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Abstract

Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in 

the US each year. There is an increasing interest in both clinical and pre-clinical studies to 

discover biomarkers to accurately diagnose traumatic brain injury (TBI), predict its outcomes, 

and monitor its progression especially in the developing brain. In humans, the heterogeneity of 

TBI in terms of clinical presentation, injury causation, and mechanism has contributed to the 

many challenges associated with finding unifying diagnosis, treatment, and management practices. 

In addition, findings from adult human research may have little application to pediatric TBI, as 

age and maturation levels affect the injury biomechanics and neurophysiological consequences 

of injury. Animal models of TBI are vital to address the variability and heterogeneity of TBI 

seen in human by isolating the causation and mechanism of injury in reproducible manner. 

However, a gap between the pre-clinical findings and clinical applications remains in TBI research 

today. To take a step toward bridging this gap, we reviewed several potential TBI tools such as 

biofluid biomarkers, electroencephalography (EEG), actigraphy, eye responses, and balance that 

have been explored in both clinical and pre-clinical studies and have shown potential diagnostic, 

prognostic, or monitoring utility for TBI. Each of these tools measures specific deficits following 

TBI, is easily accessible, non/minimally invasive, and is potentially highly translatable between 

animals and human outcomes because they involve effort-independent and non-verbal tasks. 

Especially conspicuous is the fact that these biomarkers and techniques can be tailored for 

infants and toddlers. However, translation of preclinical outcomes to clinical applications of these 

tools necessitates addressing several challenges. Among the challenges are the heterogeneity of 

clinical TBI, age dependency of some of the biomarkers, different brain structure, life span, and 

possible variation between temporal profiles of biomarkers in human and animals. Conducting 

parallel clinical and pre-clinical research, in addition to the integration of findings across species 

from several pre-clinical models to generate a spectrum of TBI mechanisms and severities is a 

path toward overcoming some of these challenges. This effort is possible through large scale 

collaborative research and data sharing across multiple centers. In addition, TBI causes dynamic 

deficits in multiple domains, and thus, a panel of biomarkers combining these measures to 

consider different deficits is more promising than a single biomarker for TBI. In this review, 
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each of these tools are presented along with the clinical and pre-clinical findings, advantages, 

challenges and prospects of translating the pre-clinical knowledge into the human clinical setting.
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1. Introduction

In the United States, children ages 0–4 years had the highest estimated annual rates of 

TBI-related emergency room visits, followed by adolescents ages 15–19 years of age (Faul 

et al., 2010). The most common causes of TBI are falls and assaults in young children 

and motor vehicle accidents and sport related injuries in elementary school children and 

adolescents (Faul et al., 2010). Among pediatric and adolescent, most TBIs are classified 

as mild, however, there are still many TBI hospitalizations categorized as moderate to 

severe TBI (Rivara et al., 2011; Asemota et al., 2013). TBI has devastating acute effects 

and in many cases seems to initiate long-term neurodegeneration (Johnson et al., 2010). 

It is estimated that 145,000 children and adolescents (ages 0–19 years) are living with 

lasting cognitive, physical, or behavioral effects of TBI (Zaloshnja et al., 2008). Due to the 

long-term and potentially detrimental effects of TBI on the young brain, there is increasing 

interest in both pre-clinical and clinical studies to discover diagnostic tools to accurately 

identify TBI especially concussion/mild TBI in the developing brain. The nature of TBI is 

complex, often a number of injury mechanisms are simultaneously at play presenting diverse 

spatial and temporal pathophysiology and injury severities. The heterogeneity in human 

TBI is an important factor from the clinical perspective in predicting outcomes and injury 

trajectories which has led to the absence of relevant and validated outcome measures in TBI 

and are the primary reason for discouraging results from neuroprotective and therapeutic 

clinical trials over the last four decades (Yue et al., 2013).

Animal models of TBI mimic the neurological deficits of human TBI and offer a 

unique opportunity to reduce the heterogeneity seen in humans. As such animal studies 

allow researchers to isolate and investigate the pathological and behavioral changes 

associated with brain injury in a consistent and reproducible manner. The use of animal 

models provides a means to explore the underlying reasons for a given outcome, to 

accelerate preclinical therapeutic findings, and evaluate the efficacy of clinical treatment 

and management of TBI. In addition, animal models can help to improve correlations with 

different severities of TBI and to refine the mechanisms of injury involved to develop 

reliable, efficient and valid classification systems to link specific patterns of brain and 

neurovascular injury with the appropriate therapeutic interventions. However, there is still 

a gap between preclinical findings and clinical applications. To take a step toward bridging 

this gap, in this paper we first present several validated animal models of TBI. We then 

discuss translatable metrics as potential TBI diagnostic tools including biofluid biomarkers, 

electroencephalography (EEG), actigraphy, eye tracking, and balance tests. We include 
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metrics that have been explored in both clinical and laboratory studies and can be translated 

between humans and animals. We will also detail the challenges and research opportunities 

toward development and evaluation of effort-independent and clinically translatable TBI 

metrics to advance our understanding and management of TBI in the developing brain.

2. Pre-clinical animal models of TBI

Animal models have been developed that produce different types of TBI such as 

contusion, diffuse or focal axonal injury, hematomas, and subarachnoid hemorrhage(Pitt 

and Leung, 2015). Utilizing idealized animal models make it possible to conduct a thorough 

investigation of pathophysiological mechanisms of TBI, the validation and prognostic value 

of TBI biomarkers, and the assessment of treatments in a setting of a reproducible phenotype 

with a known pre-injury exposure. Here we briefly present four specific models that are 

widely used in animal TBI research: controlled cortical impact (CCI) injury, rapid non

impact rotational injury (RNR), weight-drop impact injury (WDI), and fluid percussion 

injury (FPI) mainly focusing on pediatric models.

