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Abstract: Revisiting the classical model by Ross and Kermack-McKendrick, the Susceptible–Infectious–
Recovered (SIR) model used to formalize the COVID-19 epidemic, requires improvements which
will be the subject of this article. The heterogeneity in the age of the populations concerned leads to
considering models in age groups with specific susceptibilities, which makes the prediction problem
more difficult. Basically, there are three age groups of interest which are, respectively, 0–19 years,
20–64 years, and >64 years, but in this article, we only consider two (20–64 years and >64 years)
age groups because the group 0–19 years is widely seen as being less infected by the virus since
this age group had a low infection rate throughout the pandemic era of this study, especially the
countries under consideration. In this article, we proposed a new mathematical age-dependent
(Susceptible–Infectious–Goneanewsusceptible–Recovered (SIGR)) model for the COVID-19 outbreak
and performed some mathematical analyses by showing the positivity, boundedness, stability, ex-
istence, and uniqueness of the solution. We performed numerical simulations of the model with
parameters from Kuwait, France, and Cameroon. We discuss the role of these different parameters
used in the model; namely, vaccination on the epidemic dynamics. We open a new perspective of
improving an age-dependent model and its application to observed data and parameters.

Keywords: SIR model; COVID-19; age-dependent modeling; demographic model; epidemic model

1. Introduction
1.1. Background

The influence of the median age of a country on the incidence of COVID-19 has
been highlighted on numerous occasions, in particular through the appearance of many
asymptomatic cases in the age groups below 50. For example, on the site of Johns Hopkins
University dedicated to COVID-19 [1], data clearly shows this influence on the case fatality
rate corresponding to the cumulative deaths recorded 5 months after the beginning of the
outbreak (12 May 2020) vs. the median age of many countries in 2017 (Figure 1). This first
observation has been confirmed by many studies in different countries [2–22] such as in
France (Figure 2), and we will confirm in this paper that the age of the patients suffering
from COVID-19 is a good predictor of severity.

This severity among different age groups increased COVID-19 incidence at the start
of the pandemic in terms of hospitalization cases, intensive care unit (ICU) cases, prompt-
ing many countries to quickly implement intervention measures such as increasing the
number of beds and ventilators in their various hospitals and setting up new isolation
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centers in order to mitigate its spread and save lives, particularly the elderly, who were
disproportionately among those who were highly susceptible.
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Figure 1. Dependence of the case fatality rate (from cumulative deaths on the 20 May 2020) vs. me-
dian age of several countries in 2017 (from [1]). The area of a country circle is proportional to the 
number of cumulated deaths due to COVID-19 on the 20 May 2020, e.g., for the USA: 99,643 (in red). 

 

Figure 2. Top left: COVID-19 percentage of death in France by age class [23]. Bottom left: Influence 
of age (curves with color coding) on COVID-19 hospitalizations in France in the extreme age classes 
[23]. Bottom right: age classes pyramid in 2020 in France (total population size: 65,273,512) [24]. 
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Figure 1. Dependence of the case fatality rate (from cumulative deaths on the 20 May 2020) vs.
median age of several countries in 2017 (from [1]). The area of a country circle is proportional to the
number of cumulated deaths due to COVID-19 on the 20 May 2020, e.g., for the USA: 99,643 (in red).
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Figure 2. Top left: COVID-19 percentage of death in France by age class [23]. Bottom left: Influence of
age (curves with color coding) on COVID-19 hospitalizations in France in the extreme age classes [23].
Bottom right: age classes pyramid in 2020 in France (total population size: 65,273,512) [24].

1.2. Related Work

The heterogeneity in the age of the populations studied here (Kuwait, France, and
Cameroon) leads to considering a model in age groups with specific susceptibilities for each
age class, which makes the prediction problem of the new infectious growth more difficult.
Basically, there are three age groups of interest in the COVID-19 outbreak, which are, respec-
tively, 0–19 years, 20–64 years, and >64 years, but here we only consider two (20–64 years
and >64 years) age groups because the group 0–19 years is widely seen as being less infec-
tious by SARS-CoV-2 [21,22] since this age group had a low infection rate throughout the
period considered in this study, especially the countries data used for simulation.
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The heterogeneity in individual age and the reaction to biological and environmental
changes that have been observed in COVID-19 dynamics in terms of different reactions
to vaccination by age group, severity of infection per age group, hospitalization, and
intensive care unit (ICU) records show different patterns, which is why it is important to
improve mathematical models for COVID-19 pandemic prediction to account for different
proportions of ages in the population, which is a major factor in epidemic history [25]. In
some age classes (namely young and adult classes), all infectious are neither symptomatic
nor reported and some models incorporating asymptomatic [26], unreported [27], and
super-spreaders [28] have been proposed for the COVID-19 outbreak. Many authors have
also included age in their models as a gravity factor [29–33], but here, the originality is to
propose an improvement of the classical Ross and Kermack-McKendrick model and use it
for giving a theoretical and numerical framework for interpreting the relationship between
demographic parameters such as age pyramid, fertility and mortality, and epidemiological
parameters such as the basic reproduction number R0 and vaccination rate.

