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Abstract

The degree to which adaptation in recent human evolution shapes genetic variation remains controversial. This is in part
due to the limited evidence in humans for classic “hard selective sweeps”, wherein a novel beneficial mutation rapidly
sweeps through a population to fixation. However, positive selection may often proceed via “soft sweeps” acting on
mutations already present within a population. Here, we examine recent positive selection across six human populations
using a powerful machine learning approach that is sensitive to both hard and soft sweeps. We found evidence that soft
sweeps are widespread and account for the vast majority of recent human adaptation. Surprisingly, our results also
suggest that linked positive selection affects patterns of variation across much of the genome, and may increase the
frequencies of deleterious mutations. Our results also reveal insights into the role of sexual selection, cancer risk, and
central nervous system development in recent human evolution.
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Introduction
Spurred by the ongoing revolution in DNA sequencing
capacity, human population genetic datasets have grown ex-
ponentially in size over the past 5 years (Auton et al. 2015;
UK10K Consortium 2015). Such growth enables insight into
the evolutionary histories of human populations with hith-
erto unrivaled precision. A central question in the study of
human evolution is the extent to which adaptation has
driven recent evolution and affected patterns of genetic di-
versity (Akey 2009). This can be addressed by scanning geno-
mic data for evidence of selective sweeps, wherein a beneficial
mutation is favored by natural selection and therefore rapidly
increases in frequency within a population. Such selective
sweeps leave a characteristic footprint in variation; they create
a valley of diversity around the selected site (Maynard Smith
and Haigh 1974; Kaplan et al. 1989; Stephan et al. 1992), a
deficit of both low- and high-frequency derived alleles at
linked sites (Fay and Wu 2000), and an increase in linkage
disequilibrium in flanking regions (Kim and Nielsen 2004).
Thus there are multiple population genetic signals to exploit.
Accordingly numerous theoretical and methodological ad-
vances (Kaplan et al. 1989; Stephan et al. 1992; Fu 1997;
Kim and Stephan 2002; Nielsen, Williamson, et al. 2005;
Voight et al. 2006) in the study of selective sweeps have given
researchers the ability to uncover the genetic basis of adap-
tation on a genome-wide scale.

There are two complimentary approaches to studying the
impact of adaptive evolution on genetic variation. The first
approach aims to infer genome-wide rates of adaptive evo-
lution by estimating the mean effects of selective sweeps

across the genome (Wiehe and Stephan 1993; Kern et al.
2002; Andolfatto 2007; Jensen et al. 2008; Hernandez et al.
2011; Sattath et al. 2011). Such approaches may estimate the
rates of sweeps or their effects with respect to the genomic
background, but do not focus on the targets of sweeps them-
selves. An alternative approach is to focus on finding individ-
ual selective sweeps throughout the genome, and in so doing
characterize specific cases of adaptation with hopes of gaining
general insight into the adaptive process (Sabeti et al. 2002;
Voight et al. 2006; Williamson et al. 2007). The search for
selective sweeps has shed light into the recent evolutionary
histories of natural populations, and has shown a pervasive
impact of adaptive evolution on polymorphism in some spe-
cies such as Drosophila melanogaster (Begun et al. 2007;
Macpherson et al. 2007; Langley et al. 2012; Lee et al. 2014;
Garud et al. 2015). In humans, the picture remains less clear:
while scans for selective sweeps have discovered numerous
compelling candidates for strong positive selection (Ruwende
et al. 1995; Stephens et al. 1998; Tishkoff et al. 2007; Bryk et al.
2008; Huerta-S�anchez et al. 2014), some recent studies have
suggested that the impact of adaptation on patterns of var-
iation genome-wide is quite limited (Hernandez et al. 2011;
Lohmueller et al. 2011). Conversely, Enard et al. (2014) argue
that the genome-wide reduction in diversity around substi-
tutions is driven in part by positive selection.

One possible explanation for the difficulty in characterizing
the contributions of adaptive and nonadaptive forces in hu-
man populations is that genetic hitchhiking effects may be
muted by human demographic history. Many human popu-
lations appear to have experienced bottlenecks and/or recent
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growth (Marth et al. 2004; Fagundes et al. 2007; Gravel et al.
2011; Auton et al. 2015), which cause much of the genome to
resemble selective sweeps (Nielsen, Williamson, et al. 2005).
Moreover, positive selection has historically been modeled as
the process of a de novo beneficial mutation rapidly sweeping
to fixation, a process now referred to as a hard sweep.
However selection may act on previously segregating neutral
or weakly deleterious variants (Orr and Betancourt 2001;
Innan and Kim 2004). Selection on standing variation will
produce qualitatively different skews in linkage disequilibrium
and allele frequencies, along with a shallower valley in diver-
sity (Hermisson and Pennings 2005; Przeworski et al. 2005;
Berg and Coop 2015; Schrider et al. 2015)—such an event is
thus referred to as a soft sweep. If selection typically proceeds
through soft sweeps, as may be the case in Drosophila (Garud
et al. 2015), then many sweeps may have been missed by
previous scans that were designed to detect signatures pro-
duced under a hard sweep model.

We sought to address the controversy over the impact of
adaptation on human genomic variation by conducting a
genome-wide scan for both hard and soft selective sweeps
across human populations. We previously developed S/HIC
(Soft/Hard Inference through Classification), a machine learn-
ing method capable of detecting completed sweeps and in-
ferring their mode of selection with unparalleled accuracy and
robustness to nonequilibrium demography (Schrider and
Kern 2016). Here we apply S/HIC to uncover hard and soft
sweeps in six population samples from the 1000 Genomes
Project (Auton et al. 2015), thereby performing the most
comprehensive investigation of completed selective sweeps
in humans to date. Surprisingly, our results suggest that pat-
terns of polymorphism across much of the human genome
may be affected by linked positive selection—primarily soft
sweeps. Moreover, we find evidence that the mode of selec-
tion differs substantially across populations, with non-African
populations adapting via hard sweeps to a much greater ex-
tent than African populations. Finally, we investigate the bi-
ological targets of selection in recent human evolution, with
particular processes such as immunity, cancer, and sexual
reproduction playing outsized roles.

