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Abstract

Motivation: Cell to cell communication is critical for all multicellular organisms, and single-cell sequencing facili-
tates the construction of full connectivity graphs between cell types in tissues. Such complex data structures de-
mand novel analysis methods and tools for exploratory analysis.

Results: We propose a method to predict the putative ligand–receptor interactions between cell types from single-
cell RNA-sequencing data. This is achieved by inferring and incorporating interactions in a multi-directional graph,
thereby enabling contextual exploratory analysis. We demonstrate that our approach can detect common and spe-
cific interactions between cell types in mouse brain and human tumors, and that these interactions fit with expected
outcomes. These interactions also include predictions made with molecular ligands integrating information from
several types of genes necessary for ligand production and transport. Our implementation is general and can be
appended to any transcriptome analysis pipeline to provide unbiased hypothesis generation regarding ligand to re-
ceptor interactions between cell populations or for network analysis in silico.

Availability and implementation: scConnect is open source and available as a Python package at https://github.com/
JonETJakobsson/scConnect. scConnect is directly compatible with Scanpy scRNA-sequencing pipelines.

Contact: malin.lagerstrom@neuro.uu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cell to cell communication is critical for all multicellular organisms.
Most inter-tissue signaling, intra-tissue signaling, neuronal signaling,
cell–cell adhesion and development rely on ligands and receptors (LRs)
for their communication, and information about these LRs are inferable
from transcriptomic datasets by creating gene to protein relationships
(Efremova et al., 2020). Integration of single-cell transcription data
with known LR interactions has been used to detect cell–cell communi-
cation in tissues from mammalian lung (Raredon et al., 2019), annelid
brain (Williams et al., 2017), tumors (Choi et al., 2015; Kumar et al.,
2018; Zhou et al., 2017), human liver buds (Camp et al., 2017) and,
mouse heart (Skelly et al., 2018). However, tools specifically designed
to study cell–cell communication between cell types in single-cell RNA-
sequencing (scRNA-seq) datasets are just starting to emerge (Efremova
et al., 2020). Information about LRs, and interactions between them is
collected in several databases, including IUPAR/BPS Guide to pharma-
cology (GTF) (Harding et al., 2018), and the IMEx consortium
(Orchard et al., 2012), which integrate interactions from several other
databases, such as database of interacting proteins (Salwinski et al.,
2004), interlogous interaction database (I2D) (Brown and Jurisica,

2005) and innateDB (Breuer et al., 2013) among others. Moreover,
cellPhoneDB (Efremova et al., 2020) have specifically designed a data-
base suitable for gene–protein linking and protein–protein interaction
assessment. A current limitation in available methods includes the abil-
ity to link gene expression to molecular ligands, such as glutamate,
GABA and acetylcholine, which expression is dependent on complex
gene–ligand relationships. Information about these classical neurotrans-
mitters is valuable for neuronal datasets, where much of the fast synap-
tic transmission is conducted using these ligands. Interaction between
cell types can help to delineate the structure of complex neuronal cir-
cuits based on the results from in vivo tracing studies. Further, there is a
lack of implementations compatible with the standard packages for
scRNA-seq analysis, such as Scanpy (Wolf et al., 2018) (Python) and
Seurat (Butler et al., 2018) (R).

Here, we introduce a method that estimates LR expression from
gene expression profiles of a cell population. Expression of molecu-
lar ligands is calculated using an ensemble of enzyme and transport-
er genes. Using the GTF database (Harding et al., 2018), we infer all
putative interactions between populations in a scRNA-seq datasets
and store this information in a multi-directional graph, which can
be used for visualization and hypothesis generation. The method
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and associated analytical tools have been implemented in a python
package called scConnect, and we demonstrate it on two biological
datasets to assess the ability to detect previously established connec-
tions and produce novel hypotheses for further studies.

2 Materials and methods

This section describes how single-cell transcriptomics data and the
GTF database (Harding et al., 2018) are integrated to facilitate in-
ference of interactions between cell types. This includes a prepara-
tory database construction step to link LRs with gene names for a
specific species. For each subsequent analysis, the following steps
are carried out (see also Fig. 1 for an overview): (i) gene calling on
the scRNA-seq data to obtain group based gene expression; (ii) cal-
culation of LR scores based on the gene expression; (iii) shuffling of
group labels to estimate the random distribution of LR scores and
calculation of z-scores, P-values and corrected P-values for each LR
score; and (iv) interaction inference and graph construction. We
refer to this method as scConnect. We further describe different
methods to analyze the constructed graph to detect specific interac-
tions, differential interactions between two populations, and for
interactive exploratory analysis.