In subsequent sections, we present (i) in Section 2, the materials and methods, (ii) in
Section 3, the formulation of a new age-dependent dynamical model for the spread of
COVID-19, (ii) in Section 4, we provide some mathematical analyses of the model, (iii) in
Section 5, we carry out numerical simulations for some COVID-19 parameters from Kuwait,
France, and Cameroon; lastly (iv), in Sections 6 and 7, we provide a discussion and some
conclusions.

2. Material and Methods
2.1. Material

The data material is from public epidemiologic and demographic databases [23,24]
and the reference methods are both from classical demographic (such as Leslie) and epi-
demiologic (such as Ross and Kermack-McKendrick) models. In Figures 3 and 4, we present
visualizations for pandemic dynamics in different age groups and sexes for Kuwait and
Cameroon, respectively, to support the motivation for this article that pandemic evolu-
tion and severity are related to age classes, and thus modeling is important as various
researchers and health experts are investigating SAR-CoV-2 mutations. The countries
under consideration have a higher proportion of young people, while the elderly have a
lower proportion. Only 2% of the total population in Kuwait is over 65 and vulnerable
to the pandemic, whereas 20.8% of the population in France is over 65 and vulnerable
to the pandemic, and 2.7% of the population in Cameroon is over 65 and vulnerable to
the pandemic.
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2.2. Leslie Model

The first population growth model was proposed by Leslie in 1945 using the age
pyramid vector p(t) =

(
pj(t)

)
j=1,2,...,m

, where pj(t) represents the size of the age class j
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at time t, with j ranging from the birth age 1 to the maximal death age m, whose discrete
dynamics is governed by the matrix equation given as:

p(t) = Lp(t− 1)with L =
(

ljk
)
=



f1 f2 f3 . . . . . .
b1 0 0 . . . . . .
0 b2 0 . . . . . .
...

...
. . . . . . . . .

...
...

...
. . . . . .

0 0 0 . . . bm−1

fm
0
0
...
...
0


where ∀ j = 1, . . . , m, bj = 1 − µj ≤ 1 (where µj is the death rate at age j) is the survival
probability between ages j and j + 1 and f1 is the birth rate at age j (i.e., the mean number
of offsprings from an individual at age j). The dynamic stability of the Leslie system for
a distance d is quantified by the tendency to return to its stationary pyramid p* after a
perturbation p* + q, such as d(p*,Lm(p* + q)) < Ke−mD tends exponentially to 0, when m
goes to infinity, the parameter D being the stability module. For the L2 distance to the
stationary pyramid p*, D = |λ-λ’|, absolute value of the difference between the dominant
and sub-dominant eigenvalues of L, i.e., λ and λ’ (λ = er, where r is the Malthusian growth
rate, and p* is the left eigenvector of L corresponding to λ). For the distance (known as
symmetrized divergence) of Kullback–Leibler, D = kH, where H is the entropy of p* and k
is a constant [35–46].
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2.3. Volterra Integral

The Volterra integral equation of the second kind is given as:

S(t) = S(0) +
∫ t

0
H(t, ε)S(ε)dε

whereH(t, ε) is a kernel and S(t) is the function to be solved.

2.4. The Ross-McKendrick SIR Model

Bernoulli [47] proposed a model for explaining the smallpox dynamics and since
then, many discussions have occurred regarding the efficacy of firstly the inoculation and
secondly the vaccination [48–51]. In Bernoulli’s model, the population is divided into
susceptibles and immunized; the probability of belonging to them is denoted as u and v.
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The probability for a newborn individual susceptible and alive at age j and the probability
of being immunized and alive at age j is denoted as νj. Ross [52] and McKendrick [53]
(assisted later by W.O. Kermack) proposed an improvement of Bernoulli’s model called the
SIR model with the following equations:

dS
dt

= δS + δI + (δ+ γ)R− βSI− µS,
dI
dt

= βSI− (µ + ν)I,
dR
dt

= νI− (µ + γ)R

where S is the size of the susceptible, I the size of the infectious, and R the size of the
recovered with the total population N defined as N = S + I + R. β is the contagion rate, δ
the birth rate (supposed to be equal to the death rate), γ is the loss of immune resistance,
and ν is the immunization rate. The basic reproduction number R0 = βN

ν+δ is the mean
number of individuals secondarily infectious by one primary infectious. R0 predicts, if it is
greater than 1, the occurrence of an epidemic wave. By defining age classes between 1 and
m and by denoting Sj, Ij, Rj, j = 1, 2, . . . , m, each subpopulation of S, I, and R at age j, we
can define at any stationary state (S∗, I∗, R∗) the probabilities for a newborn individual of
being alive and either susceptible, infectious or immune at age j by the following formula:

u∗(j) =
Sj
∗

P∗
, v∗(j) =

Ij
∗

P∗
, w∗(j) =

Rj
∗

P∗
, where P∗ = Σi=1,m (Si + Ii + Ri)