Results
We set out to detect completed hard and soft selective
sweeps in six populations from Phase 3 of the 1000
Genomes Project: two West-African populations (YRI and
GWD from Yoruba and The Gambia, respectively), one
East-African population (LWK from Kenya), one European
population (CEU, from UT), one East Asian population (JPT
from Japan), and one from the Americas (PEL from Peru). For
each population we trained and applied a S/HIC classifier to
identify hard and soft selective sweeps across the genome (see
Materials and Methods), distinguishing them from neutrally
evolving regions as well as those linked to sweeps (Schrider
and Kern 2016). Briefly, S/HIC is a machine learning method
that leverages spatial patterns of a variety of statistics across a
large genomic window in order to infer the mode of evolution
at the center of the window. We previously showed that

S/HIC is exceptionally robust to the confounding effect of
linked selection (e.g., the “soft shoulder” effect where regions
linked to hard sweeps resemble soft sweeps; Schrider et al.
2015), as well as nonequilibrium demographic histories, mak-
ing it well suited for a survey of positive selection in humans.
We also assessed the accuracy of our classifiers on simulated
test data with the same demographic history used to generate
training data, finding that S/HIC achieved good power for each
demographic history, with somewhat higher accuracy for his-
tories inferred from the African than non-African populations
(supplementary fig. S1, Supplementary Material online).

We also performed forward simulations under the GWD
and JPT models (see Materials and Methods) in order to
assess whether purifying selection and its effect on variation
at linked unselected sites (i.e., background selection
Charlesworth et al. 1993) could result in false sweep calls.
The results of these simulations suggest that S/HIC’s false
positive rate is essentially unaffected by these forces (supple-
mentary fig. S1, Supplementary Material online). Note that we
exposed each classifier to a wide range of mutation and re-
combination rates (see Materials and Methods) during train-
ing (and testing) in order to improve (and assess) our
robustness to variation in these rates across the genome.
We also examined values of Garud et al.’s (2015) H12 and
H2/H1 within windows classified by S/HIC as hard, soft, or
neutral, noting that as expected, H12 is higher in sweeps
than neutral regions, while H2/H1 is higher for soft sweeps
than hard sweeps (supplementary fig. S2, Supplementary
Material online). Below, we begin with a brief overview of
the broad patterns of adaptation we observe across popula-
tions, before discussing genomic features and biological path-
ways with a strong enrichment of selective sweeps, as well as
compelling novel candidates for recently completed selective
sweeps.

The Majority of Sweeps in Humans Resemble
Selection on Standing Variation
We found a total of 1,927 distinct selective sweeps merged
across all six populations (see Materials and Methods). About
190 (9.9%) of these are present in all populations, 59 (3.1%)
are shared among the African populations, 71 (3.7%) are
shared among the non-African populations, and 701
(36.4%) are population-specific (supplementary table S1,
Supplementary Material online). The remaining 906 (47.0%)
sweeps were present in more than one population but do not
fit into any of the categories above. We observe that across
populations, the vast majority (1,776, or 92.2%) of sweeps
were classified as soft, and note that this trend does not
change qualitatively as we impose increasingly strict posterior
probability thresholds before assigning a class label to a given
window (supplementary table S2, Supplementary Material
online; see Materials and Methods). These events may repre-
sent soft sweeps on standing genetic variants that our classi-
fier was trained to detect, but we note that a similar signature
can be created by a soft sweep resulting from recurrent orig-
ination of the adaptive allele(s), or by a de novo mutation
that has been placed onto multiple haplotypes by allelic gene
conversion events (see Discussion).
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Although hard sweeps appear to be quite rare globally, the
fraction of hard sweeps is significantly higher in non-African
than African populations (table 1). For example, when com-
paring PEL to GWD, we observe a significantly higher fraction
of hard sweeps in PEL (4.7% versus 1.6%; P¼ 0.05). For each
other African versus non-African comparison we see an even
greater (and more significant) disparity. Further, we observe a
suggestive correlation between the fraction of sweeps in a
population that were classified as soft and the harmonic
mean of its population size within the last 4N generations
(Pearson’s q¼�0.96; see Materials and Methods). Though
taken at face value this correlation appears to be highly sig-
nificant, we note that due to the six populations’ shared
evolutionary history a statistical test of this correlation would
be invalid.

Comparing our results to those of previous scans we find
that 519 of S/HIC’s sweep calls (26.9%) have previously been
identified according to dbPSHP, a database of candidate re-
gions for recent positive selection across human populations
(Li et al. 2014). This accounts for 10.9% of the loci in the
dbPSHP set (ignoring regions not classified by S/HIC). The
remaining 1,408 sweeps called by S/HIC (73.1% of calls) rep-
resent potentially novel selective sweeps. There are several
possible explanations for the modest overlap between our
set of sweep candidates and those in dbPSHP. First, the sweep
candidates in dbPSHP have been identified by a variety of
methods, some of which are designed to detect selective
scenarios other than completed sweeps (e.g., partial sweeps,
spatially varying selection). Second, when comparing results
from methods designed to detect the same type of sweeps,
the intersection between studies is often fairly small (Akey
2009). Although most scans undoubtedly recover a large
number of true selective sweeps, different methods may pro-
duce different false positives and false negatives, resulting in
imperfect concordance between scans.

Selective Sweeps Preferentially Target Genes Involved
in Cancer and Viral Infection
Examining the locations of selective sweeps across the ge-
nome, we find that regions classified as selective sweeps are
significantly overrepresented for both coding sequence and
untranslated regions (q< 0.05 in several populations for hard
sweeps, and each population for putative soft sweeps; fig. 1A
and B; supplementary table S3, Supplementary Material on-
line), relative to data sets with permuted classifications (see
Materials and Methods). Enrichment for transcription factor
binding sites was less pronounced, and only significant in soft
sweeps for the three African populations along with PEL.

The most striking result we observed was a dramatic enrich-
ment of sweep windows for mutations in the COSMIC data
set of somatic mutations that have been observed in cancer
cells (Forbes et al. 2015) and may therefore play a role in
tumor suppression/progression. Averaged across populations,
the number of COSMIC mutations found in soft sweeps rep-
resents a 3.7-fold increase relative to that observed in per-
muted data sets; this enrichment was significant in each
population, and peaked at 4.5-fold in PEL. For hard sweeps,
this enrichment was 12-fold on an average, reaching as high as
21-fold in CEU, though this was the only population for which
the enrichment was statistically significant. We also observed
a sizeable overrepresentation of genes encoding virus-
interacting proteins (VIPs) curated by (Enard et al. 2016) in
soft sweeps, with a 1.9-fold increase relative to permuted sets
(averaged across populations). VIPs show a similar magnitude
of enrichment in hard sweeps for some populations, but does
not achieve significance at q< 0.05.