2.1 Database preparation
The database preparation procedure aims to link LRs with gene
names for a specific species (Sx). From the GTF database, peptider-
gic LRs, such as G-protein-coupled receptors (GPCRs) and ligand-
gated ion channels (LGICs) with gene annotations for human, rat or
mouse (this includes the majority of annotations) are included
(Harding et al., 2018), and the orthologous genes in Sx are identified
using g: Profiler (Raudvere et al., 2019) and this gene–protein link-
age is stored in two tables: LRs (Fig. 1a). However, molecular
ligands, such as glutamate and acetylcholine are dependent on sev-
eral sets of genes, and these have been manually annotated, guided
by the approach of Zeisel et al. (2018) (Supplementary Table S1),
and stored in the Ligand table (Fig. 1a). For further information
regarding molecular ligands, see Section 2.3. Currently, 189 species
are available in the gene orthology search (Raudvere et al., 2019)
and databases for these species can hence be constructed. However,
the number of detectable orthologous genes decrease with evolution-
ary distance to the mammalian clade (Supplementary Table S2).
With the assumption that ortholog LRs also interact (see Section 4
for why this is reasonable) information of interactions between LRs
are stored on a protein level (Fig. 1a, Interactions DB). Only interac-
tions shown to be endogenously occurring are included, but meta-
data related to receptor family, ligand species, receptor species and
PubMed ID are also included.

2.2 Gene calling algorithms
Given a read or count matrix R, with i genes and j cells and a group
annotation vector G with length j and a set of n groups, a gene call
matrix GC can be constructed with n groups and i genes. We calcu-
late mean expression over the groups. Hence, all downstream values
relate to mean reads. Other methods are available but are not rec-
ommended by the authors. See online documentation introduced in
Section 2.6 for available options.

2.3 LR calling
To facilitate the integration of the GTF interaction database, where
LRs are proteins and molecular ligands, LR scores (L score and R
score, respectively) are calculated from the gene call scores. All pep-
tidergic ligands and most receptors have a one to one gene–protein
relationship. Therefore, the LR scores are equal to the gene calls. As
ortholog gene search can report more than one gene for one recep-
tor, the maximum of those genes is used, as one of these might be a
dysfunctional pseudogene. Synthesis of molecular ligands is depend-
ent on one or more enzymes, and for these ligands to be accessible
as signaling molecules vesicle transporters and reuptake transporters
might be needed. Furthermore, certain enzymes, if present, can

Fig. 1. Overview of scConnect. (a) Gene annotation for ligands includes ortholog gene

search for peptidergic ligands and further manually curated gene categories for molecular

ligands. Annotation for receptors include ortholog gene search. Filtering of interactions is

performed including only endogenous interactions, and interactions involving LRs included

in LR annotations. (b) Gene call is calculated as mean expression grouped by cell type.

Ligand score is calculated based on the gene call scores. Molecular ligands incorporate sev-

eral gene sets, whereas peptides only relate to one gene. Receptor score is calculated based

on gene call score. (c) Permutation is used to estimate the random distribution of LR scores.

Cell type annotations are randomly shuffled, and LR scores are calculated. Each LR score

are stored to create a separate permutated distribution for each LR for each cell type.

Number of scores in the distribution is equal to the number of permutations (m). (d) The

emitter’s ligand score and the target’s receptor score are used to calculate an interaction score

for a ligand–receptor interaction between the emitter and the target population. Valid lig-

and–receptor pairs are selected from the interaction DB, which only includes endogenous

interactions. (e) After assessing the interaction score for all LR pairs between all populations,

a multi-directional graph is constructed. Each interaction has a direction and a weight related

to the interaction score. Multiple interactions can be found between two nodes. The color of

the arrow represents a unique interaction type. (f) The multi-directional graph can be split

into subgraphs only containing one type of interaction, or a sum of all interactions. These

directional graphs can be represented as adjacency matrices, which can be plotted as heat-

maps or used for downstream analysis. (g) A graph can be constructed from complex experi-

mental setups. Here, interactions between populations in adata A to populations in adata B

and interactions within populations in adata B is assessed by creating and appending individ-

ual queries. Metadata about the populations can be included by passing the two adata object

to the graph construction
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convert the ligand to another ligand, as with the dopamine! nora-
drenalin ! adrenalin synthesis, and must not be present (see
excluded genes, Supplementary Table S1). The L score for molecular
ligands is calculated using the logic that one vesicle transporter and
one reuptake transporter are sufficient for ligand transport, and
hence the maximum gene expression in these gene categories is used
t ¼Max Transporterf g; r ¼Max Reuptakef g. In contrast, all syn-

thesis enzymes are needed to produce the ligand, and hence the geo-

metric-mean of this gene category is used: s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQk

n¼1 Synthesisk
k

q
.

The geometric-mean of s, t and r represents the ligand promoting

factor: p ¼
ffiffiffiffiffiffiffiffiffiffiffi
t�r�s3
p

. The exclusion gene score (e) is subtracted from

p, which nullify the term if the exclusion gene has higher expression

than p. If > p : L score ¼ 0. Hence:

L score ¼ p� e; L score � 0 (1)

LR score can be calculated from any gene score matrix, independent
of gene score method (Fig. 1b).

