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Abstract. Huntingtin (HTT) is a scaffold protein mostly known because it gives rise to the severe and incurable inherited
neurological disorder Huntington’s disease (HD) when mutated. The Huntingtin gene (HTT) carries a polymorphic trinu-
cleotide expansion of CAGs in exon 1 that ranges from 9 to 35 in the non-HD affected population. However, if it exceeds 35
CAG repeats, the altered protein is referred to as mutant HTT and leads to the development of HD. Given the wide spectrum
of severe symptoms developed by HD individuals, wild-type and mutant HTT have been mostly studied in the context of this
disorder. However, HTT expression is ubiquitous and several peripheral symptoms in HD have been described, suggesting
that HTT is of importance, not only in the central nervous system (CNS), but also in peripheral organs. Accordingly, HTT
and mutant HTT may interfere with non-brain-related diseases. Correlative studies have highlighted a decreased cancer inci-
dence in the HD population and both wild-type and mutant HTT have been implicated in tumor progression. In this review,
we describe the current evidence linking wild-type and mutant HTT to cancer and discuss how CAG polymorphism, HTT
function, and partners may influence carcinogenesis and metastatic progression.
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INTRODUCTION

Huntingtin (HTT) is a large scaffold protein of
350 kDa, conserved from flies to mammals, that has
been mostly studied in the context of Huntington’s
disease (HD), a rare inherited neurological disorder.
HTT carries a polymorphic expansion of glutamine
in its N-terminal sequence encoded by CAG repeats
in its gene, HTT [1]. CAG repeats range from 9 to
35 CAGs in the non-HD population, with an aver-
age between 17 and 20 repeats (Fig. 1) [2]. When
above 35 CAGs, it leads to the development of HD,
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generally during adulthood, with a lower penetrance
observed in carriers of 36 to 39 repeats [3–5]. Indi-
viduals carrying alleles with an intermediate number
(between 27 and 35 CAGs) may display some aspects
of the disease [6, 7].

HD symptoms, including motor, cognitive, and
psychiatric disturbances, are severe and ultimately
lead to dementia [8]. Thus, much effort has been
focused on understanding the molecular mechanisms
leading to HD in the central nervous system (CNS)
and the function of HTT has been mostly described in
cells of neuronal origin. HTT participates in numer-
ous cellular functions essential for the physiology of
the CNS, such as cell division, transcriptional regu-
lation, and intracellular transport [9]. It is subjected
to multiple post-translational modifications including
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Fig. 1. The CAG polymorphism in HTT is associated with Huntington disease and cancer risk and evolution.

acetylation, sumoylation, ubiquitination, palmitoyla-
tion, and phosphorylation, which regulate its function
and toxicity in HD [9]. However, HTT is widely
expressed in the body and accumulating evidence
suggests that it has a function in organs other than the
brain [10, 11]. HD patients display peripheral symp-
toms, such as weight loss, muscular atrophy, cardiac
failure, and osteoporosis [11], consistent with a role
of HTT outside the CNS. Furthermore, some of these
symptoms develop early during the disease and con-
tribute to the mortality of HD patients. Several lines
of evidence suggest that these peripheral manifesta-
tions are not dependent on cerebral dysfunction, but
may be the consequence of mutant HTT expression
in peripheral organs [11].

Our laboratory has shown that HTT is expressed
in mammary tissue and regulates its morphogen-
esis and tumorigenesis [12–15]. We demonstrated
that loss of HTT or the expression of mutant HTT
is pro-metastatic in breast cancer. Additionally, we
showed that wild-type HTT is involved in normal
mammary gland development [12, 14, 15]. Moreover,
we described an association between the size of CAG
repeats in wild-type HTT and cancer prognosis [16],
as well as decreased cancer incidence in the HD pop-
ulation [17]. In this review, we discuss the function of
HTT during carcinogenesis, as well as the relation-
ship between CAG repeats size and cancer incidence
and prognosis. We also discuss several protein part-
ners of HTT and signaling pathways in which HTT is

engaged that may mediate the effects of HTT during
cancer progression.

PARADOXICAL ASSOCIATION
BETWEEN HD AND CANCER

The first study to examine the association between
mutant HTT and cancer was published at the end of
the last century [18]. Sorensen and Fenger investi-
gated the leading causes of death in HD individuals
and reported that only 5% were attributable to can-
cer. A few years later, Sorensen et al. reported a lower
incidence of all cancers in HD individuals, except for
those of the buccal cavity and the pharynx [19]. In
2012, Ji et al. described a similar decrease in the inci-
dence of most cancer types in individuals with HD
or other polyglutamine disorders [20]. In both stud-
ies, the authors did not have information concerning
the length of CAG repeats or the clinicopathological
characteristics of the cancer (grade, survival, metas-
tasis) and suggested that HD and other polyglutamine
disorders share common mechanisms leading to pro-
tection against cancer [20]. They proposed that HTT
can act as a tumor suppressor by modulating the apop-
tosis of neoplastic cells. More recently, we confirmed
the decreased risk of cancer in HD and spinocerebel-
lar ataxia (SCA) patients [17].