Selective Sweeps Increase Linked Deleterious
Variation
Because S/HIC not only detects selective sweeps, but also
attempts to identify regions of the genome that appear to
be linked to recent sweeps, our classifications allow us to
examine the effect of linked selection in a principled way.
We found that while a minority of genomic windows were
classified as selective sweeps (7.6% on an average across all
populations), a large fraction of windows were classified as
linked to a completed selected sweep, either hard or soft
(56.4% on an average). These estimates range from 41.5% in
JPT to 74.0% in GWD (fig. 2).

We also asked whether selective sweeps have a detectable
impact on linked deleterious variation. As beneficial alleles
increase in frequency in a population, they may carry along
with them linked deleterious polymorphisms as hitchhikers,
potentially increasing the frequency of deleterious variants
over what would be expected given mutation-selection-
drift equilibrium (Birky and Walsh 1988; Hartfield and Otto
2011). To this end we asked whether relatively common can-
didate deleterious mutations were enriched in regions classi-
fied as either hard-linked or soft-linked. Indeed, we observed a
fairly subtle but significant overrepresentation of SNPs with
derived allele frequencies of at least 0.01 but predicted to be
damaging by SIFT (Kumar et al. 2009) in both the hard-linked
(mean enrichment across populations: 1.3-fold) and soft-
linked (mean enrichment: 1.1-fold) classes for most popula-
tions (fig. 1C and D; supplementary table S3, Supplementary
Material online). We find a similar enrichment in these

Table 1. Number of Sweeps of Each Type Detected in Each Population Sample.

Population No. of Hard Sweeps No. of Soft Sweeps Total No. of Sweeps

JPT (Tokyo, Japan) 61 (5.8%) 998 (94.2%) 1,059
CEU (UT, USA) 66 (6.5%) 947 (93.5%) 1,013
PEL (Lima, Peru) 32 (4.7%) 655 (95.3%) 687
GWD (Western Divisions, the Gambia) 5 (0.6%) 795 (99.4%) 800
YRI (Ibadan, Nigeria) 13 (1.6%) 797 (98.4%) 810
LWK (Webuye, Kenya) 3 (0.4%) 805 (99.6%) 808
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sweep-linked classes of common SNPs in regions inferred to
be conserved across primates according to phastCons (Siepel
et al. 2005). Phenotype-associated variants from the GWAS
catalogue (Welter et al. 2014) were also significantly overrep-
resented sweep-linked regions in several populations (fig. 1C
and D).

Sexual Reproduction, the Central Nervous System,
and Immunity Are Targets of Recent Sweeps
In order to determine if positive selection preferentially acts
on particular organismal functions, we asked which Gene
Ontology (GO) terms were enriched in our sweep calls rela-
tive to the permuted data (see Materials and Methods). In
soft sweeps, we found a sizeable and significant enrichment
(q< 0.05) of terms related to sperm development, structure,
and function. For example, “spermatogenesis” (4.4-fold en-
richment averaged across populations), and “sperm-egg rec-
ognition” (3.9-fold enrichment on an average) were enriched
in soft sweeps in several populations. We also observed an
overrepresentation of genes involved in the “glutamate re-
ceptor signaling pathway” in our soft sweep sets for each
population (4-fold mean enrichment). Glutamate receptors
are the primary excitatory neurotransmitter in the central
nervous system, and important for both proper brain devel-
opment and function (Luj�an et al. 2005). Indeed, soft sweeps
are enriched for “central nervous system development” in
multiple populations (1.6-fold mean enrichment).
Numerous GO terms related to immune response, especially
adaptive immunity, as well as KEGG pathways related to im-
munity and cancer progression/tumor suppression were also
significantly enriched among soft sweeps (see supplementary
table S4, Supplementary Material online, for full list).

Positive Selection on Interacting Gene Pairs
We examined three types of gene interaction networks: pro-
tein–protein interactions (PPIs), transcription factor–target
gene interactions, and genetic interactions where one gene
modifies the effect of another (see Materials and Methods).
Interestingly, we observed a dramatic enrichment of sweeps in
genes that encode proteins that physically interact with one
another (fig. 3A and B): if a gene overlapped a window classified
as a soft sweep, genes that interact with this gene were on an
average 3.3 times more likely to overlap a putative soft sweep
than expected by chance (P< 0.0001 for each population; fig.
3B). Despite the smaller number of candidate regions, we found
a significant enrichment for PPIs in hard sweeps, though this
was only significant in for non-African populations (4.0-fold
enrichment averaged across populations; P< 0.05 in CEU,
JPT, YRI; fig. 3A). For transcription factor–target interactions,
we observe no overrepresentation of soft sweeps, but a signif-
icant enrichment of hard sweeps in non-African populations
(P< 0.05 for each; 8.5-fold enrichment on an average; fig. 3C
and D). There were no populations exhibiting an overrepresen-
tation of pairs of genes with genetic interactions and experienc-
ing sweeps of either type (fig. 3E and F).

FIG. 1. Enrichment of various annotation features in regions classified
as sweeps or linked to sweeps relative. The fold enrichment is the ratio
of the number of base pairs in the intersection between windows
assigned to a given class and an annotation feature divided by the
mean of this intersection across the permuted data sets (see Materials
and Methods). This was calculated separately for each population. (A)
Enrichment of elements in windows classified as hard sweeps. (B)
Same as A, but for soft sweeps. (C) Enrichment of elements in win-
dows classified as affected by linked hard sweeps. (D) Linked soft
sweeps.
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Examples of Novel Selective Sweep Candidates
In this section we describe several sweep candidates that
exemplify the set of sweeps, and functions of putative
targets of selection, that we were able to detect. As dis-
cussed earlier, our sets of sweeps were highly enriched for
glutamate receptor-encoding genes. In supplementary fig-
ure S3, Supplementary Material online, we show a sweep
candidate region on chromosome 4 that encompasses the
glutamate receptor gene GRIA2. This sweep was previously
detected in non-African populations by Pickrell et al.
(2009), who did not find any evidence of selection in
Africa. However, S/HIC infers that this region has experi-
enced a soft sweep that is found in GWD and YRI, as well as
the non-African populations. Consistent with this,
Europeans, Asians, and African populations show a reduc-
tion in p, a trough in Tajima’s D (Tajima 1989), and a peak
in Nielsen et al.’s SweepFinder composite likelihood ratio
(CLR) test statistic, which captures regions that appear to
be at the epicenter of the spatial skew in the SFS expected
around sweeps (Nielsen, Williamson, et al. 2005).
Intriguingly, GRIA2 interacts with the GRID2 glutamate
receptor gene (Kohda et al. 2003), which itself is classified
as a soft sweep in CEU, LWK, PEL, and GWD. The remain-
ing glutamate receptors overlapping identified sweeps are
GRIA4, GRID1, GRIK1, GRIK3, GRM2, and GRM7. Of these
genes, GRIA4 and GRID2 were shown by Liu et al. (2012) to
have evolved a human-specific developmental expression
profile.