2.1. Controlled cortical impact TBI model

Controlled cortical impact (CCI) TBI models are developed to produce a purely focal 

cortical/subcortical contusion injury with direct focal damage to the exposed, open or intact 

dura of the subject and no inertial motion of the head. Contusion injury is one of the 

most common types of brain injury in children caused by events such as falls, vehicular 

accident, sport injuries and child abuse (Graham et al., 1989). The CCI model utilizes 

a blunt indentation device driven by either a loaded spring, a pneumatic piston, or an 

electromagnetic coil to create a rapid displacement of the cortical surface (Margulies et al., 

2015). The severity and functional deficits of CCI injury in animal models can be adjusted 

by the impact velocity, duration of impact, depth of deformation, and size of the impactor 

tip. CCI models of infant/pediatric TBI have been developed in the rat (Raghupathi and Huh, 

2007; Robinson et al., 2016; Schober et al., 2014), mice (Mannix et al., 2011), rabbit (Zhang 

et al., 2015), and piglet (Baker et al. (2018); Duhaime et al., 2000; Missios et al., 2009) 

typically focusing on moderate to severe injury outcomes.

2.2. Rapid non-impact head rotation TBI model

Rapid non-impact head rotation (RNR) TBI models produce a purely inertial head 

movement with no head contact, similar to levels experienced in motor vehicle or high 

velocity trauma that result in unconsciousness, sustained cognitive dysfunction, bilateral 

diffuse axonal and hemorrhagic injury (Margulies et al., 2015). RNR consists of a pneumatic 

device that moves a thrust column at controlled acceleration and deceleration levels 

employing a shaft that is externally coupled to a custom-built linkage assembly to produce 

the desired kinematics (often rotational motion). The RNR injury model has been mostly 

studied on pigs (Kilbaugh et al., 2015; Margulies et al., 2015) and primates (Gennarelli et 

al., 1982), however, there have been limited studies on rats (Xiao-Sheng et al., 2000) and 

rabbits (Gutierrez et al., 2001). Among those, only the pig studies (Kilbaugh et al., 2015; 

Margulies et al., 2015) were focused on infant/pediatric TBI.
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2.3. Weight drop impact TBI model

Weight drop impact (WDI) injury model consists of a falling weight on the skull to induce 

focal cerebral contusion and diffuse axonal injury and used to simulate concussion to severe 

TBI. The diameter, velocity and dwell time of the impactor are adjustable to alter the 

severity of injury. In Marmarou’s WDM (Marmarou et al., 1994), which mainly results in 

diffuse TBI, a stainless steel disc is mounted to the midline the animal’s skull to distribute 

the force of the impact and prevent skull fracture. Later, WDI was modified to produce 

disruption in the blood–brain barrier, cerebral edema, and neuronal cell death below the 

contusion site and remotely in the hippocampus by dropping the weight onto one side 

of an unprotected skull while resting on a hard surface (Shohami et al., 1988). Another 

modification to WDI was to support the animal on a fragile aluminum foil support which 

allows post impact rapid acceleration of the free-moving head and torso (Kane et al., 2012). 

WDI has been utilized in small animals such as rat (Mychasiuk et al., 2014; Semple et al., 

2016) and mouse (Adelson et al., 1996; Chhor et al., 2017) to model pediatric TBI.

2.4. Fluid percussion injury TBI model

The fluid percussion injury (FPI) model employs a rapid fluid pressure pulse delivered to 

the open dura of an animal causing graded severities of brain injury including contusions, 

intracranial hemorrhages, brain swelling, grey matter damage, concussion and traumatic 

axonal injury (McIntosh et al., 1989; Xiong et al., 2013). Injury severity is controlled by 

the magnitude of the fluid pressure pulse and the location of the craniotomy determines the 

clinical and pathological effects of injury (O’Connor et al., 2011). Due to the nature of FPI 

models requiring an opening in the skull, translation of mechanisms and interventions to 

human head injury is often difficult because the majority of human head injuries involve 

closed head injury mechanisms (O’Connor et al., 2011). FPI model of TBI have been 

primarily studied in animals, such as the cat (Stalhammar et al., 1987), sheep (Millen et al., 

1985), swine (Fritz et al., 2005), mice (Carbonell et al., 1998; Folweiler et al., 2018; Ogino 

et al., 2018), and rat (Gorse and Lafrenaye, 2018; Katz and Molina, 2018; McIntosh et al., 

1987). Many of these studies typically represent the adult brain, however those employing 

rats (Prins and Hovda, 2003) and piglets (Fritz et al., 2005; Lafrenaye et al., 2015) have been 

used to model the newborn and juvenile brain.

3. Translatable metrics

In this section, we reviewed metrics including biofluid biomarkers, electroencephalography 

(EEG), actigraphy, eye response, and balance tests that have been explored in both clinical 

and preclinical studies and can be translated between humans and animals. The possible 

cellular origin, causation and interactions of these biomarkers are illustrated in Fig. 1. In 

addition, a summary of pediatric clinical and pre-clinical TBI studies that examined the 

diagnostic and prognostic utility of these translatable biomarkers for TBI is given in Table 

1. The main focus of this table was to summarize the literature on the utility of a single 

or a panel of biomarkers to: (1) detect intracranial lesions to identify patients in need 

of computed tomography (CT) scan; (2) assess injury severity and prognosis, (3) predict 

short- or long-term neurological outcomes of TBI; (4) diagnose injured patients (especially 

concussion/mild TBI) from healthy or non-TBI trauma controls; and/or (5) distinguish 
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between mechanisms of injury, for example, differentiating between inflicted (iTBI) from 

non-inflicted (nTBI) where abusive head trauma is prevalent in infants and toddlers.