To estimate how differentially expressed a ligand or receptor is
in a cell type, m number of permutations with randomized cell type
annotations are used to estimate a random permutation distribution
of each LR for each cell type (Fig. 1c). An exact permutation P-value
is calculated as p ¼ bþ 1ð Þ= mþ 1ð Þ where b is the number of per-
mutated scores higher than the observed score within that cell type
(Phipson and Smyth, 2010). P-values are corrected for multiple test-
ing using the Benjamini/Hochberg method [statsmodels package
(Seabold and Perktold, 2010)]. Furthermore, Z-scores for each LR
were calculated as score� lð Þ=s where l is the mean and s is the SD
of the permutation distribution.

2.4 Interaction inference and graph construction
Each cell type in the scRNA-seq dataset represents a node in a
graph, and edges represent a directional LR pair interaction between
an emitter node E and a target node T (Fig. 1d). Hence, the graph
describes interactions between cell types. Valid LR pairs, where
interactions have been proven to occur endogenously, are extracted
from the GTP database (Harding et al., 2018). The interaction score
(ILR score) is calculated as the geometric-mean of the emitter’s L
score and the target’s R score.

ILRscoreT
E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EL score � TR score

p
(2)

The interaction specificity is based on the LR P-values. Both P-val-
ues must be low to produce a high specificity score. An LR P-value
of 0.05 (corrected) produces an interaction specificity score of
around 1.3. P-values of 1 produce a specificity score of 0.

ILRspecificityT
E ¼ �log10

ELp�value
þ TRp�value

2

� �
: (3)

An estimate of interaction importance is calculated from the inter-
action score and interaction specificity.

ILRimportanceT
E ¼ log10 ILRscoreT

E

� �
�ILRspecificityT

E : (4)

By permutating though all E! T combinations for each LR pair, a
multi-directional graph, containing the full putative connectome,
can be inferred (Fig. 1e).

It is possible to convert the multi-directional graph to a direc-
tional graph by either splitting the graph based on interaction or by
summarizing the interaction score for all interactions between two
nodes (Fig. 1f). Directional graphs can be represented as adjacency
matrices with source nodes as rows and target nodes as columns,
thereby facilitating a simplified visualization of the graph. To facili-
tate contextual analysis, all metadata is stored in the graph struc-
ture. Gene calls, ligand scores and receptor scores are appended as
metadata for the nodes. Interaction score, and other metadata
related to an interaction is appended to each edge.

2.5 Analysis of the multi-directional graph
The data stored in a multi-directional graph is complex, and there
are many ways to analyze this data. Initially, it might be desirable to
enable dynamic and interactive visualizations. For this reason, we
have developed an interactive web application that facilitates ex-
ploratory analysis of the data, further discussed in Section 2.5.2.
Depending on the dataset examined, some features, such as treat-
ment, gender or age can be annotated, and specific comparisons be-
tween these features might be of interest. This can be examined by
comparing the interactions made between the two cell types, as
described in Section 2.5.3.

2.5.1 Identifying specific and strong interactions

There are two main types of interactions that are of interest: strong
interactions and specific interactions. Strong interactions are prom-
inent features of the graph with high expression of the ligand and
the receptor. They can be present between many or all cell types.
Specific interactions connect emitters and targets where the LR is
differentially expressed. These will only be present between a small
number of cell types. Interactions displaying both of these properties
are considered important interactions. We can identify these interac-
tions using the interactive web application, filtering on score, speci-
ficity or importance. These interactions are also available as a table
and can be filtered and plotted as desired.

2.5.2 Interactive web application

The information contained in a full connectome between different
cell types can be vast, and to visualize this information in one graph
would oversimplify the data. To this end, we have implemented a
user-friendly web application that can be used to drill down into the
dataset, and provide insight into strong and specific interactions as
well as, LRs. The web application provides an overview of the full
graph utilizing a summarized directional graph (Fig. 1f). Selecting
one node in this graph plots all incoming and outgoing interactions
to that node in a Sankey graph with the selected cell type in the mid-
dle. Furthermore, all LR scores are plotted against �log10 P valueð Þ
for the selected cell type. Selecting an edge in the overview graph fills
a plot with interaction log10 scoreþ 1ð Þ against specificity and a
table with all interactions between the emitter cell type and target
cell type of the selected edge, including information about PubMed
ID. This list can also be sorted based on score, significance or im-
portance to identify strong and/or specific interactions.