Figure 4 shows a region on chromosome 9 that exhibits
strong evidence of a previously undetected hard sweep in
each of our six populations. This region contains several
members of the spermatogenesis associated 31 gene family:
SPATA31B1, SPATA31D1, SPATA31D3, and SPATA31D4.
Across populations this region shows dramatic valleys in p

and Tajima’s D, as well as an elevated CLR near the center of
the sweep window. These genes are highly testis-specific ac-
cording to data from the GTEx project (Lonsdale et al. 2013),
and male mice are infertile when lacking Spata31, another
member of these gene family (Wu et al. 2015). Figure 4 also
shows that each of these genes overlaps a cluster of nonre-
petitive piRNAs (data from piRBase; Zhang et al. 2014). Also
near this region is DDX10P2, which GENCODE annotates as a
processed pseudogene (Pei et al. 2012). DDX10P2, which is
located at the center of the CLR peak for CEU, is expressed
with a high degree of testis-specificity according to GTEx data,
similar to the neighboring SPATA31 genes. A BLAT search
(Kent 2002) revealed that this putative pseudogene exhibits
99.5% sequence identity to the orthologous sequence in
chimpanzees. The parent gene of DDX10P2, DDX10, is ex-
pressed in many tissues, but shows highest expression in
the testis.

On chromosome 11 we detected what appear to be sev-
eral novel soft sweeps present in and upstream of CADM1
(cell adhesion molecule 1; fig. 5), one of which is present in
each population. This gene is essential for spermatogenesis in
mice (Van Der Weyden et al. 2006), and is also a tumor
suppressor that is hypermethelated in various cancers
(Kuramochi et al. 2001; Allinen et al. 2002; Fukuhara et al.
2002), as it works with the adaptive immune system to sup-
press metastasis (Faraji et al. 2012). CADM1 is also active in
the brain where it is involved in synaptic adhesion and has
been linked to autism (Zhiling et al. 2008; Fujita et al. 2010).
CADM1 forms a complex with two other genes: the GABA
receptor GABBR2, which has a soft sweep in YRI, and MUPP1,
which has a soft sweep found in each population; this com-
plex appears to localize to Purkinje cell dendrites (Fujita et al.
2012). Thus, this example encompasses many of the functions
that we find are highly enriched across our sweep sets:

FIG. 2. The number of windows assigned to each class by S/HIC in each population.
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FIG. 3. Enrichment of pairs of interacting genes each falling within a window classified as a sweep. The fold enrichment is the ratio of the number of
pairs of interacting genes overlapping a window classified as a sweep of a given type divided by the mean of this number across the permuted data
sets (see Materials and Methods). This was calculated separately for each population. When no pairs of interacting sweep genes were observed in
our true data set or a population, no bar was drawn. (A) Enrichment of pairs of genes encoding protein products that physically interact with each
other (data from BioGRID) and both overlap hard sweep windows. (B) Same as A, but for soft sweeps. (C) Enrichment of pairs of genes, one of which
is encodes a transcription factor that affects expression of the other (data from ORegAnno), where both overlap hard sweep windows. (D) Same as
D, but for soft sweeps. (E) Enrichment of pairs of genes for which a genetic interaction has been observed (data from BioGRID) and both overlap
hard sweep windows. (F) Same as E, but for soft sweeps.
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adaptation in multiple interacting genes (one of which is a
neurotransmitter), spermatogenesis, and tumor suppression
(via adaptive immunity).

Discussion
Understanding the history of human adaptation at the ge-
netic level is a central goal of population genomics and hu-
man evolutionary biology. Accordingly, since the completion
of the human genome assembly (Lander et al. 2001) and
subsequent proliferation of population genomic data, numer-
ous genome-wide scans for selection have been conducted
using differing methodologies (Sabeti et al. 2002, 2007; Voight
et al. 2006; Pickrell et al. 2009; Field et al. 2016). The majority of
these studies searched primarily for partial selective sweeps—
the signature of a beneficial mutation currently sweeping
through a population (see Williamson et al. 2007 for a notable
exception)—and rightly so, as these sweeps can reveal the
targets of ongoing adaptation in human populations.
However, because the sojourn of an adaptive mutation to
fixation should be rapid (e.g., on the order of 400 generations,

assuming N¼ 104 and a moderately strong selection coeffi-
cient of s¼ 0.05, and 4,000 generations for s¼ 0.005), the
success of efforts to detect ongoing selection implies the
presence of a larger number of recently completed sweeps.
We have therefore focused on completed sweeps in order to
complement previous studies and to construct a more com-
prehensive catalogue of the loci underpinning recent human
adaptation. Using a powerful and robust machine learning
method that we have recently introduced (S/HIC; Schrider
and Kern 2016) for finding completed selective sweeps, we
performed a genome-wide search for the targets of recent
positive selection in six human populations. Furthermore, we
sought to determine the mode of positive selection, distin-
guishing between selection on de novo mutations and on
previously standing variation.