3.1. Biofluid biomarkers

TBI can cause disruption at cellular and sub-cellular levels such as neurons, astrocyte 

and microglial cells, vasculature and extracellular matrix. These disruptions can initiate a 

variety of neurotransmitter, metabolomic, mitochondrial, and ionic dysregulations which 

have been shown to be reflected in affected brain tissues as well as biofluids such as 

serum, cerebrospinal fluid, saliva and urine (Baker et al. (2018); Gazzolo et al., 2003; Giza 

and Hovda, 2014; Kilbaugh et al., 2016; Margulies et al., 2015; Smith et al., 2013). The 

reflections in different biofluids showed to be dynamic, interactive, and dependent on type, 

severity, and progression of injury. Therefore, biofluids are treasure trove of injury related 

information and are valuable surrogates to be used as potential diagnostic, prognostic, or 

monitoring, and even therapeutic efficacy assessment tools for TBI. Biofluid biomarkers 

are non/minimally invasive and effort-independent techniques that can be studied in both 

animals and humans, and thus, they are of great value to serve as a bridge between 

pre-clinical and clinical findings and advance diagnosis, management and treatment of 

TBI. Biomarker discovery are particularly invaluable for pediatric and especially neonatal 

population as radiation from routine CT imaging can be harmful for this group (Brenner and 

Hall, 2007; Thelin et al., 2017b). Although CSF is in direct contact with the extracellular 

space of the brain and can more prominently reflect biochemical alternations in brain 

due to TBI, blood-based biomarkers are less invasive, cost effective, and more feasible 

and acceptable for patients especially in the pediatric population. Therefore, serum TBI 

biomarkers have been studied more extensively than CSF biomarkers. There are also limited 

studies available on the utility of biomarkers in urine (Pickering et al., 2008) and saliva 

(Hicks et al., 2018) for pediatric TBI. However, it is challenging to utilize urine and saliva to 

diagnose TBI due to the fact that biomarkers have to cross a number of barriers to appear in 

these biofluids. In this section, we will mainly focus on TBI biomarkers in serum and briefly 

review TBI biomarkers in urine and saliva.

To date, numerous clinical and pre-clinical TBI studies have examined several brain-related 

and injury sensitive biofluid biomarkers that are linked to dynamic changes in metabolism, 

extracellular matrix, glial, axonal or neuronal damages, and/or neuroinflammation over time 

following TBI. Among those are S100β and glial fibrillary acidic protein (GFAP) that 

are related to glial damage; Hyperphosphorylated neurofilaments (NFs: NF-L and NF-H) 

and Tau that are related to axonal damage; Ubiquitin Carboxy-terminal Hydrolase L1 

(UCH-L1) and Neuron-Specific Enolase (NSE) that are related to neuronal cell damage; 

Interleukins (IL-1β, IL-6, IL-8, IL-10) and Tumor Necrosis Factor-α (TNFα) that are related 

to inflammation, and amino acids and other metabolites that are related to energy deficits 

following TBI.

3.1.1. S100β—S100β is a small calcium binding protein expressed mainly in astrocytes 

and certain neuronal cell types and is the most frequently explored biomarker for TBI 

diagnosis (Babcock et al., 2012; Bouvier et al., 2012; Castellani et al., 2009; Hallén et al., 

2010; Manzano et al., 2016; Pickering et al., 2008) and prognosis (Babcock et al., 2013; 
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Park et al., 2018; Park and Hwang, 2018; Piazza et al., 2007; Spinella et al., 2003; Žurek 

and Fedora, 2012) in pediatric clinical studies (Table 1). Serial serum sampling in clinical 

studies showed that S100β elevates and declines quickly following TBI and is present for 

a short time in serum with a half-life of an hour to a day (Park et al., 2018; Thelin et al., 

2017b; Žurek and Fedora, 2012). Pre-clinical studies using different models of TBI such as 

CCI (Cardinell, 2017), WDI (Ma et al., 2018), and blast (Ahmed et al., 2015) also reported 

significant alternation of S100β serum concentration following TBI. These studies focused 

on adult animals and, to our knowledge, none of the pre-clinical studies investigating S100β 
focused on infant/pediatric TBI.

For diagnostic purposes, most pediatric studies (Table 1) focused on investigating the 

capability of S100β to detect intracranial lesions as evidenced by abnormal CT scans. 

Higher serum concentration of S100β were found in patients with abnormal CT scans 

compared to control cohorts or patients with normal CT. Therefore, it is suggested that 

serum S100β is a potential diagnostic tool for predicting intracranial lesion and abnormal 

CT in children with TBI (Babcock et al., 2012; Bouvier et al., 2012; Castellani et al., 2009; 

Hallén et al., 2010; Manzano et al., 2016). Although S100β serum concentration is limitedly 

in clinical use for adults as a general screening tool to identify those in need of CT scanning 

(Thelin et al., 2017b), it has not yet been studied and validated extensively enough to be 

recommended for clinical use in the pediatric population (Lumba-Brown et al., 2018). The 

literature on S100β serum biomarker in pediatric TBI is not as rich as it is for adult and the 

cut-off values for abnormal S100β are diverse in the pediatric literature (0.006–0.35 μg/L, 

Table 1). These diverse results may be explained by the fact that brain tissue and biofluid 

expression of S100β are highly age-dependent, particularly in the very young age due to the 

ongoing central neurodevelopmental process (Modi and Kanungo, 2010; Park et al., 2018; 

Portela et al., 2002). The large age variation in most current pediatric TBI studies (Babcock 

et al., 2012; Castellani et al., 2009; Geyer et al., 2009; Lugones et al., 2018; Manzano et 

al., 2016) (Table 1) is another factor that contributes to the diverse cut-off value results 

in the literature. Another explanation is that S100β is not a brain-specific biomarker and 

may be derived from extracranial sources such as musculoskeletal injury and bone fracture 

(Agoston et al., 2017; Rothermundt et al., 2003). Some of the pediatric TBI studies used 

healthy subjects as control while some others used patients with limb or fracture injury as 

control cohort. The S100β threshold value associated with TBI detection is still debated 

even for adults (Kövesdi et al., 2010) in whom S100β were shown to be less sensitive with 

age (Modi and Kanungo, 2010). Non-brain specificity and high age dependency of S100β in 

the young brain make it difficult to determine an optimal cut-off value sensitive and specific 

enough to reliably diagnose TBI in infant and pediatric populations. The utility of S100β 
serum biomarker to distinguish iTBI from nTBI has also been investigated in a few pediatric 

studies (Beers et al., 2007; Berger et al., 2005) and did not find significant difference 

between peak serum concentration of S100β or NSE in children from either cause. However, 

Beers et al. (2007) and Berger et al. (2005) found significant longer time to peak for iTBI 

patients compared to nTBI patients and therefore, suggested time to peak of S100β and NSE 

as potential tools for discriminating iTBI from nTBI in pediatrics.