Thus, long repeats could be protective against can-
cer, which may explain the advantage of germinal
and somatic instability in HTT that leads to increased
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CAG repeats size, even though it is detrimental with
respect to HD [21, 22]. However, there are excep-
tions depending on the type of cancer. For example,
decreased incidence of cancer in HD patients does
not apply to digestive system related cancers [20]
or skin cancers [17]. The patterns of expression, the
functions and interactors of each protein, and/or the
nature of the signaling pathways involved in the neu-
rodegenerative processes may differentially influence
the specificity of action in cancer.

Finally, in sharp contrast to the low risk of can-
cer in HD, one of our studies paradoxically suggests
that pathological HD CAG expansions increase can-
cer severity once it develops (Fig. 1) [15]. Indeed,
mutant HTT increases cancer growth and metasta-
sis development in mouse and cellular models of HD
through the accumulation of Erb-B2 Receptor Tyro-
sine Kinase 2 (ERBB2) (HER2 in human) at the cell
membrane. Mutant HTT impairs HER2 recycling by
interacting with dynamin 2, leading to its accumula-
tion at the membrane and subsequent overactivation
of signaling pathways involved in proliferation and
metastasis. Thus, even though long CAG repeats cor-
relate with a lower incidence of cancer, they may
enhance the severity of specific subtypes of cancer
once it is initiated.

NON HD-PATHOLOGICAL CAG
POLYMORPHISMS AND CANCER

The link between pathological HD CAG expan-
sions and cancer risk and severity raises the question
of whether CAG polymorphism is associated with
cancer features and outcomes in a non-HD situation
(in which the HTT CAG repeats is strictly below
36). We investigated the length of CAG repeats in
the HTT gene in cohorts of cancer patients and
found that it negatively correlated with ovarian can-
cer incidence in individuals that carry the cancer
predisposition mutation in the BRCA2 gene [16], con-
sistent with the lower incidence of cancer in HD
patients [17, 18, 20]. Moreover, cancer onset occurred
earlier in individuals with HTT alleles with an inter-
mediate number of CAG repeats than in those with
<27 CAG repeats in BRCA1 mutation carriers who
developed breast cancer. Finally, the length of the
CAG repeats in HTT appears to be an independent
prognostic factor of metastasis development, specif-
ically of the HER2 subtype, in good agreement with
increased cancer aggressiveness by mutant HTT and
the described molecular mechanism. This suggests

that there may be a linear relationship between the
length of CAG repeats in HTT and cancer incidence
and metastasis development rather than a threshold
effect (Fig. 1). Long CAG repeats may protect against
cancer whereas it enhances cancer progression once
tumorigenesis has been initiated, even below the
pathological threshold that results in HD.

The relationship between CAG polymorphism and
disease has also been described for the androgen
receptor. The androgen receptor gene carries a poly-
morphic CAG repeats in exon 1 and, as HTT, is
associated with cancer risk and evolution, as well
as with neurodegeneration [23]. Depending on its
size, the CAG expansion in the androgen receptor
is linked to an increased risk of prostate (≤21 CAG
repeats) or of breast cancers (≥21 CAG) or to the
development of spinal and bulbar muscular atrophy
(>40 CAG repeats) [23–25].

Finally, a functional relationship between CAG
repeats and cancer cell death was recently described
[26]. The authors identified a family of siRNA against
CAG/CUG repeats which bind the open reading
frames of several genes containing long comple-
mentary repeats. siCAG/CUG are highly toxic to
cancer cells in vitro and efficient in vivo to decrease
xenografted ovarian tumor progression in mice.