That makes the link between the Bernoulli and the Ross and Kermack-McKendrick
models, but the weakness of the latter still resides in many insufficiencies and approximations:

• When the population size of either susceptible or infectious populations tends to be
very large, the quadratic term SI has to be replaced by a Michealian saturation term

SI
(k+S)( k ′+I)

• the immunized infectious or healthy carriers are neglected in the absence of real
information on their quantity and their influence on the spread of COVID-19;

• the total population size is supposed to be constant, the birth rate equaling the natural
mortality. The Bernoulli model [47] takes implicitly into account the birth rate, and
explicitly the natural mortality. The model by d’Alembert [54,55] improved Bernoulli’s
model by distinguishing the specific mortality due to the infectious disease from the
natural one, being more widely applicable than the model by Bernoulli which was
restricted to immunizing infections. In the d’Alembert method, the only task was to
calculate the survival function after eliminating the particular cause of death due to
the infectious disease, but Bernoulli’s approach provided much more insight for a
mechanistic interpretation of infectious disease real data;

• variables and parameters do not depend on space, i.e., neither migration nor popula-
tion displacement;

• parameters do not depend on time which means no genetic adaptation of an infectious
agent or a human population, even if it is very slow compared to the fast dynamics
of epidemics.

Our proposed model is an improvement of the Ross and Kermack-McKendrick model
by trying to compensate for a part of these defects. We will first introduce two age classes
to account for adults and the elderly in the population and then take account of vaccination
before applying our model to some countries chosen as examples.

3. New SIGR Model Formulation

We propose a Susceptible–Infectious–Goneanewsusceptible–Recovered (SIGR) model
as an improvement of the Ross and Kermack-McKendrick models including age class and
vaccination state for COVID-19 in a given population. Neglecting differences between
kids and young adults, we only retain two age classes: adult and elderly, 1 and 2. We
assume that all infectious are symptomatic and we consider birth and natural death rates
ß and µ, as well as specific fatality rate ε due to the disease. Age groups (i = 1,2) concern
individuals susceptible, infectious Ii, gone anew susceptible Gi, and a fully recovered and
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resistant Ri. We denote for each age group (i = 1,2) the transmission rates ϕi , fertility,
and loss of resistance rates βij (supposed to be equal inside an age class, for the sake of
simplicity), natural death rates µ2

S, µ2
I, µ2

G and µ2
R, vaccination rates group θG

i and θR
i ,

survival rates from age 1 to age 2 aS
1, aI

1, aG
1 and aR

1 , specific death rate due to the disease
εi , relapsed rate ηi and recovery rate γi (cf. Table 1).

Table 1. List of the parameters considered in the SIGR (Susceptible–Infectious–Goneanewsusceptible–
Recovered) model.

Epidemiologic Parameters

Si
Susceptible individuals of age class i among age classes, adult 1 and

elderly 2.

Ii Infectious individuals of age class i

Gi Gone anew susceptible individuals of age class i

Ri Fully recovered and resistant individuals of age class i

Ro Basic reproduction number

φi Transmission rate of age class i

ηi Relapsed rate of age class i

γi Recovering rate of age class i

a1
K Survival rate from age 1 to age 2 for compartment K of age class 1

µ2
K Natural death rate of compartment K of age class 2

Demographic Parameters

βi1 Birth and loss of resistance of recovered from compartments of age class i

β22 Loss of resistance of recovered rate from compartments of age class 2

θi
K Vaccination rate from compartment K of age class i

εi Specific fatality rate ε due to the disease of age class i

The description above can be illustrated by the following set of non-linear differential
Equation (1), while the graphical representation of the model is given in Figure 5:

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

22 

11 
Infectious 

Reversible 
recovering 

Definitive 
recovering 

Figure 5. Age-dependent scheme for COVID-19 outbreak modeling.
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dS1/dt = β11 (S1 + G1 + R1) + β21(S2 + G2 + R2) –
(

aS
1 + θ

G
1 + θR

1 +ϕ1(I1 + I2))S1

dS2/dt = aS
1S1 – µ2

SS2 −
(
θG

2 + θR
2 +ϕ2(I1 + I2))S2 + β22(G2 + R2)

dI1/dt = ϕ1(I1 + I2)S1 − (aI
1 + η1)I1

dI2/dt = ϕ2(I1 + I2)S2 + aI
1I1 − η2 I2 – µ2

II2

dG1/dt = η1I1+ θ
G
1 S1 –

(
aG

1 + γ1 + ε1)G1

dG2/dt = η2I2+ aG
1 G1 + θG

2 S2 –
(
γ2 + µ2

G + ε2 + β22)G2

dR1/dt = γ1G1 + θ
R
1 S1 − aR

1 R1

dR2/dt = γ2G2 + θ
R
2 S2 + aR

1 R1 – (µ2
R + β22)R2

(1)

with S1(t) ≥ 0, S2(t) ≥ 0, I1(t) ≥ 0, I2(t) ≥ 0, G1(t) ≥ 0, G2(t) ≥ 0, R1(t) ≥ 0, R2(t) ≥ 0.
We will suppose in the following that the loss of resistance rates is neglectable.