Soft Sweeps Dominate Human Adaptation
Perhaps our most consequential result is the finding that the
majority of our candidate sweeps resemble soft sweeps on
standing variation. This result implies that adaptation in

FIG. 4. Hard selective sweep near several SPATA31 spermatogenesis-associated genes. The S/HIC classification tracks show the raw classifier output
for each population (red¼ hard sweep, blue¼ soft sweep, light red¼ hard-linked, light blue¼ soft-linked, black¼ neutral). We also show the
values of various population genetic summary and test statistics (p, Tajima’s D, Kelly’s ZnS, and the SweepFinder composite likelihood ratio, or
CLR). To avoid clutter, we only show statistics from CEU.
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humans may not be mutation-limited (Gillespie 1991;
Karasov et al. 2010): rather than waiting for a novel mutation
to arise, human populations may often be able to respond via
selection on previously segregating polymorphisms, thereby
more rapidly responding to novel environmental challenges.
This may be surprising given the apparently small effective
population size and low nucleotide diversity levels in humans.
However, if the mutational target for the trait to be selected
on is fairly large, then the probability of a population harbor-
ing a mutation affecting that trait may be appreciable.

While soft sweeps appear to be the dominant mode of
selection globally, there is a significant increase in the propor-
tion of putative hard sweeps in non-African populations rel-
ative to African populations. This is consistent with
theoretical expectations, as larger populations have more
standing variation for selection to act on (Hermisson and
Pennings 2005). Moreover, the human migration out of
Africa was associated with a severe population bottleneck
(Marth et al. 2004; Fagundes et al. 2007). Soft selective sweeps

may be “hardened” by a reduction in population size, which
can result in the stochastic loss of some genetic backgrounds
harboring the adaptive allele so that only a single haplotype
reaches fixation (Wilson et al. 2014). Thus, though one might
expect selection on segregating neutral or nearly neutral var-
iation when a population enters a new environment with
novel selective pressures, if the migration event is accompa-
nied by a bottleneck then the population may experience a
somewhat counterintuitive increase in the proportion of hard
sweeps. Moreover, the causal relationship between popula-
tion size and mode of adaptation may not be unidirectional.
As Orr and Unckless (2014) have shown in the context of
evolutionary rescue, when faced with a changing environ-
ment, a population which does not harbor standing variation
that is beneficial may experience a more protracted decline in
size while it waits for an adaptive de novo mutation.

Our genome-wide results amplify results of earlier studies
that by design have tried to infer the mode of adaptation in a
smaller number of targeted loci. For instance Peter et al.
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FIG. 5. Soft selective sweeps near CADM1. The same tracks are shown as in figure 4.
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(Peter et al. 2012) attempted to infer the mode of adaptation
among 7 loci previously identified to be under selection in
human populations. They report that half of the loci that they
could confidently classify supported selection on standing
variation. In Drosophila melanogaster, when looking among
strong outliers of haplotype homozgosity, Garud et al. (2015)
found that patterns of variation in those regions were con-
sistent with recent soft selective sweeps. Our finding, that the
vast majority of sweeps in human populations are soft
sweeps, thus underscores the ubiquity of selection from
standing variation in natural populations. Indeed it seems
plausible that adaptation from standing variation might be
the rule, rather than the exception.

There are two caveats affecting our ability to discriminate
between selection on standing variation and on de novo
mutations. First, while we have trained our classifier to detect
soft sweeps on previously segregating mutations, soft sweeps
may also occur via recurrent mutation to the adaptive allele
(Pennings and Hermisson 2006a, 2006b). Though there are
some qualitative differences between these two models of
soft sweeps (Berg and Coop 2015; Schrider et al. 2015), these
are fairly subtle in comparison to the differences between the
other models we consider. Thus, our classifiers may have sen-
sitivity to both types of sweeps. If this is so, then some of the
soft sweeps that we detect may result from recurrent muta-
tion. Additionally, gene conversion during a sweep can trans-
fer the adaptive mutation on to new genetic backgrounds
(Jones and Wakeley 2008), thereby “softening” the sweep
(Schrider et al. 2015). This implies that selection on a single
de novo mutation could sometimes appear to be a soft sweep
in our classification. In any case, our finding that most sweeps
in humans do not appear to be hard sweeps underscores the
importance of using methods that are sensitive to soft
sweeps.

Extensive Impact of Linked Positive Selection
Our analysis demonstrates that the impact of linked positive
selection on genetic variation is considerable, with roughly
half of the genome classified by S/HIC as being influenced by a
nearby sweep. This result has important implications for ef-
forts to infer demographic histories from patterns of genetic
polymorphism, as most inference methods hinge on the as-
sumption of neutrality. Indeed, we have recently shown that
linked positive selection has the potential to severely con-
found demographic inferences (Schrider et al. 2016). Similarly,
Ewing and Jensen (2016) have found that background selec-
tion (Charlesworth et al. 1993) can also bias demographic
estimates. One strategy is to use only those polymorphisms
that are distant from genes and conserved noncoding ele-
ments to mitigate these effects (Gazave et al. 2014). One
could further supplement such an approach by using S/HIC
to directly ask which intergenic regions are unaffected by
hitchhiking in order to further diminish the bias introduced
by linked selection. We note that the putatively neutrally
evolving regions found in this study can be obtained from
our raw classification output (available at https://github.com/
kern-lab/shIC/tree/master/humanScanResults).

If linked positive selection affects much of the genome,
then that implies that the frequencies of many neutral or
weakly deleterious mutations may be altered by genetic draft
(Gillespie 2000). That is to say, deleterious mutations that
happen to reside on chromosomes that begin to sweep
may be able to reach higher frequencies than expected
from mutation-selection-drift equilibrium. Consistent with
this, we observe a slight but significant excess of potentially
deleterious polymorphisms in windows classified as linked to
selective sweeps. Previously, Chun and Fay (2011) found ev-
idence that the ratio of deleterious to neutral polymorphisms
is elevated in sweep regions, concluding that hitchhiking car-
ries linked deleterious variants to higher frequencies. Our
finding that SNPs from the GWAS catalogue are also enriched
regions linked to selective sweeps lends further support to
this hypothesis. Indeed, several compelling examples of hitch-
hiking mutations known or suspected of causing disease have
been described in the literature (Helgason et al. 2007; Chun
and Fay 2011; Huff et al. 2012). Moreover it seems that the
phenomenon of deleterious alleles hitchhiking along with
strongly beneficial alleles is not restricted to humans: a recent
study also uncovered evidence that selection during domes-
tication increased the frequency of deleterious polymor-
phisms in dogs (Marsden et al. 2016).