For prognostic purposes, many pediatric studies investigated the peak or temporal profile 

of S100β concentration following TBI to determine the severity of injury and/or predict 
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short- or long-term outcomes of TBI (Babcock et al., 2013; Berger and Kochanek, 2006; 

Park et al., 2018; Park and Hwang, 2018; Piazza et al., 2007; Spinella et al., 2003; Žurek 

and Fedora, 2012) (Table 1). The results of these studies are sometimes conflicting, with 

some showing correlation between S100β levels early after TBI (within a day) (Berger and 

Kochanek, 2006; Spinella et al., 2003; Žurek and Fedora, 2012) or 1-week post-TBI (Park 

et al., 2018; Park and Hwang, 2018) and the long-term TBI outcomes while others did not 

find any correlation especially in the presence of extracranial injury (Babcock et al., 2013; 

Piazza et al., 2007). The conflicting results may be explained by the fact that S100β is 

not a brain specific marker. The elevation of serum S100β following TBI has been shown 

to be an indication of blood-brain barrier (BBB) disruption, which has a critical role in 

pathophysiology outcomes of TBI even years later (Blyth et al., 2009; Kanner et al., 2003) 

that may explain the correlation of serum S100β and the long-term post-TBI outcomes. 

Studies demonstrated that the rate of decline of serum S100β inversely correlates with 

severity of TBI, with a slower decline for more severe TBI in both pediatrics (Žurek and 

Fedora, 2012) and adults (Thelin et al., 2017a).

In addition to serum, S100β urine concentrations has been investigated as diagnostic 

and/or prognostic TBI biomarker in a few pediatric studies (Berger and Kochanek, 2006; 

Hallén et al., 2010) but the results are inconclusive. Hallén et al. (2010) found no 

significant difference in urine S100β concentrations between pediatric TBI patients with 

and without intracranial complications while they found a significant difference in serum 

S100β concentrations between these two groups. Contrarily, Berger and Kochanek (2006) 

found an increase in both urinary and serum S100β concentrations in children with TBI. 

They reported that peak urinary S100β concentrations occurred significantly later than peak 

serum S100β concentrations.

In summary, although S100β is the most widely studied biomarker in pediatric TBI, the 

non-brain specificity and high age-dependency attributes in the young brain suggest that 

S100β is not an appropriate biomarker to be used as a sole tool for diagnosis of TBI in 

pediatric population. However, due to its rapid release into blood following TBI, it is a 

valuable biomarker to be combined with other biomarkers and tools in clinical practice today 

for early diagnosis of TBI especially in the absence of extracranial injuries.

3.1.2. Glial fibrillary acidic protein (GFAP)—GFAP, a marker of astroglial injury, is 

another well studied TBI biomarkers explored in many pediatric clinical studies (Fraser et 

al., 2011; Mannix et al., 2014; Mondello et al., 2016b; Rhine et al., 2016; Žurek and Fedora, 

2012) as well as infant/pediatric pre-clinical studies (Robinson et al., 2016) (Table 1) and 

has been shown to be dramatically elevated in serum following TBI. GFAP showed a rapid 

influx, but slower than S100β, in serum following TBI and remained elevated for a longer 

time in comparison to S100β (Thelin et al., 2017b; Žurek and Fedora, 2012), which provides 

a wider time window for this biomarker to diagnose TBI, and thus, reduces the probability 

of missing detection due to late blood sampling. Although serum GFAP and S100β are 

both linked to glial injury, GFAP performs better than S100β in detecting head trauma and 

predicting intracranial lesions on head CT in pediatric TBI especially in young children (< 5 

years) and in presence of extracranial injuries (Papa et al., 2016). This enhanced predictive 

performance may be attributed to the fact that GFAP, in contrast to S100β, is a CNS 
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specific protein (Mondello et al., 2016b; Papa et al., 2015). Several studies recommended 

serum GFAP to be used as a diagnostic marker of TBI specially for detecting intracranial 

hemorrhage (Kou et al., 2013; Mondello et al., 2011; Mondello et al., 2016b). Serum GFAP 

also found to be capable of discriminating between focal and diffuse TBI in adults as its 

elevation was shown to be significantly higher in focal and/or hemorrhagic injury than in 

non-hemorrhagic and/or diffuse brain injury (Kou et al., 2013; Mondello et al., 2011).

On the prognostic applications, serum GFAP concentration was shown to be predictive of 

TBI-induced brain pathology (Huang et al., 2015; Mondello et al., 2016a), injury severity 

and poor long-term post-TBI outcomes (Fraser et al., 2011; Mondello et al., 2016b). All 

the pediatric studies explored GFAP (Table 1) except one (Rhine et al., 2016) reported that 

GFAP peak values within 24 h correlated with severity of injury and long-term post-TBI 

outcomes. Although both acute disintegration of astrocytes and reactive astrogliosis underlie 

circulating GFAP in serum and CSF after TBI, tissue pathology assessment of pre-clinical 

TBI models revealed that the acute disintegration of astrocytes is the dominant source of 

GFAP elevation in serum and CSF following TBI (Huang et al., 2015). This mechanism 

is consistent with the rapid and high elevation of serum GFAP which peaks within hours 

to a day following TBI (Fraser et al., 2011; Luoto et al., 2017) and has been attributed to 

early astrocyte damage that occurs within hours after injury (Huang et al., 2015; Zhao et 

al., 2003), whereas reactive astrogliosis occurs days post-TBI (Hellewell et al., 2010). A 

secondary peak in serum GFAP that has been observed a few days post-TBI (Fraser et al., 

2011; Žurek and Fedora, 2012) may be due to the increase in reactive microglia.