WILD-TYPE HTT IS ANTI-METASTATIC
IN BREAST CANCER

Breast cancer is a highly heterogeneous disease
with many different histological and molecular sub-
types showing different levels of differentiation,
proliferation profiles, and outcomes [27–29]. We
have used cellular and murine models, as well as
the analysis of HTT expression in a large cohort
of breast cancer patients, to show that HTT influ-
ences breast cancer differentiation and progression
[14, 30]. HTT expression increases in human in situ
carcinomas as compared to healthy tissue. In con-
trast, it decreases in invasive cells as compared to in
situ carcinomas (Fig. 2). Indeed, loss of HTT is itself
pro-metastatic in mice. We focused our attention on
the phosphorylation of HTT at serine 421 (S421-
P-HTT), which regulates its normal function and is
neuroprotective in HD [31–36]. We found that it colo-
calizes at cell-cell junctions with zonula occludens
1 (ZO-1), a marker of tight junctions, and regulates
its expression and localization. S421-P-HTT is much
less abundant in human in situ tumors than healthy tis-
sue and nearly absent from invasive cancer cells and
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Fig. 2. HTT and S421-P-HTT during tumor progression. Schematic representation of HTT cellular localization and S421-P-HTT during
mammary gland tumor progression. (from [30]).

colocalize at cell-cell junctions with ZO-1 (Fig. 2).
HTT and ZO-1 expression positively correlate with
the glandular differentiation stage of human car-
cinomas and are concomitantly downregulated in
low-grade, poorly differentiated carcinomas associ-
ated with a poor prognosis.

Other studies have highlighted ZO-1 dysregulation
in cancer. As for S421-P-HTT, the expression of ZO-
1 is lower in tumoral tissue than in healthy mammary
glands [37] and correlates with glandular differenti-
ation of the carcinomas [38]. Furthermore, the loss
of ZO-1 expression is linked to a poor prognosis and
metastasis development [39]. Thus, HTT may modu-
late tumor differentiation, intercellular adhesion, and
therefore metastasis progression, by regulating ZO-1.
ZO-1 shares sequence homology with the tumor sup-
pressor discs-large DLG protein in drosophila [40],
suggesting that it may act as a tumor suppressor in
mammals as well. Moreover, we observed nuclear
localization of both S421-P-HTT and ZO-1 in vitro in
mammary cell lines but we have been unable to detect
S421-P-HTT within the cell nuclei in human biop-
sies. However, we observed ZO-1 localization in the
nuclei of poorly differentiated basal carcinomas [14].
Nuclear ZO-1 localization has been previously shown
to regulate cell proliferation through its interactor,
ZONAB [41, 42]. HTT could therefore potentially
act on ZO-1 through regulation of ZONAB.

HUNTINGTIN MODULATES CELLULAR
ADHESION AND DIFFERENTIATION

Several pathways are regulated by HTT, disreg-
ulated in HD, and known to contribute to cancer

progression. Among these, several lines of evidence
suggest that HTT modulates cellular adhesion
and polarity, with an impact on differentiation.
For example, HTT regulates the differentiation
of mammary cells during development in healthy
mammary glands [12]. In contrast, the differentiation
process is affected in human HD-derived pluripotent
stem cell lines [43, 44], consistent with the reported
role of HTT as a positive transcriptional regulator of
genes involved in neuronal maintenance, a function
that is lost when HTT is mutated [45]. Thus, mutant
HTT may have lost the ability to regulate cellular
differentiation.

At the molecular level, HTT regulates proteins
involved in cell adhesion and differentiation. It
interacts with the metalloprotease ADAM10, thus
allowing the proper cleavage of the neuronal cad-
herin, N-cadherin [46, 47]. The absence of HTT leads
to decreased expression of N-cadherin and ZO-1 in
zebrafish, altering homotypic interactions between
neuroepithelial cells and neurulation [47]. Addi-
tionally, HTT favors N-cadherin recycling through
RAB11, thus influencing the attachment of newly
generated neurons to the fiber of radial glial cells
during cortical development [48].

HTT has also been implicated in the regulation
of components of adherence junctions. The mRNA
levels for such proteins are reduced in embryonic
stem cells and neurons with lower HTT levels [49].
In neurons, HTT interacts with the F-box protein
�-TrcP and axin, which are part of the multisubunit �-
catenin destruction complex [50–52]. By permitting
�-catenin degradation through this interaction, HTT
regulates the WNT signaling pathway, which itself
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controls crucial aspects of cellular differentiation.
Furthermore, loss of HTT from basal cells in healthy
mammary tissue leads to the disruption of ZO-1 trans-
port from the plasma membrane to the cytoplasm
of luminal cells, leading to altered polarity [12]. In
healthy and tumoral tissue, S421-P-HTT colocalizes
with ZO-1 at the cell membrane and modulates its
localization, as already discussed. As HTT phospho-
rylation at serine 421 is involved in microtubule-
mediated vesicular transport to the cell membrane
[34], it may regulate adhesion by transporting vari-
ous components of intercellular complexes. Mutant
HTT appears to act as a loss of function mutant, lead-
ing to decreased expression of ZO-1 and E-cadherin
and increased metastatic capacity of tumoral cells
[15]. The function of HTT in cellular adhesion may
play a key role during embryonic neurogenesis, as
neuronal adhesion and polarity are essential for the
establishment of a functional network.