4. Mathematical Analysis of the Model
4.1. Positivity of the Solution

Lemma 1. Let the initial condition be given as follows:
{S1(0), S2(0), I1(0), I2(0), G1(0), G2(0), R1(0), R2(0) ≥ 0}, then solutions of system of
Equation (1) are positive for all t > 0.

Proof From the first equation in the model Equation (1), we obtain:

dS1/dt = β11 (S1 + G1 + R1) + β21 (S2 + G2 + R2) –
(

aS
1 + θ

G
1 + θR

1 +ϕ1(I1 + I2))S1,

Hence, dS1/dt ≥ (β11 − aS
1 − θ

G
1 − θR

1 ) S1
By using the separating variable method and then, integrating, we obtain:∫ dS1/dt

S1
≥
∫ (

β11 − aS
1 − θG

1 − θR
1

)
dt

ln S1 ≥
(
β11 − aS

1 − θG
1 − θR

1

)
t + k

Finally, by writing S1(0) = ek, we have: S1(t) ≥ S1(0)e(β11−aS
1−θ

G
1 −θ

R
1 )t ≥ 0.

By applying the same process to other equations in (1), we have:

S2(t) ≥ S2(0)e(a
S
1−θ

G
2 −θ

R
2−µ2

S)t ≥ 0

I1(t) ≥ I1(0)e−(a
I
1+η1)t ≥ 0

I2(t) ≥ I2(0)e−(η2 I2+ µ2
I)t ≥ 0

G1(t) ≥ G1(0)e−(a
G
1 +γ1+ε1)t ≥ 0

G2(t) ≥ G2(0)e−(γ2+ µ2
G+ε2)t ≥ 0

R1(t) ≥ R1(0)e−aR
1 t ≥ 0

R2(t) ≥ R2(0)e−µ2
Rt ≥ 0

Then, the solutions of Equation (1) {S1(t), S2(t), I1(t), I2(t), G1(t), G2(t), R1(t), R2(t)}
are positive for all t > 0. �
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4.2. Boundedness of the Solution

Let denote by S the total size of all individuals:

S(t) = S1(t) + S2(t) + I1(t) + I2(t) + G1(t) + G2(t) + R1(t) + R2(t)

Then, by adding all the model Equations (1), we have:

dS/dt = β11 (S1 +G1 +R1)+β21 (S2 +G2 +R2) – (µ2
SS2 + µ2

II2 + µ2
GG2 + εG2 + µ2

RR2

Let us denote µ = inf{µ2
S, µ2

I, µ2
G+ε, µ2

R}. By neglecting the fecundity rate of the
young class and if β = β21 ≤ µ, we have:

dS/dt ≤ β(S2 + I2 + G2 + R2) – µ(S2 + I2 + G2 + R2) ≤ 0,
Then, we can conclude that the total size S is bounded, which implies the boundedness

of the partial sizes S1(t), S2(t), I1(t), I2(t), G1(t), G2(t), R1(t), R2(t).

4.3. Disease-Free (Eradication) Equilibrium

Setting the right hand side of the model equations (1) to zero, i.e.,

dS1/dt = dS2/dt = dI1/dt = dI2/dt = G1/dt = dG2/dt = dR1/dt = dR2/dt = 0

and supposing that all infectious class sizes are equal to zero which means that there is no
disease eradication in the studied population, thus the disease-free equilibrium state is:

(S1
∗, S2

∗, I1
∗, I2

∗G1
∗, G2

∗, R1
∗, R2

∗) =

{
β21 S2

aS
1 + θ

G
1 + θR

1 − β11
,

aS
1S1

µ2
S + θG

2 + θR
2

, 0, 0, 0, 0, 0, 0

}

4.4. Proof of Stability of the Endemic State

Let us fix a set of values for the model parameters, where k is a scale parameter:

ϕ1 = ϕ2 =
4k2

100
, µ2

S = ε1 = β22 = 0, µ2
I =

499k
100

, µ2
G =

49k
100

, µ2
R =

2k
5

, β11 = β21 =
k
5

,

θG
1 = θR

1 = γ1 = γ2 = 0.1k, θG
2 = θR

2 = k, aS
1 = aI

1 = aG
1 = aR

1 =
98k
96

, ε2 =
4k
5

, η1 = η2 = 0.2k

The two stationary points are labeled with * (resp. **) for the eradication (resp. en-
demic) state:

(S1
∗, S2

∗, I1
∗, I2

∗G1
∗, G2

∗, R1
∗, R2

∗) =

(
β21 S2

aS
1 + θ

G
1 + θR

1 − β11
,

aS
1S1

µ2
S + θG

2 + θR
2

, 0, 0, 0, 0, 0, 0

)
and

(S1
∗∗, S2

∗∗, I1
∗∗, I∗∗, G1

∗∗, G2
∗∗, R1

∗∗, R2
∗∗) = (10, 10, 10, 10, 20, 40, 15, 15), if k = 1.