2.5.3 Identifying differential interactions between two cell types

To detect interactions that differ between two populations (a and b)
when making contact to other populations (x), a ratio
ða! xÞ=ðb! xÞis calculated, where a! x and b! x are the inter-
action score þ 1. As the logaritmized interaction scores are repre-
sented as Log10 ILR þ 1ð Þ, we define the ratio as:

log
a! x

b! x

� �
¼ log a! xð Þ � log b! xð Þ: (5)

Note that a! x and b! x are always �1, so if the interaction score
is 0, we divide by 1. This underestimates the true ratio between
interactions for low scores but does not break down when inter-
action scores approach 0. The ratio can be used to detect differences
in interactions between two populations.

2.6 Implementation
The scConnect method has been implemented in a Python package
called scConnect, which is compatible with Scanpy. scConnect uti-
lizes AnnData objects (adata) to access scRNA-seq data and store
gene calls and LR scores in the adata objects. Gene calls are grouped
by any categorical observation variable in adata, such as a cell type
annotation or Leiden group. We provide precomputed databases for
species in Supplementary Table S2, but the user can also precompute
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custom databases using the scConnect tool, and subsequently use
these databases. scConnect infers interactions between cell types in a
source adata and a target adata, only identifying interactions from
the source to the target adata, providing the flexibility needed to cre-
ate complex interaction setups (Fig. 1g). Inferred interactions are
stored in an edge list, and metadata about the cell types are stored in
a node list. These are used to construct the multi-directional graph
using networkX package (Hagberg et al., 2008), which features
powerful graph analysis tools and export to other graph file formats.
The interactive web application is implemented using dash (Plotly).
The source code is available under MIT License at https://github.
com/JonETJakobsson/scConnect together with documentation and
a tutorial available as a Jupyter notebook. In this article, we used
scConnect version 1.0.3.

3 Results

3.1 Postulating connections between brain regions
The brain is highly interconnected, with some brain regions sending pro-
jections to specific nuclei, and others perfusing most of the brain with
their projections. To detect connectivity on tissue level, we investigated
the mouse brain dataset from Saunders et al. (2018) and specifically used
the meta cells, summarizing gene expression from thousands of cells of
the same cell types. Meta cells originated from nine different brain
regions, including thalamus (TH), striatum (STR), substantia nigra/ventral
tegmental area (SN), posterior cortex (PC), hippocampus (HC), globus
pallidus (GP), frontal cortex (FC), entopeduncular nucleus/subthalamic
nucleus (ENT) and cerebellum (CB). We decided to evaluate the ability of
scConnect to detect known connections between brain regions, focusing
on the dopamine neurotransmitter system as these interactions are well
documented.

After grouping meta cells based on tissue of origin, we performed
gene calling using mean gene expression levels. To support most
interactions in synapses, we included ligand-gated and voltage-gated
ion channels and G-protein-coupled receptors in the database. The
resulting graph contained 9 tissues connected by 19 879 interac-
tions. Investigating specific interactions (specificity >1.3) we indeed
found dopamine to D1 and D2 receptors from SN to STR among
the most important interactions in the graph (Fig. 2a), which was
expected and validates the ability of scConnect to detect interactions
made using molecular ligands. Out of all interactions detected,
17.3% were made using molecular ligands (Supplementary Fig.
S1a). SN had a dopamine ligand log(score) of 2.42 and the next
highest was STR at 0.74, demonstrating that SN is the major produ-
cer of dopamine in the brain, displaying around 85� higher expres-
sion than other regions (Supplementary Fig. S1b). This is in
concordance with previous studies, where substantia nigra pars
compacta (SNc) and ventral tegmental area (VTA) host most dopa-
minergic neurons (Grimm et al., 2004). The D1 receptor was pri-
marily found in STR, GP and FC, but most brain tissues exhibited
some expression (Supplementary Fig. S1c). The D2 receptor was
expressed in STR, GP and SN (Supplementary Fig. S1d), and the D3
receptor was mostly found in STR (Supplementary Fig. S1e). The
highest expression of the D5 receptor was found in HC
(Supplementary Fig. S1f). Previous studies have shown that dopa-
minergic neurons in the SNc project to the STR and excite spiny pro-
jection neurons in the direct pathway (dSPN) via the Dopamine
receptor D1 (Gs coupled), while they inhibit the spiny projection
neurons in the indirect pathway (iSPN) via the D2 receptor (Gi

coupled) (Bertran-Gonzalez et al., 2008). Moreover, dopamine
receptors are found in other basal ganglia nuclei and in cortex
(Rommelfanger and Wichmann, 2010). Hence, scConnect could
predict that dopamine originates from SN, and that the putative tar-
gets were STR and GP for both D1 and D2 receptors, and FC for D1
and ENT for D2, which is consistent with previous literature.