The brain specificity of GFAP, its rapid and high elevation in serum following TBI, and the 

consistency of the finding in the literature (Table 1) suggest that serum GFAP is a suitable 

biomarker to be used as a TBI diagnostic and/or prognostic tool in pediatric population, 

especially if it combines with other biomarkers with different cellular origins and temporal 

profiles. However, more studies need to be done to better determine its predictability and 

characteristics to support the use of it in clinical practice.

3.1.3. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1)—UCH-L1 is a neuronal 

injury marker and similar to S100β and GFAP showed a rapid influx and short time 

availability following TBI; however, UCH-L1 has a faster decline in comparison to GFAP 

(Huang et al., 2015; Kou et al., 2013; Mondello et al., 2011; Thelin et al., 2017a). 

Serum UCH-L1 has been explored in several pediatric clinical studies (Berger et al., 2012; 

Mondello et al., 2016b; Papa et al., 2017; Rhine et al., 2016) (Table 1) and adult pre-clinical 

studies (Huang et al., 2015; Mondello et al., 2016a) as a potential biomarker of TBI. 

Mondello et al. (2016b) and Papa et al. (2017) found serum UCH-L1 capable of identifying 

TBI patients with intracranial lesions as evidenced by abnormal CT from TBI patients 

with normal CT, uninjured (Mondello et al., 2016b) or non-TBI trauma control subjects 

for mild to severe TBI and suggested serum UCH-L1 as a potential diagnosis biomarker 

of intracranial lesions. However, Rhine et al. (2016) and Berger et al. (2012) did not find 

significant difference in serum UCH-L1 levels between pediatric patients with mild TBI and 

uninjured/non-TBI trauma controls.
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On the prognostic application, Mondello et al. (2016b) and (Berger et al., 2012) found 

correlation between early elevation of UCH-L1 in serum and injury severity and long-term 

post-TBI outcomes. Pre-clinical studies using different models of TBI also showed direct 

relation between lesion volume, neuronal degeneration and astrocyte damage of brain tissue, 

and temporal profile of GFAP and UCH-L1 biomarkers in serum and CSF post-TBI (Huang 

et al., 2015). Studies that compared GFAP and UCH-L1 and/or S100β showed that GFAP 

is a better diagnostic biomarker for TBI in comparison to UCH-L1 and S100β especially in 

the presence of extracranial lesions as it is a CNS specific protein while UCH-L1 and S100β 
are not (Huang et al., 2015; Kou et al., 2013; Lewis et al., 2017; Papa et al., 2016; Rhine 

et al., 2016). For example, serum UCH-L1 showed to be elevated for sham-TBI animals in 

the presence of anesthesia and surgical procedure while no elevation was observed for GFAP 

(Huang et al., 2015). However, GFAP and UCH-L1, have different temporal profiles and 

cellular origins, therefore, multivariate analysis may enhance the predictability of each of 

them individually.

The utility of UCH-L1 in urine as a biomarker of brain injury has been also explored in adult 

TBI and no significant difference between controls and patients with white matter lesions in 

UCH-L1 levels in urine were reported (Li et al., 2015). To date, no study has been explored 

urine UCH-L1 for pediatric TBI.

3.1.4. Neuron-specific enolase (NSE)—NSE is a glycolytic enzyme which is 

localized predominantly in the cytoplasm of neurons. Following TBI, NSE releases 

passively into the extracellular compartments under pathological conditions during neuronal 

cell destruction (Kövesdi et al., 2010) and then leaks into CSF and serum following neuronal 

cell death secondary to traumatic injury (Berger et al., 2002; Žurek and Fedora, 2012). This 

mechanism makes serum NSE a great biomarker candidate for monitoring ongoing injury 

after TBI (Park et al., 2018) and have been examined as TBI biomarker in many pediatric 

(Beers et al., 2007; Berger et al., 2005; Berger et al., 2007; Berger et al., 2012; Fridriksson 

et al., 2000; Park et al., 2018; Park and Hwang, 2018) and adult clinical studies (reviewed 

in (Thelin et al., 2017b)) as well as adult pre-clinical studies (Gyorgy et al., 2011). NSE 

like GFAP has a prolonged serum elevation post-TBI, however, serum NSE elevation has 

a longer time to peak and slower decline profile especially for more severe cases or cases 

with poor outcomes (Park et al., 2018; Thelin et al., 2017b; Žurek and Fedora, 2012). NSE 

with a serum half-life of 24–72 h has a longer temporal profile in comparison to S100β, 

UCH-L1 and GFAP (Beers et al., 2007; Thelin et al., 2017b; Žurek and Fedora, 2012) which 

makes it a better prognostic biomarker for possibly predicting outcomes and monitoring 

treatment effects. Slower elevation to peak NSE values, and appearance of a secondary 

peak in NSE temporal profiles in patients with progressing injury may also be attributed 

to delayed neuronal death following TBI (Bandyopadhyay et al., 2005; Park et al., 2018; 

Žurek and Fedora, 2012). Serial sampling in several pediatric studies showed that peak and 

time to peak of NSE concentrations correlate with short and long-term post-TBI outcomes 

in children with varying severity (Bandyopadhyay et al., 2005; Beers et al., 2007; Berger et 

al., 2007; Park et al., 2018; Žurek and Fedora, 2012). One of these studies showed stronger 

correlation of peak NSE concentration with outcome in children < 4 years of age (Berger 

et al., 2007). Many pediatric studies demonstrated the capability of NSE as predictor of 

Hajiaghamemar et al. Page 9

Exp Neurol. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intracranial injury and poor outcome following TBI (Bandyopadhyay et al., 2005; Beers 

et al., 2007; Berger et al., 2007; Park et al., 2018). Like UCH-L1 and S100β, NSE is not 

CNS specific and is also present in red blood cells and platelets which limits its utility as a 

predictor of TBI in multi-trauma cases (Johnsson et al., 2000). Although NSE is a marker 

of neuronal injury, histopathology of damaged brain tissue showed that NSE can also be an 

effective marker of axonal injury in its early stages (Ogata and Tsuganezawa, 1999). It is 

reported that after axonal injury, NSE is upregulated to maintain homeostasis, and thus, NSE 

can be detected in cytoplasm surrounding the disrupted axons (Ogata and Tsuganezawa, 

1999; Yokobori et al., 2013). NSE serum levels in children with diffuse brain injury were 

twice as high as those with focal brain injury (Lo et al., 2009), and thus, this biomarker 

can discriminate these two types of TBIs. NSE has been shown to be age-independent in 

the pediatric population (Berger et al., 2005). Žurek and Fedora (2012) reported that NSE 

serum concentration was much higher and remain elevated for longer time after severe TBI 

in children compared to adults which may be an indication of more neuronal cell death and 

higher susceptibility of developing brains to TBI in compare to adults.