Targets of Recent Human Selective Sweeps
Our catalogue of sweep candidates allowed us to characterize
the biological functions that are overrepresented in sweeps.
Notably, we found a strong excess of spermatogenesis genes
within sweep regions, a phenomenon previously observed by
Voight et al. (2006). This signature may be a result of sexual
selection, sexual conflict, and/or sperm competition
(Swanson and Vacquier 2002). We also observed a significant
enrichment of cancer-related genes among our sweep candi-
dates. Nielsen, Bustamante, et al. (2005) found a similar en-
richment of candidate genes under selection related to cancer
when examining protein divergence between humans and
chimpanzees. These authors found that some of these genes
are also involved in spermatogenesis (much like our CADM1
example), and concluded that genomic conflict between tu-
mor suppression and the advantage of avoiding apoptosis
during spermatogenesis may explain the selection on cancer
genes. An alternative (and nonmutually exclusive) explana-
tion is that the increase in longevity along the human lineage
has created an immense selective pressure to reduce the rate
of cancer progression by orders of magnitude (Nunney and
Muir 2015).

We also observed a significant excess of glutamate receptor
genes targeted by sweeps, suggesting that these loci may un-
derlie some of the dramatic neurological changes that have
occurred along the human lineage. Consistent with this, we
previously found evidence suggesting some of these gluta-
mate receptor genes (along with other neurotransmitters)
may have recently gained novel regulatory elements in hu-
mans (Schrider and Kern 2015; Meyer et al. 2017). The most
striking examples of glutamate receptors experiencing sweeps
are GRIA2 and GRID2, which show strong signatures of selec-
tion in multiple populations and physically interact with one
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another. The action of positive selection on multiple mem-
bers of the protein complex appears to be a general phenom-
enon (fig. 3). For a more in-depth examination of positive
selection in the PPI network, see Qian et al. (2015), who found
that genes in candidate regions for positive selection were
more likely to lie close together in the PPI network.

Conclusions
Our investigation has revealed several valuable insights into
the adaptive process in human populations. The success of
our approach exemplifies the potential of machine learning
methods to elucidate the adaptive process in humans and
other species (Fan et al. 2016). To date several machine learn-
ing methods have been devised to detect selective sweeps
(Pavlidis et al. 2010; Lin et al. 2011; Ronen et al. 2013; Pybus
et al. 2015; Sheehan and Song 2016), and they tend to sub-
stantially outperform more traditional approaches (see
Schrider and Kern 2016). We suspect that machine learning
could be used to make important inroads in answering a
variety of evolutionary questions.

Finally, Hernandez et al. (2011) argued that hard selective
sweeps might be rare in human populations, and instead
suggested that the majority of adaptation might be a conse-
quence of selection on standing variation or selection on
polygenic traits. We here find direct evidence that indeed
this is the case—the vast bulk of human adaptation is occur-
ring as a consequence of soft sweeps. Our observation thus
reconciles Hernandez et al.’s findings with those of Enard
et al., who conclude that the reduction in diversity around
amino acid substitutions is caused by widespread selective
sweeps (Enard et al. 2014). Moreover, while our scan lever-
aged a method that performs very well in detecting both hard
and soft sweeps, it was not trained to detect cases of poly-
genic selection (Berg and Coop 2014). It is fair to assume that
a large majority of phenotypes are determined by multiple
loci, thus polygenic selection should be expected to be com-
mon. If that were the case, then it could very well be that an
even larger portion of genetic variation is influenced by nat-
ural selection and its linked effects throughout the genome.

Materials and Methods

Sequence and Annotation Data
We downloaded phased genotype data from Phase 3 of the
1000 Genomes Project (Auton et al. 2015). This data set con-
sists of 26 population samples from Africa, East Asia, South
Asia, Europe, and the Americas. We wished to include only
populations where the influence of admixture/migration on
genetic variation appeared to be minimal, while still allowing
us to characterize selection across multiple continents. We
therefore chose to scan the following populations for selective
sweeps: the GWD (Gambians in Western Divisions in The
Gambia) and YRI (Yoruba in Ibadan, Nigeria) populations
from West Africa, LWK (Luhya in Webuye, Kenya) from
East Africa, JPT (Japanese in Tokyo, Japan) from Asia, CEU
(Utah residents with Northern and Western European
Ancestry) from Europe, and PEL (Peruvians from Lima,
Peru) from the Americas. Examining Auton et al.’s results

from running ADMIXTURE (Alexander et al. 2009), we see
that for most values of K, each of these populations appears
to correspond primarily to a single ancestral population
rather than displaying multiple clusters of ancestry (see
Extended Data Figure 5 from Auton et al. 2015). One excep-
tion may be the PEL population, but among the highly ad-
mixed American samples it appears to exhibit the smallest
amount of possible mixed ancestry (for most values of K), so
we retained this population in order to have some represen-
tation from the Americas. We opted not to examine any
South Asian population, as for each of these samples
ADMIXTURE inferred evidence of ancestry from three or
more ancestral populations.

We downloaded numerous annotation data sets contain-
ing genomic features to test for enrichment/depletion of se-
lective sweeps and perform other downstream analyses.
These included GENCODE gene model release 19 (Harrow
et al. 2012) including pseudogenes (Pei et al. 2012), virus-
interacting proteins from Enard et al. (2016), enhancers
gained or along the human lineage since diverging from
Old World monkeys (Cotney et al. 2013), and SIFT’s
(Kumar et al. 2009) predictions of damaging amino acid poly-
morphisms from dbNSFP version 3.2a (Liu et al. 2016). We
obtained Gene Ontology (GO) annotations from ENSEMBL
release 75 (Yates et al. 2016). We also downloaded coordina-
tes of previously identified selective sweeps from dbPSHP (Li
et al. 2014).

We used the UCSC Table Browser (Karolchik et al. 2004) to
obtain the following data sets: phenotype-associated SNPs
from the GWAS Catalog (accessed Apr 12, 2016; Welter
et al. 2014), ClinVar pathogenic SNPs and indels� 20 bp in
length (Apr 26, 2016; Landrum et al. 2016), COSMIC somatic
mutations in cancer (accessed Feb 25, 2014; Forbes et al.
2015), phastCons elements conserved across primates (ac-
cessed Jun 2, 2013; Siepel et al. 2005), ENCODE transcription
factor binding sites version 3 (accessed Aug 25, 2013; Dunham
et al. 2012), tables of genes and SNPs implicated in Mendelian
phenotypes from OMIM (accessed May 2, 2016; Amberger
et al. 2015), and KEGG pathway annotations (accessed Apr
27, 2016; Kanehisa et al. 2015). For each of these data sets we
used GRCh37/hg19 coordinates.