Next, we investigated which cell types in SN that could be pre-
dicted to contact cell types in STR. Similar cell types were grouped
together based on annotated location and/or function, and only rele-
vant cells types were included (Supplementary Table S3). The full
connectome including all cell types was also built, and the overall

results were similar (Supplementary Fig. S2a–c). The SN tissue con-
tained the VTA, substantia nigra pars reticulata and SNc, whereas
the STR tissue contained dSPN, iSPN and cholinergic neurons (CN)
(Saunders et al., 2018) (Fig. 2b). We used mean gene expression as
gene calling, and the resulting graph contained 4905 interactions be-
tween the 6 cell types. Contrary to the tissues, the selected cells types
segregated into either glutamatergic or GABAergic neurons, indicat-
ing homogeneity among the underlying cells (Supplementary Fig.
S3a–b). SNc and VTA were the strongest dopamine-expressing cell
types, with scores 3.1 and 2.7, respectively. dSPN displayed the
strongest D1 expression (3.9) but iSPN and CN also showed some
expression (2.48 and 1.64, respectively). CN and iSPN showed mod-
erate expression of the D2 receptor (1.86 and 2.62, respectively). In
contrast, dSPN displayed low expression of D2 (1.0). Consequently,
scConnect predicted strong Dopamine! D1 interactions from VTA
and SNc to dSPN (3.3 and 3.5) (Fig. 2c), whereas interactions
detected for dopamine! D2 were from SNc and VTA to iSPN (2.9
and 2.7, respectively) (Fig. 2d). Note that dSPN received relatively
low D2 input (Fig. 2d). This fits well with the findings of Bertran-
Gonzalez et al. (2008). The dopamine !D3 receptor interaction
was strongest from SNc and VTA to dSPN and iSPN (Fig. 2e).

Hitherto, we have probed the dataset for interactions that we
expected to find, focusing on the dopaminergic system. We next
aimed to investigate the interactions that scConnect could objective-
ly identify as the most important interactions, and hence looked for
the interactions with the highest importance score. The most import-
ant interaction to dSPN was dopamine to D1 and 5-hydroxytrypt-
amine to D1 from SNc (7.9 and 5.8 importance score, respectively)
and acetylcholine to M4 receptor from CN (5.6) (Supplementary
Fig. S3c). Dopamine to D1 receptor was of course known, and
scConnect also deemed it to be important. Moreover, acetylcholine
has been shown to increase the excitability of dSPN neurons

Fig. 2. Connectivity between tissues in the brain. (a) Interactions between brain tis-

sues with specificity >1.3. Size of the dots represents the importance of the inter-

action, and the color represents the ligand type used. Dopamine to D1, D2 and D3

receptor were made from SN to STR, and dopamine to D5 receptor from SN to HC.

(b) Overview of the simplified cell types in SN and STR tissues. (c) Adjacency matrix

of dopamine to D1 receptor among simplified cell types. (d) Adjacency matrix of

dopamine to D2 receptor among simplified cell types. (e) Adjacency matrix of dopa-

mine to D3 receptor among simplified cell types. Color in (c–e) represents logarit-

mized interaction score. TH, thalamus; STR, striatum; SN, substantia nigra/ventral

tegmental area; PC, posterior cortex; HC, hippocampus; GP, globus pallidus; FC,

frontal cortex; ENT, entopeduncular nucleus/subthalamic nucleus; CB, cerebellum
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following M4 receptor activation (Hernández-Flores et al., 2015).
The most important incoming interaction to iSPN was dopamine to
D2 receptor (6.4) from SNc and acetylcholine to M3 receptor from
CN (5.0) (Supplementary Fig. S3d). Not much is written about the
M3 receptor in the striatal pathway, but as it is a specific inter-
action, it might be an interesting target for further research. CN
received specific interactions from dSPN via substance P! neuroki-
nin (NK) 1 receptor (8.2) (Supplementary Fig. S3e) and dopamine to
D5 receptor from SNc (6.2) (Supplementary Fig. S3f). The expres-
sion of substance P is one of the defining features of dSPN (Reiner
and Anderson, 1990), and previous studies have demonstrated the
presence of NK1 receptors on striatal CN (Kaneko et al., 1993).
Presence of D5 receptor in CN in the STR is previously known
(Bergson et al., 1995; Berlanga et al., 2005), and activation of the
D5 receptor has been shown to activate the CN during L-DOPA
treatment of Parkinson’s (Castello et al., 2020).

Here, we have demonstrated that scConnect could find expected
interactions, such as that the dopamine system between SN and STR.
Furthermore, when searching for the top important interactions
scConnect detects the dopaminergic system but also the cholinergic sys-
tem. Hence, scConnect could confirm previous knowledge and generate
novel hypotheses. This displays the usefulness of scConnect in hypoth-
esis generation prior to in vivo or in situ experiments.