Let us show that the endemic state is locally stable. With the chosen parameter values
and k = 1, from the model Equation (1), we have:

dS1/dt = 0.2G1 − 1.02S1 + 0.2R1 + 0.2S2 + 0.2G2 + 0.2R2 − 0.04I1S1 − 0.04I2S1

dS2/dt = 1.02S1 − 2S2 − 0.04I1S2 − 0.04I2S2

dI1/dt = 0.04I1S1 + 0.04I2S1 − 1.04I1

dI2/dt = 0.04I1S2 + 0.04I2S2 + 1.02I1 − 5.19I2

(2)

dG1/dt = 0.2I1 + 0.1S1 − 1.12G1

dG2/dt = 0.2I2+1.02G1 + S2 − 1.39G2
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dR1/dt = 0.1G1 + 0.1S1 − 1.02R1

dR2/dt = 0.1G2 + S2 + 1.02R1 – 0.4R2

By calculating the Jacobian matrix M of the system of Equation (2) at the endemic state,
where I is the identity matrix and finding the roots of its characteristic polynomial PM, we
have for the second stationary point the expression as follows:

M− λI =



−1.02− λ 0.2 −0.4 −0.4 0.2 0.2 0.2 0.2
1.02 −2− λ −0.4 −0.4 0 0 0 0
0.8 0 −1.04− λ 0 0 0 0 0
0 0.8 1.02 −5.19− λ 0 0 0 0

0.1 0 0.2 0 −1.12− λ 0 0 0
0 1 0 0.2 1.02 −1.39− λ 0 0

0.1 0 0 0 0.1 0 −1.02− λ 0
0 1 0 0 0 0.1 1.02 −0.4− λ


The roots of the characteristic polynomial of M, PM, satisfy:

PM(λ) = det(M− λI ) = (λ+ 0.706923)(λ+ 5.13103)
(
λ2 + 0.973528λ+ 0.34052)(

λ2 + 2.0371λ+ 1.03861
)(
λ2 + 3.69142λ + 3.53083

)
= 0

The real parts of the eigenvalues of the matrix M are all negative, equal to:
−0706923, −5.13103, −0.486764, −1.01855, −1.84571
Hence, with the set of chosen parameter values, the stability of the endemic state

is proved.

4.5. Existence and Unicity of the Solution

We want to establish existence and unicity of the solution for the model Equation (1).
Let us denote the second member of (1) byH = (H1,H2,H3,H4,H5,H6,H7,H8) and the
state vector by Z = (S1, S2, I1, I2, G1, G2, R1, R2) , with Z(0) = Zo, Z(t, ε) = H(t, ε)Z(t).
The Volterra integral equation formulation of the model Equation (1) is the following:

S1(t) = S1(0) +
∫ t

0 H1(t, ε)S1(ε)dε

S2(t) = S2(0) +
∫ t

0 H2(t, ε)S2(ε)dε

I1(t) = I1(0) +
∫ t

0 H3(t, ε)I1(ε)dε

I2(t) = I2(0) +
∫ t

0 H4(t, ε)I2(ε)dε

G1(t) = G1(0) +
∫ t

0 H5(t, ε)G1(ε)dε

(3)

G2(t) = G2(0) +
∫ t

0 H6(t, ε)G2(ε)dε

R1(t) = R1(0) +
∫ t

0 H7(t, ε)R1(ε)dε

R2(t) = R2(0) +
∫ t

0 H8(t, ε)R2(ε)dε

Let S1 be the solution for S1 and kernelsHI, i = 1, 2, . . . , 8 satisfy Lipschitz conditions:
sup0<t≤1‖S1‖ ≤ c1, sup0<t≤1‖S2‖ ≤ c2, sup0<t≤1‖I1‖c3, sup0<t≤1‖I2‖c4, sup0<t≤1‖G1‖ ≤
c5, sup0<t≤1‖G2‖ ≤ c6, sup0<t≤1‖R1‖ ≤ c7, sup0<t≤1‖R2‖ ≤ c8 and ci > 0,
for i = 1, 2, . . . , 8. Then, following inequalities hold, using triangle inequality and proper-
ties of theH′i s norm:
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‖H1(S1)−H1(S1)‖ ≤
[
β11 –

(
aS

1 + θ
G
1 + θR

1 + ϕ1(I1 + I2)
)]

S1 −
[
β11 – (aS

1 + θ
G
1 + θR

1 + ϕ1(I1 + I2))
]
S1‖

≤ ‖β11 –(aS
1 + θ

G
1 + θR

1 + ϕ1(I1 + I2))‖‖S1 − S1‖

≤ ‖β11 – (aS
1 + θ

G
1 + θR

1 + ϕ1c3 +ϕ1c4)‖‖S1 − S1‖

= ∂1‖S1 − S1‖

where ξ = β11 (G1 + R1) + β21 (S2 + G2 + R2), ∂1 = β11 – aS
1 − θ

G
1 − θR

1 − ϕ1c3 −ϕ1c4.
Therefore, H1 satisfies the Lipschitz conditions. We can show in the same way that

other functionsHi, i = 2, . . . , 8 in the model Equation (2) satisfy the Lipschitz conditions
as follows:

‖H2(S2)−H2(S2) ≤ ‖ ∂2‖S2 − S2‖

‖H3(I1)−H3(L1) ≤ ‖∂3‖I1 −L1‖

‖H4(I2)−H4(L2) ≤ ‖ ∂4‖I2 −L2‖

‖H5(G1)−H5(G1) ≤ ‖ ∂5‖G1 − G1‖

‖H6(G2)−H6(G2) ≤ ‖ ∂6‖G2 − G2‖

‖H7(R1)−H7(<1) ≤ ‖ ∂7‖R1 −<1‖

‖H8(R2)−H8(<2) ≤ ‖ ∂8‖R2 −<2‖

Let us now consider the following Neumann series:

S1m(t) = S1(0) +
∫ t

0 H1(t, ε)S1m−1(ε)dε

S2m(t) = S2(0) +
∫ t

0 H2(t, ε)S2m−1(ε)dε

I1m(t) = I1(0) +
∫ t

0 H3(t, ε)I1m−1(ε)dε

I2m(t) = I2(0) +
∫ t

0 H4(t, ε)I2m−1(ε)dε

G1m(t) = G1(0) +
∫ t

0 H5(t, ε)G1m−1(ε)dε

G2m(t) = G2(0) +
∫ t

0 H6(t, ε)G2m−1(ε)dε

R1m(t) = R1(0) +
∫ t

0 H7(t, ε)R1m−1(ε)dε

R2m(t) = R2(0) +
∫ t

0 H8(t, ε)R2m−1(ε)dε

These Neumann series are convergent due to the Lipschtizian character ofH′s, then:

‖S1m+1 − S1m‖ ≤
∫ t

0 ‖H1(t, ε)S1m(ε)−H1(t, ε), S1m−1(ε)dε‖

≤
∫ t

0 ‖S1m(t)− S1m−1(t)‖dε ≤ ∂1‖S1m(t)− S1m−1(t)‖∞
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Other equations are given as follows:

‖S2m+1 − S2m‖ ≤ ∂2‖S2m(t)− S2m−1(t)‖∞

‖I1m+1 − I1m‖ ≤ ∂3‖I1m(t)− I1m−1(t)‖∞

‖I2m+1 − I2m‖ ≤ ∂4‖I2m(t)− I2m−1(t)‖∞

‖G1m+1 −G1m‖ ≤ ∂5‖G1m(t)−G1m−1(t)‖∞

‖G2m+1 −G2m‖ ≤ ∂6‖G2m(t)−G2m−1(t)‖∞

‖R1m+1 − R1m‖ ≤ ∂7‖R1m(t)− R1m−1(t)‖∞

‖R2m+1 − R2m‖ ≤ ∂8‖R2m(t)− R2m−1(t)‖∞

The above inequalities prove the existence of the function H. We now show the
uniqueness of the solution by assuming that the kernelsHi, i = 1, 2, . . . , 8 are separable,
i.e.,H1(t, ε) = ∅(t)σ(ε). By denoting:

ζ(t) =
∫ t

0
S1(ε)σ(ε)dε

then, because S1(t) = S1(0) +
∫ t

0 H1(t, ε)S1(ε)dε = S1(0) +
∫ t

0 ∅(t)σ(ε)S1(ε)dε, we have:

ζ ′(t) = ∅(t)σ(t)ζ(t) + S1(0)σ(t)

If σ(0) = 0, the solution ζ(t) follows ζ(t) = e
∫ t

0 ∅(ε)σ(ε)dε and from the definition of
ζ(t), the solution of S1(t) is given as:

S1(t) = S1(0) +∅(t)
∫ t

0
S1(ε)σ(ε)dε = S1(0) +∅(t)ζ(t) = S1(0) +∅(t)e

∫ t
0 ∅(ε)σ(ε)dε

Hence, by the unicity of the solution ζ(t), there exists just only one continuous solution
for S1(t). Following the same approach, we can obtain a unique solution for the remaining
equations of the system (2).