3.1.5. Neurofilaments (NFs)—NFs are the most abundant protein components of the 

axonal cytoskeleton and consists of three subunits NF-L (light), NF-M (medium), and NF-H 

(heavy) containing 543, 916 and 1020 amino acids, respectively (Petzold, 2005). NFs play 

an important role in the maintenance of axon caliber, growth of axons during development, 

and conducting of electrical impulses along axons (Yuan et al., 2012). NFs are proved 

markers of axonal injury that have been shown to accumulate in discrete regions of the axon 

following cytoskeleton damage resulting in swollen bulbs, disconnection and additional 

neuropathologic changes (Smith and Meaney, 2000). However, there are presently a limited 

number of studies that have examined serum level of NFs as biomarkers of TBI in adult 

(Al Nimer et al., 2015) and pediatric clinical studies (Žurek and Fedora, 2012) as well as 

adult rat pre-clinical studies (Anderson et al., 2008; Shaw et al., 2005). Serum NFs remained 

elevated days after TBI in mild to severe cases but rose faster in severe cases or those with 

poor outcomes, suggesting that NFs may be of good prognostic value (Anderson et al., 

2008; Žurek and Fedora, 2012). More studies are needed to evaluate the utility of NFs as 

biomarkers of TBI and to characterize their temporal profile.

3.1.6. Neuroinflammatory and metabolomic biomarkers—Besides biomarkers 

such as S100β, GFAP, UCH-L1, NSE, NF-L, NF-H that are linked to primary injury 

because of neuronal, glial, and/or axonal damages, there are biomarkers that are linked to 

the sequalae of metabolomic and inflammatory events following TBI which lead to energy 

deficits, brain tissue damages and atrophy evolving over hours, days, months, and even 

years. Therefore, metabolomic and neuroinflammatory biomarkers are linked to secondary 

pathology after TBI and underlie some of the acute and chronic neuropathological outcomes 

of TBI (Nizamutdinov and Shapiro, 2017).

Among neuroinflammatory biomarkers are cytokines that can be released by a wide variety 

of cells such as microglia, macrophages, and endothelial cells and play an important role 

in repair and maintenance of brain function after TBI, and thus, influence the secondary 

injury (Sordillo et al., 2016). Cytokines including TNFα, IL-1β, IL-6, IL-8, IL-10, and 
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L-selectin are some of the common neuroinflammatory biomarkers that explored in a 

few pediatric clinical TBI studies (Buttram et al., 2007; Chiaretti et al., 2005; Park and 

Hwang, 2018) and pediatric pre-clinical studies (Robinson et al., 2016). These cytokines 

showed to be elevated in injured brain tissue, CSF and serum following TBI. IL-1β and 

IL-6 (Lo et al., 2009) and combination of S100β and IL-6 or L-selectin (Castellani et 

al., 2009) were found to be corelated with severity of injury and was predictive of poor 

long-term outcomes. From a therapeutic point of view, pre-clinical studies have illustrated 

that blockade of these cytokines can reduce brain injury (Sordillo et al., 2016). Given the 

role of neuroinflammatory cytokines in the secondary injury and long-term pathological 

outcomes of TBI, more studies are needed to evaluate these biomarkers for pediatric TBI 

and assess their possible age dependency.

Serum metabolite and metabolomic pathways have also shown to be significantly altered 

after TBI (Bahado-Singh et al., 2016; Hajiaghamemar et al., 2017; Louin et al., 2007; 

Yi et al., 2016), and their alternations are shown to be correlated with post-TBI 

neurodegeneration, neurological and cognitive impairments (Louin et al., 2007; Yi et 

al., 2016). Among metabolites, amino acids are shown to have an important role in 

neuronal survival, growth and differentiation as well as neuronal circuitry development 

and maintenance (Kurbat and Lelevich, 2009). Their role is even more significant in the 

developing brain as they are crucial to provide energy for all cellular processes required for 

brain development and function. Hence, the additional high metabolic demands following 

TBI have a synergistic effect and can intensify the outcomes of TBI in the pediatric 

population (McKenna et al., 2015). Despite the important role of metabolite biomarkers 

on post-TBI outcomes in pediatric, to our knowledge, these biomarkers have not yet 

investigated in any pediatric clinical TBI study. In adult TBI population, Yi et al. (2016) 

investigated the utility of metabolite biomarkers for diagnosis of TBI and identified a panel 

of nine serum metabolite biomarkers (serine, pyroglutamic acid, phenylalanine, galactose, 

palmitic acid, arachidonic acid, linoleic acid, citric acid, and 2,3,4-trihydroxybutyrate) 

capable of discriminating between TBI patients with and without cognitive impairment, 

and healthy controls. In a pediatric pre-clinical study, Hajiaghamemar et al. (2017) also 

found a panel of three amino acids capable of diagnosis of focal and disuse TBI with 

high sensitivity and specificity. In an adult pre-clinical study, plasma concentrations of the 

amino acid proline were found to be correlated with post-TBI neurological deficit as a sign 

of brain damage severity, and thus, it has been suggested as a potential TBI monitoring 

biomarker candidate (Louin et al., 2007). The variety of metabolomic biomarkers and their 

key roles in dysregulating the normal neuronal developmental process after TBI emphasize 

their prognostic potentials to predict possible long-term neuronal deficits post-TBI, however 

more studies to be done in pediatric TBI.