3.2 Postulating interactions between cells in human

tumors
To evaluate scConnect’s ability to identify interactions between non-neur-
onal cells, we investigated a human melanoma scRNA-seq dataset
(Tirosh et al., 2016). Tirosh et al. sequenced over 4600 cells from 19 mel-
anoma tumors and annotated non-malignant cells; T-cells, natural killer
cells (NK), macrophages, endothelial cells, cancer associated fibroblasts
(CAF) and B-cells and malignant cells for each tumor. They found that
malignant cells were either associated with microphthalmia-associated
transcription factor (MITF) expression or AXL (AXL receptor tyrosine
kinase) expression, and that AXL-associated cells were comparatively
more numerous after treatment with rapidly accelerated fibrosarcoma
kinase and mitogen-activated protein kinase inhibitors (dabrafenib and
trametinib) (Tirosh et al., 2016). We used the increase in numerosity of
the treatment resisting AXL population compared to the MITF popula-
tion as a proxy for treatment effect and aimed to detect the difference in
connectivity within the tumor following such treatment. The malignant
cells were labeled as either MITF or AXL cells based on the gene set score
for the MITF- or AXL-associated genes (Tirosh et al. Supplementary
Tables S7 and S8). Most tumors had malignant cells of both AXL and
MITF types, which is in concordance with Tirosh et al. findings (Fig. 3a).
Using mean gene expression as gene call, scConnect generated a graph
with 19 598 interactions between 8 cell types.

Both AXL and MITF received strong interactions mediated by
the chemokine CXCL12 ! CXCR4 from CAF (3.11 and 2.73, re-
spectively), macrophages (2.75 and 2.37, respectively) and endothe-
lial cells (2.67 and 2.29, respectively). AXL and MITF were also
predicted to make contacts with B-cells (2.54, 2.06), T-cells (2.45,
1.98) and NK cells (2.44, 1.97) through CXCL12 ! CXCR4
(Fig. 3b). Previous studies have demonstrated the importance of the
CXCL12 ! CXCR4 interaction in malignant melanoma growth
and metastasis (André et al., 2016; Balkwill, 2004; McConnell
et al., 2016; Murakami et al., 2002).

After treatment of a tumor, interactions specific to the AXL cell
type would be more prominent in the tissue, as they are treatment im-
mune. To identify the interactions where AXL and MITF cell types dif-
fered the most, scConnect was used to calculate a ratio of the
interaction scores that AXL and MITF made with other cell popula-
tions. We analyzed all interactions where either AXL or MITF cells dis-
played at least five times higher interaction score (Fig. 3c and d). Of the
incoming interactions (Fig. 3c) CCL17 and CCL22 to CCR4 interac-
tions were strongest to the AXL population and these ligands have been
shown to increase metastasis formation of CCR4 expressing melanoma
cells (Klein et al., 2017). The CD30 ligand to CD30 interaction was
also higher to the AXL population, which is interesting as CD30 has

been shown to be up-regulated in T-cells following malignant melan-
oma treatment (Gill et al., 2014). The neurotensin to neurotensin recep-
tor 2 interaction is stronger to the MITF cells, and the major source of
neurotensin is endothelial cells and AXL cells. Previous studies has dem-
onstrated the role of neurotensin receptor 1 in malignant melanoma
(Zhang et al., 2014), but neurotensin receptor 2 has to our knowledge
not been implicated. As AXL produce the ligand, this interaction might
play a greater role in treated melanoma tumors. MITF also received
stronger stem cell factor to KIT proto-oncogene receptor tyrosine kinase
interactions. This receptor has been shown to be down-regulated with
tumor progression (Montone et al., 1997; Natali et al., 1992). This re-
sult fits well with the notion that AXL are more malignant than MITF.

For the outgoing interactions from AXL and MITF, the chemo-
kine CCL13 to CXCR3, CCR2, CCR1 and CCR5 interactions were
higher from MITF than AXL (Fig. 3d). We did not find much evi-
dence for this interaction to play a critical role in malignant melan-
oma pathology, but CCL13 was not expressed by AXL cells, which
might warrant further investigation. AXL was shown to express ele-
vated levels of chemokines CCL21 and CCL19, and both AXL and
MITF expressed the CCR7 receptor (Fig. 3d). CCR7 is a receptor
used by immune cells to detect lymph nodes, which produce ligands
for this receptor (Willimann et al., 1998). One such ligand, CCL21,
has shown to attract CCR7-positive melanoma cells to lymph nodes
(Takeuchi et al., 2004), similarly CCL19 levels increase in blood
plasma with melanoma progression, and results in increased levels
of CCR7þ CD56þ NK cells in the blood (Cristiani et al., 2019).
AXL also produce the chemokine CCL17 which facilitate autocrine
signaling via CCR4. This suggests that AXL population could pro-
mote motility in both AXL and MITF melanoma cells via CCL19
and CCL21 to CCR7 and CCL17 to CCR4. AXL had higher expres-
sion of neuropeptide Y (NPY) than MITF (Fig. 3d) and expression
of NPY in melanoma has been associated with nodular melanomas
with vertical growth, metastasis and decreased lymphocyte infiltra-
tion (Gilaberte et al., 2012). Note however, that the same group
later linked NPY expression to good prognosis outcome (Pérez Tato
et al., 2017), indicating a complex role of NPY in melanoma. AXL
was also found to make interactions using the molecular ligand
adrenaline to b2 and a1A adrenoreceptors (Fig. 3d). Studies have
demonstrated a key role of the autonomic nervous system in activat-
ing certain cancers, such as hepatocellular carcinoma though adren-
aline to b2 and a1A adrenoreceptors (Li et al., 2014; Zhang et al.,
2017) and although this mechanism has not been established in mel-
anoma, high expression of b2 adrenoreceptor in melanoma tumors
is related to poor prognosis (Shimizu et al., 2016). Here, the produc-
tion of adrenaline by AXL, might bypass the need for innervation of
the nervous system to utilize the same mechanism. AXL produced
the granulocyte-macrophage colony-stimulating factor (GM-CSF)
which is usually found in GM-CSF secreting tumors (Aliper et al.,
2014). Issues can arise as GM-CSF is used as an adjuvant in some
melanoma treatments, and the GM-CSF secreting tumors can get an
accelerated progression (Aliper et al., 2014). Other outgoing interac-
tions from AXL that might warrant further investigation were TL6
to glucocorticoid-induced TNF receptor and NGF to nerve growth
factor receptor, which has both been the target of interest in melan-
oma and other cancer fields (Estrela et al., 2019; Kasemeier-Kulesa
et al., 2018; Ramirez-Montagut et al., 2006; Zhu et al., 2020).