4.6. Basic Reproduction Number

In this section, we apply the idea of a next-generation matrix by linearizing the model
Equation (1) near the endemic state, for the infectious part of the system (1), and we obtain:

dI1/dt = ϕ1(I1 + I2)S1
∗∗ − (aI

1 + η1)I1 ,

dI2/dt = ϕ2(I1 + I2)S2
∗∗ + aI

1I1 − η2I2 − µ2
II2,

dG1/dt = η1I1+ θ
G
1 S1

∗∗ –
(
aG

1 + γ1 + ε1)G1,

dG2/dt = η2I2+ aG
1 G1 + θG

2 S2
∗∗ –

(
γ2 + µ2

G + ε2 + β22)G2

(4)

By summing Equation (4) and by denoting I as the size of all infectious, we have:
I(t) = I1(t) + I2(t) + G1(t) + G2(t), and
dI/dt = ϕ1(I1 + I2)S1

∗∗ + ϕ2(I1 + I2)S2
∗∗ − µ2

I I2+ θ
G
1 S1

∗∗ − (γ1 + ε1)G1 − (γ2 +
ε2 + β22)G2

The matrix J of the linearized system near a state (S1, S2) is:

J =


ϕ1S1 − aI

1 − η1 ϕ1S1 0 0
ϕ2S2 + aI

1 ϕ2S2 − η2 − µ2
I 0 0

η1 0 −aG
1 − γ1 − ε1 0

0 η2 aG
1 −γ2 − µ2

G − ε2 − β22


The corresponding characteristic polynomial PJ(λ) is equal to:
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(ϕ1S1 − aI
1 − η1 − λ)(ϕ2S2 − η2 − µ2

I − λ)
(
−aG

1 − γ1 − ε1 − λ
) (
−µG

2 − γ2 − ε2 − β22 − λ
)

− ϕ1S1
(
ϕ2S2 + aI

1
)(
−aG

1 − γ1 − ε1 − λ
)(
−µG

2 − γ2 − ε2 − β22 − λ
)
= PJ(λ)

The positive eigenvalues of J are roots of the following polynomial:

λ2 −
(
ϕ1S1 − aI

1 − η1 +ϕ2S2 − η2 − µ2
I
)
λ− ϕ1S1

(
ϕ2S2 + aI

1

)
+ (ϕ1S1 − aI

1 − η1)(ϕ2S2 − η2 − µ2
I)

These roots are equal to: B ± (B2 − C)1/2, where B and C are equal to:

B =
ϕ1S1−aI

1−η1+ϕ2S2−η2− µ2
I

2

C = − ϕ1S1
(
ϕ2S2 + aI

1
)
+ (ϕ1S1 − aI

1 − η1)(ϕ2S2 − η2 − µ2
I)

Then, we have:

B + (B2 −C)1/2 =
ϕ1S1−aI

1−η1+ϕ2S2−η2− µ2
I

2 +[
(ϕ1S1−aI

1−η1+ϕ2S2−η2− µ2
I)

2

4 + ϕ1S1
(
ϕ2S2 + aI

1
)
− (ϕ1S1 − aI

1 − η1)(ϕ2S2 − η2 − µ2
I)]1/2

Hence, near unstable endemic state the positive dominant eigenvalue Λ is equal to:

Λ=
ϕ1S1 − aI

1 − η1 +ϕ2S2 − η2 − µ2
I

2
+[

(ϕ1S1 − aI
1 − η1 −ϕ2S2 + η2 + µ2

I)
2

4
+ ϕ1S1

(
ϕ2S2 + aI

1

)
]1/2

Therefore, the basic reproduction number R0 equal to Λ near the endemic stationary
state depends mainly on the infection rates ϕ1 and ϕ2, when the sizes S1 and S2 are
sufficiently important. If after a change of parameter values, the endemic state becomes
unstable and R0 is becoming more than 1, then an epidemic wave starts.

5. Numerical Simulation of the Model: Some Examples of the COVID-19 Outbreak in
Kuwait, France and Cameroon

First, we provide some explanations for the data used for the simulations, including
how we assumed some of the parameters, calculated others, and selected some from the
literature cited in this article. In order to determine the susceptible classes sizes, we used
Wikipedia data on the three studied countries to obtain their total population size. We then
calculated the ratio between the young and elderly from the data presented in Figures 2–4
and used this ratio to determine the sizes value for the two susceptible classes at the
exponential phase considered (for Kuwait 28 December 2020, France 30 October 2021, and
Cameroon 19 September 2021), because the Ross and Kermack-McKendrick model is only
suited for the exponential growth phase of an epidemic wave. Because the progression
rates to the classes reversed recovery and fully recovered in Figure 5 are not zero, we
assumed that they should have some populations at the start of the wave, even if they
were small. The transmission rate for Cameroon was chosen at the start of the second
wave in January 2021 from [56,57], for France at the start of the fifth wave in December
2021 [58], and for Kuwait at the start of the fourth wave in December 2021 [59]. The values
of specific death rates due to disease and natural death rates for Kuwait and France were
taken from [58–60]. For Cameroon, the natural death rate was taken from [61], while the
specific death rate due to disease was calculated from the cumulated deaths number due to
the disease in two years divided by the cumulated infectious number in these two years [61].
The vaccination rate was chosen from [62], while the loss of resistance was chosen from [63].
Other parameters were assumed.