In order to examine the prevalence of selective sweeps
within interacting gene networks, we downloaded physical
and genetic interactions from BioGRID version 3.4.136
(Chatr-Aryamontri et al. 2015). Our set of genetic interactions
consisted of those annotated as “synthetic genetic interaction
defined by inequality”, “suppressive genetic interaction defined
by inequality”, or “additive genetic interaction defined by in-
equality”. Physical interactions included those annotated as
“direct interaction”, “association”, or “physical association”.
We extracted transcription factor–target interactions from
ORegAnno (accessed Dec 22, 2015; Griffith et al. 2008), retain-
ing only interacting pairs where the ENSEMBL gene identifier
were provided for both genes in order to avoid ambiguity.

Building Classifiers to Detect Selective Sweeps
To detect sweeps we used S/HIC (https://github.com/kern-
lab/shIC), a machine learning approach we previously

Schrider and Kern . doi:10.1093/molbev/msx154 MBE

1872

Deleted Text: e.g. 
Deleted Text: METHODS
Deleted Text: a
Deleted Text: d
Deleted Text:  
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: &quot;
Deleted Text: -
Deleted Text: c
Deleted Text: d
Deleted Text: s
Deleted Text: s
https://github.com/kern-lab/shIC
https://github.com/kern-lab/shIC


described and showed to be remarkably powerful and robust
to nonequilibrium demography (Schrider and Kern 2016).
Briefly, the S/HIC machine learning approach leverages spatial
patterns (along a genome) of a variety of population genetic
summary statistics to classify genomic windows as being the
target of a completed hard sweep (hard), being closely linked
to a hard sweep (hard-linked), a completed soft sweep (soft),
linked to a soft sweep (soft-linked), or evolving neutrally (neu-
tral). While this classification approach allows inference when
considering a large number of features jointly, it necessitates
training from a large number of data instances known to
belong to each class. Because the number of genomic win-
dows known to belong to each our five classes is limited, we
must rely on simulation to generate our training data. To this
end we used the program discoal (Kern and Schrider 2016) to
simulate large chromosomal regions, subdivided into 11 sub-
windows. Training examples for the hard class experienced a
hard sweep in the center of the central sub-window (i.e., the
6th window), while examples for the hard-linked class expe-
rienced a hard sweep in the center of one of the remaining
sub-windows (selected randomly). Analogous simulations
with soft sweeps were generated for the soft and soft-
linked classes, respectively. Finally, neutrally evolving exam-
ples did not experience any selective sweep.

We sought to train a classifier for each population under a
demographic model that offers a better approximation to the
population size history than the standard neutral model. For
this we used Auton et al.’s (2015) population histories inferred
by PSMC (Li and Durbin 2011). The 1000 Genomes Project’s
PSMC output did not contain estimates of h, the population
mutation rate parameter. Thus for each population we con-
ducted a grid search by simulating genomic windows with the
appropriate sample size under each demographic model with
varying values of h¼ 4NuL (where L is the length of the locus,
which we set to 100 kb); the grid of h values raged from 10 to
250, examining multiples of 10. For each value of h, we com-
pared the values of p (Nei and Li 1979), ĥw (Watterson 1975),
ĥH (Fay and Wu 2000), H2/H1 (Garud et al. 2015), and ZnS

(Kelly 1997) from 1,000 simulations to those from 1,000 ran-
domly selected genomic loci (calculated as described below),
calculating the mean of each statistic in the real and simu-
lated datasets. We chose as the final values of h that for which
the sum of the percent deviations of the simulated from the
observed means of each statistic was minimized. This esti-
mate of h allowed us to calculate estimated population sizes
and times scaled by the number generations for each time
point in the history inferred by PSMC. The harmonic mean of
each population’s size was calculated by taking the estimated
population size for each of the last 4N generations. We note
that these models may not accurately capture the demo-
graphic histories of the populations we examined due to
the confounding effects of positive (Schrider et al. 2016)
and negative (Ewing and Jensen 2016) selection. However,
because of S/HIC’s robustness to demographic misspecifica-
tion, we do not expect this to severely impact our analysis
(Schrider and Kern 2016).

For each population we simulated a total of 2,000 regions
for each of our five classes. For simulations involving sweeps,

we drew the selection coefficient from U(0.005, 0.1), the
sweep completion time from U(0, 2000), the initial selected
frequency for soft sweeps from U(1/N, 0.2). We drew values of
h uniformly from a range spanning exactly one order of mag-
nitude, specified so that the mean value of h was equal to that
estimated for the population as described earlier. We drew
recombination rates from an exponential distribution with
mean 1� 10�8, truncated at triple the mean due to memory
constraints. The simulation program discoal requires some of
these parameters to be scaled by the present-day effective
population size; we did this by taking the mean value of h and
dividing by 4uL, where u was set to 1.2� 10�8 (Kong et al.
2012). The full command lines we used to generate 1.1 Mb
regions (to be subdivided into 11 windows each 100 kb in
length) for each population are shown in supplementary ta-
ble S5, Supplementary Material online. We also simulated
1,000 test examples for each population in the same manner
as for the training data.