In conclusion, these results predict that the AXL cells were more
involved in chemokine signaling than the MITF cells. MITF cells
also displayed receptors for many of these chemokines, but the AXL
cells could produce the ligands to these receptors and possibly in-
duce motility in all melanoma cells. Moreover, no manual selection
of interactions was performed here, and yet, almost all interactions
detected had previously been shown to be relevant to the melanoma
field. This indicates that the interactions detected by scConnect are
biologically relevant, and that inferred interactions could be a sound
basis to build a novel hypothesis on.

3.3 Comparison with similar tools
The most similar tool to scConnect is cellPhoneDB (Efremova et al.,
2020) and the main difference is that scConnect detects molecular
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ligands, which cellPhoneDB does not. ScConnect and cellPhoneDB
detect interactions in a similar fashion. CellPhoneDB calculates
interaction scores as the arithmetic-mean of LR expression if both
LR expressions are >0, otherwise interaction score is 0. Here,
scConnect use geometric-mean that naturally approaches 0 if any of
the two factors approaches 0. CellPhoneDB calculates P-values for
interaction scores compared to a random shuffle of cell type labels.
Similarly, scConnect calculates P-values for LRs compared to a ran-
dom shuffle of cell type labels and furthermore calculates a cor-
rected P-value to deal with false discovery rates due to multiple
testing. In scConnect, interaction specificity is instead inferred from
the LR P-values. Using the melanoma dataset used previously
(Tirosh et al., 2016), but with all the malignant cells removed,
scConnect and cellPhoneDB was used to detect specific interactions.
Investigating the specific interactions that both cellPhoneDB and
scConnect detected (P-value <0.05 for cellPhoneDB and specificity
>1.3 for scConnect) (Supplementary Fig. S4a) showed that the same
interactions had correlated specificity and interaction score, but
scConnect had a greater dynamic range of specificity score.
CellPhoneDB had on average higher interaction score than
scConnect but there was a strong correlation between these scores
(Supplementary Fig. S4b). For some interactions, cellPhoneDB gave
an interaction score of 0, even though scConnect gave these interac-
tions a score above 0. This is most likely due to the cell percentage
filtering employed by cellPhoneDB where a set % of all cells in a cell
type must express the receptor or ligand to be included (by default
10%). Furthermore, the higher interaction scores of cellPhoneDB
were most likely explained by the difference in interaction score cal-
culation (arithmetic-mean versus geometric-mean).

3.4 Preprocessing consideration
Preprocessing of scRNA-seq data can differ greatly between researchers
and experiments. To test the robustness of the results, different prepro-
cessing pipelines were used to produce an interaction graph of the melan-
oma dataset used previously (Supplementary Fig. S5). Six datasets were
compared: original, normalized (cell size normalization), gene length

corrected (RPKM), normalized and RPKM, subsample of 90% of the
cells and finally subsample of 50% of the cells. The interaction strength
was lower in the RPKM datasets, but this decrease was uniform over all
interactions (Supplementary Fig. S5a). Specific interactions were not
affected by normalization or gene length correction, although individual
interaction specificity measures will differ slightly between runs as the per-
mutation is random (Supplementary Fig. S5b). To evaluate how an inter-
action was affected, we compared the adjacency matrix of the CXC12b
to CXCR4 interaction from the different datasets (Supplementary Fig.
S6c–h). RPKM datasets showed the same pattern as the original dataset,
but with lower interaction scores (Supplementary Fig. S5e and f). 90%
subsampling provided results similar to the original (Supplementary Fig.
S5g). About 50% subsampling failed to detect CXCL12b in B-cells, and
hence lost this interaction totally but was otherwise similar to the original
(Supplementary Fig. S5h). These results demonstrate that scConnect is ro-
bust to different preprocessing pipelines.