5.1. COVID-19 Outbreak in Kuwait

We have chosen the following set of parameter values corresponding to the COVID-19
outbreak at the start of the fourth wave in December 2021 in Kuwait:
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ϕ1 = 1.7,ϕ2 = 0.9,µ2
S = 0.003, ε1 = 0.28,β22 = 0, µ2

I = 0.0025,µ2
G =

0.002, µ2
R = 0.0021 , β11 = 2.1 ,β21 = 2.3 , θG

1 = 0.765, θR
1 = 0.678,γ1 =

0.62,γ2 = 0.74, θG
2 = 0.45 , θR

2 = 0.33, aS
1 = 0.7, aI

1 = 0.54, aG
1 = 0.65, aR

1 =

0.8, ε2 = 0.19 ,η1 = 0.3 and η2 = 0.38.

with initial values for S1 = 4413099, S2 = 51422, I1 = 65, I2 = 194, G1 = 20, G2 = 17, R1 = 30
and R2 = 73.

We present the visualization results for the simulated values in Figure 6.
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5.2. COVID-19 Outbreak in France

We have chosen the following set of parameter values corresponding to the COVID-19
outbreak at the start of the fifth wave in December 2021 in France:

ϕ1 = 1.2,ϕ2 = 0.9,µ2
S = 0.009, ε1 = 0.28,β22 = 0, µ2

I = 0.0025, µ2
G =

0.002, µ2
R = 0.0021 , β11 = 1.9,β21 = 2.2, θG

1 = 0.735, θR
1 = 0.678,γ1 =

0.62,γ2 = 0.74, θG
2 = 0.45, θR

2 = 0.33, aS
1 = 0.7, aI

1 = 0.54, aG
1 = 0.65, aR

1 =

0.8, ε2 = 0.19,η1 = 0.3 and η2 = 0.38.

with initial values for S1 = 53372880, S2 = 14017120, I1 = 3912, I2 = 1757, G1 = 200, G2 = 170,
R1 = 300 and R2 = 730.

We present the visualization results for the simulated values in Figure 7.
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5.3. COVID-19 Outbreak in Cameroon

We choose the following set of parameter values corresponding to the COVID-19
outbreak at the start of the second wave in January 2021 in Cameroon:

ϕ1 = 1.3,ϕ2 = 0.9,µ2
S = 0.009, ε1 = 0.28,β22 = 0, µ2

I = 0.0025, µ2
G =

0.002, µ2
R = 0.0021 , β11 = 4.5,β21 = 4.1, θG

1 = 0.024, θR
1 = 0.678,γ1 =

0.62,γ2 = 0.74, θG
2 = 0.45, θR

2 = 0.33, aS
1 = 0.7, aI

1 = 0.54, aG
1 = 0.65, aR

1 =

0.8, ε2 = 0.19,η1 = 0.3 and η2 = 0.38.

with initial values for S1 = 25828973, S2 = 721027, I1 = 151, I2 = 21, G1 = 75, G2 = 33, R1 = 56
and R2 = 64.

We present the visualization results for the simulated values in Figure 8.
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6. Discussion

The results for the three considered countries present some similarities but also some
differences that we will discuss in the following.

First, in each case, the exponential growth of the infectious I1 + I2 and completely
recovering R1 + R2 populations sizes correspond roughly to the data given in [57]. The
model simulations give more, i.e., allows to see the part brought by each age class to the
global growth.

Second, for Kuwait, Figure 6 shows a faster growth of infectious (I) in the young class
(≤65 years) than in the older class (>65 years), which is also the case for France (Figure 7)
and for Cameroon (Figure 8). On the other hand, this phenomenon is reversed in the three
countries, with regard to the growth of populations immunized in a transient manner (G)
and in a lasting manner (R). The phenomenon is more marked for Kuwait than for France,
France itself having a more marked difference than for Cameroon. This is partly explained
by the better vaccination rate of Kuwait than that of France and Cameroon in the young
class, the effectiveness of the vaccination (which decreases in the older class) having been
assumed to be equal for the three countries.

7. Conclusions

Taking age into account in modeling the COVID-19 pandemic makes it possible
to simulate the differential dynamic behavior of the growth of infectious and immune
populations, young and old, in order, for example, to adjust the vaccine policy according
to the age. Future work should, for example, take into account more age groups, at least
four: children (age ≤ 12 years), adolescents (12 years < age ≤ 18 years), young adults
(18 years < age ≤ 65 years), and older adults (>65 years). The most important pitfall in
simulations of such a model is the estimation (by observation, calculation, or assumption) of
its parameters, already difficult with two age groups. A random choice of the values of the
parameters in plausible intervals followed by a study of the sensitivity to the parameters of
the model, could make it possible to partly overcome the constraint of parameter estimation
in a more precise future epidemiological–demographic model, in particular with regard to
age groups.

Another perspective would consist in introducing, thanks to Usher’s model [41,42],
an accelerated aging due to infection, as well as an influence of exogenous determinants
such as geo-climatic, socio-economic, and health-related factors [64–76], which weight
differently on the different age groups, therefore, changing the growth dynamics specific to
each of the sub-populations studied in this article. These perspectives will be examined in
future works.
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