3.1.7. microRNA—MicroRNAs are short non-coding endogenous RNA molecules that 

play key roles in the regulation of cellular processes such as cell signaling, proliferation, 

differentiation, survival, and death post-trauma. MicroRNAs recently became of great 

interest in the biomarker field due to their stability and abundancy in biofluids and their 

tissue-specific expression patterns. So far over 2000 microRNAs have been identified 

in the human and many studies have used microRNA profiling in different tissues and 
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biofluids with the purpose of biomarker discovery for trauma and disease such as cancer, 

cardiovascular diseases, diabetes, nervous system disorders, and TBI (Di Pietro et al., 2018). 

Utility of microRNAs as TBI biomarkers is at very early stage. There are only handful of 

studies that have examined serum microRNA signatures as biomarkers of TBI and none 

of them are specific to children (Bhomia et al., 2016; Di Pietro et al., 2017; Redell et al., 

2010; Yang et al., 2016). In addition, a couple of studies have recently explored microRNAs 

in saliva as TBI biomarkers for pediatric (Hicks et al., 2018; Johnson et al., 2018) and 

adult (Di Pietro et al., 2018). Hicks et al. (2018) examined alternations of CSF and salivary 

microRNAs after severe and mild TBIs. They found six microRNAs, functionally related 

to neuronal development, including miR-182–5p, miR-221–3p, mir-26b-5p, miR-320c, 

miR-29c-3p, and miR-30e-5p, that demonstrate similar alternation trends in CSF after severe 

TBI and in saliva after mild TBI. They reported that downregulation of miR-320c were 

directly correlated with attention difficulty post-TBI and it increased to baseline over time 

after injury. In the other pediatric study, Johnson and collaborators found concentrations of 

five salivary microRNAs including miR-320c-1, miR-133a-5p, miR-769–5p, let-7a-3p, and 

miR-1307–3p capable of distinguishing patients with prolonged symptoms of concussion. 

They also reported that concentrations of miR-320c-1 were correlated with memory 

difficulty 4 weeks post injury (Johnson et al., 2018). In another study, 21 microRNAs in 

saliva including two brain specific microRNAs (miR-27b and miR-142–3p) were reported 

that can discriminate between concussed and non-concussed adult athletes (Di Pietro et al., 

2018). There are some pre-clinical studies that explored microRNA expressions in different 

brain regions after TBI (Di Pietro et al., 2018). Due to the variety of microRNAs that 

are expressed uniquely within specific brain regions and cell types and their stability and 

richness in biofluids, microRNAs have the potential to be ideal biomarkers for TBI. With 

additional pre-clinical and clinical investigations, biofluid microRNAs may be potential 

biomarkers for diagnosis and prognosis after TBI.

3.1.8. Biofluid biomarker considerations: clinical and preclinical—One of the 

challenges in clinical and translational studies of serum biomarkers is the development of 

baseline levels that represent the normal healthy population and the determination of a 

cut-off value for TBI prediction. The baseline and cut-off values will be even more difficult 

to determine when the biomarker is age-dependent. Many brain-related biomarkers such 

as S100β, GFAP and UCH-L1 are shown to be age dependent in the pediatric population 

and are significantly higher in younger children specially during the first year of age 

(Mondello et al., 2016b; Sabbatini et al., 1999). Conversely, NSE serum biomarkers did 

not show age dependency in children (Berger et al., 2006). Most current TBI pediatric 

studies were conducted over wide range of ages (e.g. up to 18 years) which may explain 

the diverse serum cut-off values of age-dependent biomarkers such as S100β reported in the 

literature. Cut-off values of age-insensitive biomarkers such as NSE is more consistent in 

the pediatric TBI literature, probably due to age insensitivity of this biomarker (Papa et al., 

2015). Overall, age-independent biomarkers have superiority over age dependent ones for 

pediatric population. For age-dependent biomarkers, normal serum concentrations and TBI 

cut-off values needs to be determined over a narrow age range to minimize age variability. 

Age dependency of some serum biomarkers also emphasizes the importance of using age 

appropriate pre-clinical models in translational biomarker pediatric TBI research to enable 
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discovering compatible and sensitive biomarkers. Within this context, one of important 

challenges for successful translation of serum biomarkers to clinical diagnostics is difference 

of the concentration levels and validity of biomarkers cross-species which can be overcome 

through a direct comparison between animal models and human data (Mondello et al., 

2016a).

Another challenge with TBI biomarkers is that many of them such as S100β, UCH-L1, 

NSE, amino acids and many others are not brain specific. These biomarkers are expressed 

in other organs and cell types such as endocrine system, endothelial cells, smooth muscle 

cells, erythrocytes, and peripheral nerves (Agoston et al., 2017) that limits the utility of them 

as TBI biomarkers in multi-trauma scenarios (Castellani et al., 2009; Geyer et al., 2009; 

Lugones et al., 2018). In that regard, brain specific serum biomarkers such as NF-L, NF-H 

and GFAP may perform better in multi-injury events.

All biomarkers discussed in this section showed to pose a distinct temporal profile following 

TBI which is also dependent on injury type, mechanism and severity. Moreover, many of 

the biomarkers explored in the literature are not brain specific, however, the temporal profile 

of these biofluid biomarkers may be different after TBI and injury to other organs. For 

example, although biofluid S100β elevation was observed in injuries other than TBI, S100β 
released from an extracerebral origin showed a shorter temporal profile than S100β released 

due to TBI (Savola et al., 2004). Therefore, coupling the biofluid concentration of these 

biomarkers with their temporal profiles may enhance the capability of these biomarkers 

in diagnosing TBI and monitoring the progression of TBI. For example, characteristics of 

temporal profiles of NSE and S100β serum concentrations such as time to peak and possible 

secondary peak after TBI were shown to be able to distinguish between children with iTBI 

and nTBI in mild to severe TBIs (Beers et al., 2007; Berger et al., 2005; Berger et al., 

2006). Frequency and time domain of blood sampling have a critical role in determining 

the accuracy of temporal signatures of biomarkers, especially in translational research where 

different life spans of animal models and humans need to be taken into consideration.