4 Discussion

In this article, we introduced the scConnect method for detection of
interactions between cell types in scRNA-seq datasets and demon-
strated that it can be used to investigate specific interactions, such as
the dopaminergic system in the mouse brain, and to identify novel
interactions in a human melanoma dataset. The method also facili-
tated hypothesis generation, which could be probed further with
in vitro and in vivo studies.

Frameworks dedicated for the analysis of scRNA-seq data have
been developed for both python [SCANPY (Wolf et al., 2018)] and
R [Seurat (Butler et al., 2018)], and they provide functions dealing
with data structure, preprocessing, clustering, trajectory inference
and data integration. As scConnect utilizes the AnnData objects to
store dataset-related information, such as LR expression it is fully
compatible with Scanpy. This makes it easy to implement LR anno-
tation in a Scanpy scRNA-seq pipeline and is especially useful to as-
sess expression of molecular ligands as these are not a one to one
map to gene expression. Furthermore, the connectome produced by

Fig. 3. Difference in interactions between AXL and MITF melanoma cell types. (a) Distribution of AXL and MITF cells in individual tumors. (b) Adjacency matrix of the stron-

gest interaction (CXCL12 to CXCR4) in melanoma tumors. (c) Interaction ratio between AXL and MITF populations for incoming interactions. (d) Interaction ratio between

AXL and MITF populations for outgoing interactions. Scale of heatmap in (c) and (d) is in log10(ratio)
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scConnect is stored in a multi-directional graph using networkX
(Hagberg et al., 2008), which can be exported in several graph for-
mats to be analyzed in third party software, such as Cytoscape
(Shannon et al., 2003) and Gephi (Bastian et al., 2009).

Single-cell transcription data is inherently noisy, in part due to
technically induced dropouts (Kim et al., 2015), and naturally
occurring transcriptional bursting (Larsson et al., 2019).
Furthermore, inferring receptor and ligand expression on a protein/
molecule level extrapolated from gene expression, introduces signifi-
cant challenges, as the mRNA–protein correlation in single cells is
weak (Darmanis et al., 2016; Maier et al., 2009). Noise reduction
and improvement of gene–protein correlation can be achieved by
analyzing gene expression in groups of cells, and that is why gene
calling and downstream LR calculations are performed over cell
types. In this implementation, we support gene calling using mean
expression. Other gene calling algorithms, such as median expres-
sion, percent expression or betabinomial trinarization (Zeisel et al.,
2018) could be assessed and implemented in future versions.

As scConnect utilize the read/count matrix, it is important to
first correct for technical biases, such as size factor, gene length and
batches, as any bias in the input data will affect the constructed
graph. For a review of the current analysis consensus, see Luecken
and Theis (2019). For instance, failure to correct for gene length
could systematically skew the interaction scores for interactions uti-
lizing receptors or ligands with particularly long or short gene
length.

There is no guarantee that an interaction involving proteins in
one species holds true for the ortholog proteins in another species,
however, it has been shown that ortholog proteins often retain their
function and preserve critical amino acids used for interactions
(Chen and Jeong, 2000; Zhou et al., 2014). Genome duplication,
resulting in the formation of paralog genes can make it difficult to
identify ortholog genes between species, as some paralog genes will
change function. This can make orthologous search between mam-
malians and fish particularly difficult as fish has undergone genome
duplication since our last shared ancestor (Meyer and Van De Peer,
2005), thereby decreasing our confidence in the ortholog assign-
ment. We can clearly see this in the databases that we have estab-
lished, as we have comprehensive coverage of LRs for mammalians,
but not for fish, and invertebrates (Supplementary Table S2).
Another issue that arises from including interaction detected in sev-
eral species is that some duplications can occur. For instance,
Ccl21a ! CCR7 and Ccl21b ! CCR7 are interactions inferred
from mouse, and CCL21 ! CCR7 is inferred from humans. All
these interactions were detected in the melanoma dataset as strong
outgoing interactions from the AXL population (Fig. 3d).

CellPhoneDB utilizes both IMEx and GTF to retrieve interaction
annotations and furthermore provide manually curated interactions
between heteromeric complexes, making it possible to detect con-
nections between heteromeric receptors and ligands (Efremova
et al., 2020). CellPhoneDB created a strong and robust database for
interaction of protein–protein interactions, however, it lacks meth-
ods to link gene expression to expression of molecular ligands and
does not include these in their resulting connectome. scConnect is
hence specifically suited for analysis of neuronal datasets, where the
classical neurotransmitters are molecular ligands.
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