In order to address the potential for purifying and back-
ground selection to confound our classifiers, we simulated
additional test sets of 1,000 genomic windows 1.1 Mb in
length with varying arrangements of selected sites. In order
to mimic patters of purifying/background selection expected
in the human genome as closely as possible, for each of our
1,000 replicates we randomly selected a 1.1-Mb window from
the human genome and asked which sites were found within
either a GENCODE exon (Harrow et al. 2012) or within a
phastCons (Siepel et al. 2005) conserved element from the
UCSC Genome Browser’s 100-way vertebrate alignment
(Kent et al. 2002). Sites in the simulated chromosome corre-
sponding to these functional elements in the human genome
were labeled as “selected” in the simulations. In “selected”
regions, 25% of all new mutations had no fitness effect, while
the remaining 75% had a selection coefficient drawn from a
gamma distribution with mean of�0.0294 and a shape pa-
rameter of 0.184 (the African model from Boyko et al. 2008).
We limit fitness effects of new mutations to 75% in an effort
to mimic coding regions of the genome. We note that this
percentage may not be accurate for noncoding functional
regions, though it is likely that some fraction of mutations
in these regions is effectively neutral. All mutations outside of
the selected regions were fitness-neutral. These simulations
were performed for both our GWD and JPT demographic
models using version 0.0.1 of the fwdpy11 (https://github.
com/molpopgen/fwdpy11) forward population genetic sim-
ulator (Thornton 2014), using the same mutation rates, re-
combination rates, and history of instantaneous population
size changes as used in our coalescent simulations described
in supplementary table S5, Supplementary Material online.
Feature vectors were then generated for each of these simu-
lated test examples in the same manner as for our coalescent
simulations. We also tested each population’s classifier against
test sets generated by discoal with different fixed values of h
(but otherwise with the same parameterizations shown in
supplementary table S5, Supplementary Material online) in
order to ensure that our approach was robust to uncertainty
in the estimate of this parameter (supplementary fig. S4,
Supplementary Material online).
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Our feature vector for each simulated region examined the
spatial patters (following Schrider and Kern 2016) of each of
the following statistics: p (Nei and Li 1979), ĥw (Watterson
1975), ĥH (Fay and Wu 2000), the number of distinct haplo-
types, average haplotype homozygosity, Garud et al.’s (2015)
H12 and H2/H1 statistics, ZnS, x (Kim and Nielsen 2004), and
the maximum frequency of derived mutations (Li 2011).
Before calculating these summary statistics we masked a
number of sites within each simulation by randomly selecting
a 1.1-Mb region from our empirical windows sampled
throughout the genome and masking the same regions in
the simulated window as were masked in the genomic win-
dow (see below). Thus our simulated windows exhibit the
same distribution of regions of missing data as the windows
to which we applied our classifiers. We then used S/HIC to
train extra-trees classifiers (Geurts et al. 2006), one for each
population.

Classifying Genomic Windows in Each Population
Having trained our classifiers, we then applied them to geno-
mic data from the corresponding population. We inferred
ancestral states of polymorphisms and masked inaccessible
sites (whether polymorphic or not) in the same manner as
described previously (Schrider and Kern 2016). We then used
S/HIC to classify the central 100-kb sub-window of 1.1-Mb
windows across the autosomes, while taking the stringent
approach of omitting those for which any sub-window was
<25% accessible, before sliding 100-kb downstream to exam-
ine the next window. We also removed windows where any of
the three central sub-windows had a mean recombination
rate of zero (using data from Kong et al. 2010). Importantly,
for each retained 1.1-Mb window, we recorded the locations
of all sites deemed inaccessible for use in masking our training
data (see above). In total we classified 13,968 windows, ac-
counting for 48.5% of the assembled autosomes. For our clas-
sifications we simply took the class that S/HIC’s classifier
inferred to be the most likely one, but we also used S/HIC’s
posterior class membership probability estimates in order to
experiment with different confidence thresholds (results
shown in supplementary table S2, Supplementary Material
online). For a given threshold, we required the sum of a win-
dows’ hard and soft sweep posterior probabilities to be
greater than or equal to the threshold before labeling the
window as a sweep; the mode of the sweep was that corre-
sponding to the greater posterior probability among the hard
and soft sweep classes.

In order to count the number of distinct sweep candidates
found within our set of populations, we simply merged all
100-kb windows classified as a sweep of either type that were
located either at the exact same coordinates or adjacent to
one another, repeating this until no more sweep regions
could be merged. If all constituent windows were classified
as soft, we counted the sweep as soft; otherwise we counted it
as a hard sweep. We used a similar approach but examining
classifications from only one population at a time in order to
count the number of sweeps of each type in that population.
If a gene found within a sweep window identified by S/HIC
was not found in an entry of dbPSHP (Li et al. 2014), we

referred to it as a novel sweep. Visualization of sweep candi-
dates was performed using the UCSC Genome Browser (Kent
et al. 2002), along with custom tracks showing values of var-
ious population genetic summary statistics and selection scan
scores for the CEU, YRI, and JPT populations from the Human
Positive Selection Browser (Pybus et al. 2014). Our classifica-
tion results are available at https://github.com/kern-lab/shIC/
tree/master/humanScanResults.

Permutation Tests for Enrichment of Annotation
Features in Sweeps
To determine whether certain annotation features were en-
riched within any of our five classes, we carefully designed a
permutation test to account for the subset of the genome
that we examined with S/HIC, as well as the spatial correlation
of S/HIC’s classifications (i.e., adjacent windows are especially
likely to receive the same classification). Briefly, the permuta-
tion algorithm begins by examining our classification results
for a given population and keeping track of the length of runs
of consecutive windows assigned to each class. The permu-
tation algorithm then selects a chromosome, and begins at its
first classified window (i.e., not removed by data filtering). A
run length and associated class assignment is then randomly
drawn without replacement. This process continues until the
end of the chromosome, and then another chromosome is
selected until the end of the final chromosome is reached, at
which point the permutation has been completed. We then
repeated this permutation procedure 10,000 times for each
population. Note that this process preserves the run length
distribution of our classifications while permuting them
across the set of genomic windows that had enough un-
masked data to be included in our scan.

After constructing our permuted data sets, we conducted
one-sided enrichment tests by counting the number of base
pairs in the intersection between the S/HIC class of interest
and the annotation feature of interest, and comparing this
number to its distribution among the permuted data sets.
The fraction of permuted data sets where this intersect was
greater than or equal to that observed for the real data is the P
value. Because we tested each of S/HIC’s five classes for en-
richment of a fairly large number of genomic features (sup-
plementary table S3, Supplementary Material online), we
corrected for multiple testing using false discovery rate q
values following Storey (2002). When testing GO terms and
KEGG pathways for enrichment, we considered only the hard
and soft sweep classes, corrected for calculating q values sep-
arately for each class.

We also asked whether the number of pairs of interacting
genes both overlapping windows classified as sweeps was
greater than in our permuted data sets. To ensure that our
results were not inflated by the spatial clustering of interact-
ing genes, we only counted interacting pairs overlapping
sweep windows if they were separated by at least 10 Mb or
on separate chromosomes. In addition, if we observed an
interaction between two genes, A and B, that each overlapped
sweeps, and a third sweep candidate gene, C, was found, to
avoid redundancy we counted at most one interaction be-
tween A and C and B and C, even if C was found interact with
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both other genes. As with GO and KEGG terms, we only
searched the hard and soft classes for enrichments before
calculating one-sided q values as described earlier.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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