCTA

and twin heritability estimates. This gap between GCTA

heritability and twin study heritability could be called ‘missing

GCTA heritability’. The missing GCTA heritability gap for CU, if

true, would greatly increase the difficulty of identifying GWA

associations because GWA, like GCTA, is limited to the additive

effects tagged by the common SNPs on our DNA array.

Why is missing GCTA heritability so much greater for CU than

for some other traits in the same study? Although it is possible that

the twin study overestimated heritability for CU, converging

evidence from several sources suggests that twin estimates are valid

[39]. Another possibility is that our low GCTA heritability

estimate for CU is in error. This seems unlikely for two reasons.

Figure 1. Quantile-quantile plot illustrating the distribution of probability values from the genomewide test of association with CU.
X axis: expected quantile of minus log probability values under the null hypothesis. Y axis: observed quantile of minus log probability values for
association after adjustment by genomic control. The straight line at x = y represents the null distribution and the gray area surrounding the line
indicates a 95% confidence band around the null.
doi:10.1371/journal.pone.0065789.g001

Table 4. SNPs associated with CU exceeding a threshold for suggestive significance of p,561026.

SNP Chromosome Position Imputed Reference/risk allele
Risk allele
frequency p Genes within 500 Kb

rs12551906 9 101158911 Yes A/G 0.689 2.93E-06 SEC61B, ALG2, TGFBR1

rs10865864 3 3603981 No A/G 0.197 4.11E-06 LRRN1

rs151997 5 50268956 No C/T 0.382 4.62E-06 PARP8

Alleles are given relative to positive strand as defined by NCBI human genome assembly b36. The ‘‘risk’’ allele is associated with higher CU at 7, 9, and 12; the
‘‘reference’’ allele is the other allele. P = probability value for multivariate score test after correction by genomic control.
doi:10.1371/journal.pone.0065789.t004
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First, in the same study using the same methods, we have found

GCTA heritability estimates that were more than half the twin

study heritability estimate for cognitive and anthropometric traits

in the same sample [45]. For example, heritability estimates for

height and intelligence were 0.80 and 0.46, respectively, in twin

analyses and 0.42 and 0.35 in GCTA. Second, although our

GCTA heritability estimate for CU is the first such estimate, our

low estimate is similar to the low GCTA heritability estimate

reported in the only published GCTA study of personality [44].

What we do know for certain is that GCTA is limited to additive

effects of common DNA variants that are tagged by commercially

available DNA arrays, whereas the twin design is not. Because

identical twins are identical in terms of all inherited DNA

sequence variants, they share all genetic effects – small or large,

nonadditive or additive, rare or common. For this reason, as

compared to twin studies, GCTA underestimates heritability to

the extent that heritability is caused by nonadditive genetic effects

and the effects of rare variants [67].

The first hypothesis – that nonadditive genetic effects led to the

low GCTA estimate of heritability for CU – is not supported by

our twin results. As mentioned in the Methods section, the

hallmark of nonadditive gene-gene (epistatic) interactions is that

the DZ twin correlation is less than half the MZ twin correlation.

However, in our twin analysis of CU, the DZ correlation (0.31) is

almost exactly half the MZ correlation (0.63), providing no

support for the hypothesis of nonadditive genetic influence.

Our twin model-fitting also found that the additive AE model

best fit the data. Indirect support for suggesting that nonadditive

genetic variance may not be a major factor causing missing GCTA

heritability for CU comes from the general conclusion from

quantitative genetic research that most genetic variance is additive

[39][68]. There are also evolutionary reasons to expect that most

genetic variance is additive [69]. We hope that nonadditive genetic

variance is not a major factor because if heritability is substantially

due to nonadditive genetic effects, it will be extremely difficult to

identify these effects because power is greatly diminished with each

gene added to the interaction.

The second hypothesis –less common DNA variants contribute

to the GCTA heritability gap for CU – seems certain to be part of

the general explanation for missing heritability [70]. Common

SNPs on currently available commercial DNA arrays have

frequencies greater than one percent in the population. Many

more SNPs are rarer, with frequencies that go down to ‘private

mutations’ unique to an individual. More than 10 million SNPs

have been validated in populations around the world; only about 2

million have frequencies greater than one percent in the

population studied. However, we can offer no speculation why

rare variants would be so especially important for CU. In order to

explain a large proportion of phenotypic variation, rare variants

would need to have large effect sizes or be highly numerous. Large

effect sizes could occur for a trait under negative selection

pressure, in which a de novo mutation has a large effect on the

individual who harbors the mutation, but whose fertility is lowered

so that the mutation does not spread in the population. Yet

schizophrenia, a disorder that is known to be associated with low

fecundity and therefore presumably under negative selection

pressure, is nevertheless largely influenced by common polygenic

variation [41][71].

Because CU seems unlikely to be under strong negative

selection, rare variants of large effect seem an unlikely hypothesis

as to why the GCTA heritability gap is so much greater for CU

than for other traits.

Whatever its cause, the low GCTA heritability estimate, if true,

implies that identifying DNA variants responsible for the

heritability of CU will be even more difficult than it is for most

complex traits. Because GCTA heritability, not twin study

heritability, creates a ceiling for GWA analysis, the low GCTA

estimate for CU doomed our GWA from the outset, even beyond

the relatively small sample size that was limited to detecting

genome-wide significant additive effects tagged by common

variants that yield associations accounting for more than 1% of

the total variance. This first genome-wide association study of

childhood CU in a community sample of 2,930 individuals found

no associations that met stringent genomewide correction for

multiple testing (p,561028). Three SNPs achieved suggestive

significance at a less stringent threshold (p,561026), none of

which are close to the coding regions of well-documented

candidate genes implicated in previous genetic association studies

of CU, or any of the suggestive hits identified by the previous

pooling study of extreme CU that co-occurred with conduct

problems [31].

These results suggest that, for CU in particular, not only will

much larger samples be needed to detect associations that account

for very small effect sizes, but that methods to identify gene-gene

interactions and whole-genome sequencing to detect rare variants

may be needed in order to detect DNA variants that are

responsible for the heritability of CU.
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