On a global scale, HTT expression appears to cor-
relate with the stage of differentiation of normal
and pathological tissues. HTT levels are higher in
epithelial cell types, such as skin, squamous, and
mammary cells, than in mesenchymal cell types, such
as skin fibroblasts, mammary adipocytes, and stro-
mal cells from the uterus [10]. HTT expression in
breast cancer correlates with the differentiation stages
of the tumoral tissue [14], being highly expressed
in well-differentiated breast carcinomas and poorly
expressed in poorly differentiated breast cancers,
which are associated with a poor prognosis.

HTT-INTERACTING PROTEINS:
PARTNERS IN CANCER?

Since 2003, more than 350 interactors of HTT
have been identified, whereas only few have been fur-
ther validated by binding assays and co-localization
experiments [53–58]. At the molecular level, most
of these partners participate in one of the following
pathways: intracellular dynamics, protein degrada-
tion, cytoskeletal dynamics, and gene expression.
Obviously, proteins participating in such pathways
could be involved in HTT-mediated effects during
tumorigenesis. However, little is known on these
interactions, except for the above-mentioned role of
HTT on HER2 recycling and the maintenance of ZO-
1 at junctions.

One pathway of particular interest is autophagy, a
mechanism in which HTT acts as a scaffold protein
[59, 60]. Autophagy prevents cancer development

and conversely, once cancer is established, increased
autophagic flux often enables tumor cell survival and
growth [61]. In fact, a role for autophagy at nearly
every phase of the metastatic cascade has been iden-
tified [62]. Mutant HTT exon 1 protein is expressed
in patients and knock-in HD mouse models as a
result of incomplete HTT gene transcription [63, 64].
Interestingly, mutant HTT exon 1 protein expression
causes cellular stress that activates autophagy [65,
66]. Thus, the activation of autophagy by mutant
HTT expression in addition to a direct function for
HTT in autophagy itself may be germane to a role
for wild-type and mutant HTT in carcinogenesis and
metastatic progression.

Also, studies have described a direct role for sev-
eral HTT-interacting proteins in carcinogenesis. For
example, the tumor suppressor P53 is mutated in
many breast carcinomas [67]. Mutant HTT increases
P53 expression, which has been shown to accumulate
in murine and cellular HD models and postmortem
brains of HD patients [68]. Thus, if this accumula-
tion occurs as well in other cell types that do express
mutant HTT, it may participate in the lower cancer
incidence in the HD population [17, 19, 20], although
this is yet to be established.

The HTT interacting protein 1, HIP1, an endocytic
protein, is overexpressed in adenocarcinomas, such as
breast, ovarian, colon, prostate, and lung cancers [69].
HIP1 acts as a pro-survival factor and its expression
has been associated with metastatic progression and a
poor prognosis for prostate cancer patients [69]. HIP1
is also associated with poor overall survival of acute
myeloid leukemia patients [70]. Surprisingly, others
found that HIP1 acts to suppress metastasis and reg-
ulates the epithelial-mesenchymal transition in lung
cancer [71]. Moreover, HTT interacting protein 14,
HIP14, is an oncogene that can induce tumor forma-
tion in mice [72]. Finally, expression of HAP1 (HTT
associated protein 1) is lower in breast cancer than
in healthy tissue and its overexpression decreases the
migration velocity and invasive capacities of mam-
mary tumoral cells [27, 73].

HTT may thus participate in the tumorigenic or
anti-tumorigenic effects induced by its partners. This
hypothesis could be tested by investigating the effect
of HTT partners on tumorigenesis in the absence of
HTT or in the presence of mutant HTT.

CONCLUSION

Cancer and neurodegenerative disorders, which
represent important health public issues, are two
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research topics rarely associated. However, they
clearly share dysregulated signaling pathways, as
shown by the example of HTT that is a key regu-
lator of the balance between cell survival and cell
death under normal, neoplastic, and neurodegenera-
tive conditions. The specificity of the cancer types
that are regulated by HTT may depend on its expres-
sion levels which are heterogeneous across cell types
as well as on the signaling pathways involved in
the tumorigenic cascade. Unraveling the molecular
mechanisms involved in both diseases will lead to
a better comprehension of the function of a central
scaffold protein such as HTT and of the association
between CAG repeats length and cancers in polyglu-
tamine disorders.
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