Unfortunately, longitudinal studies assessing biofluid biomarkers of clinical and pre-clinical 

pediatric TBI are severely limited, also the sampling frequency and the time points are 

dispersed among studies (Beers et al., 2007; Robinson et al., 2016; Žurek and Fedora, 2012). 

Late blood sampling and differences in the time point and frequency of sampling, in part, 

may explain some of the conflicting results of biomarkers between studies. To overcome 

these limitations, more longitudinal studies are needed with high frequency sampling in 

order to characterize the temporal profile of biomarkers so that the underlying molecular and 

pathological events following pediatric TBI can be elucidated.

3.2. Electroencephalography (EEG)

TBI can disrupt the functional neural processes of the brain resulting in altered 

electrophysiological states (Rapp et al., 2015). Electroencephalography (EEG) provides a 

measure of the electrical activity of the brain which can help to monitor the changes in 

cognitive processing over the course of the TBI, informing on differences between healthy 

and diseased populations and the time course of recovery (Schmitt and Dichter, 2015). EEG 

in humans is typically collected non-invasively using surface scalp electrodes capturing the 
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summation of synchronous activity of millions of post-synaptic potentials of the cerebral 

cortex (Luck, 2014; Rapp et al., 2015). The electrical potential difference between two 

electrodes establishes a channel. These channels are arranged in a montage that display 

patterns of electrical activity across the scalp indicative of regional activity or inactivity 

(Rapp et al., 2015). Due to the lack of structural abnormalities associated with mild 

traumatic brain injury, EEG provides a non-invasive indicator of brain functional activity 

on the millisecond scale. EEG research employs the recording of spontaneous activity or 

evoked potentials in response to an external stimulus. Event related potentials (ERPs) are 

segments of the continuous EEG signal that are time-locked with an external event stimulus 

and have been considered a sensitive measure of brain activity after a concussion (Gosselin 

et al., 2006).

Typical measurement variables associated with EEG are power frequency bands from 

continuous measurement and amplitude and latency characteristics associated with ERP 

waveforms. Power frequency bands include: Delta: 0.5–4 Hz, Theta: 4 – 8 Hz, Alpha: 

8–12 Hz, Beta: 12–20 Hz, Gamma: 20–80 Hz, where common findings associated with 

concussion are increased alpha, increased delta, and decreased theta (Ianof and Anghinah, 

2017; Kenzie et al., 2017; Nuwer et al., 2005; Oster et al., 2010; Sandsmark et al., 2017). 

Common ERP components that have been studied for sports-related concussions in human 

subjects include: N2, found at 200–350 ms with a frontal central distribution on the scalp 

(Broglio et al., 2009; Gaetz and Weinberg, 2000; Ledwidge and Molfese, 2016; Moore et 

al., 2015); the P3, found at 300–800 ms with a midline parietal distribution (Baillargeon et 

al., 2012; De Beaumont et al., 2009; Dupuis et al., 2000; Gaetz et al., 2000; Gosselin et 

al., 2006; Lavoie et al., 2004; Moore et al., 2016; Moore et al., 2014; Moore et al., 2017; 

Nandrajog et al., 2017; Ozen et al., 2013; Parks et al., 2015; Theriault et al., 2009); the 

error-related negativity (ERN) (De Beaumont et al., 2009; Pontifex et al., 2009), typically 

occurring at 50–100 ms at the midline frontal and central scalp sites; and the error positivity 

(eP), which occurs at 200–500 ms following the ERN, typically observed in the midline 

central and parietal scalp areas (Brush et al., 2018; Lesiakowski et al., 2018). General 

trends across research studies denote a decrease in amplitude and increase in latency for 

ERP components associated with concussed cohorts in comparison with healthy controls, 

furthermore the P3 or P300 is the most widely used for injury (Brush et al., 2018). A few 

studies have suggested the use of a panel of EEG features as part of a multi-modal analysis 

of concussion that include behavioral measures such as balance and gait to detect and 

monitor concussion (Howell et al., 2018; Jacquin et al., 2018); however, more evidence is 

needed to evaluate the robustness of including a collection of measures. The diverse findings 

on ERP related components are attributed to variability in the type of cognitive tasks used 

to elicit the ERP responses (i.e., auditory or visual stimuli). Due to the non-uniformity of 

tests run across studies, a direct comparison is difficult. Small and heterogeneous study 

samples are common across research studies, often age, injury mechanism, and outcomes 

are factors that result in underpowered sample sizes that are susceptible to bias, false and 

inflated effects (Brush et al., 2018).

To control for the variability in subject sample and characteristics, animal models of TBI are 

a promising avenue to study the mechanisms of concussive injury from injury causation to 

changes to neural function, intracranial injury mechanisms, and histopathological changes 
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post mortem. Research employing animal models of TBI combined with EEG measures 

have primarily used rats under lateral fluid percussion injury (Biswas et al., 2018), projectile 

concussive impact (Leung et al., 2014; Mountney et al., 2017), high deceleration impact 

system (Napoli et al., 2012), a weight drop model (Ucar et al., 2006), and mice under 

blast loading (Liu et al., 2017) and also using the weight drop model (Sabir et al., 2015). 

While differences observed in the power frequency bands between injured and non-injured 

animals were demonstrated, the measurement of EEG in these studies involved opening 

up the cranial vault and implanting electrodes directly on the brain. Due to the smaller 

size of the rat and mouse brain and the invasive nature of electrode implantation in these 

studies, translation to human TBI is difficult. In addition, EEG research employing rodent 

models of TBI are not specific to the pediatric age range. Research employing a piglet model 

of pediatric concussion has demonstrated promise in the utility of this model for clinical 

measures of concussion using EEG. Large animal models better resemble the biomechanics 

of brain tissue injury because the gross neuroanatomy and relative composition of white 

and grey matter tissues are similar between the human and pig brain (Cullen et al., 2016). 

Atlan et al. (2018) conducted a pilot study on 4-week-old piglets subject to two injury 

conditions (CCI and RNR in the sagittal and coronal directions). EEG was captured using a 

non-invasive 32 electrode array placed on the surface of the scalp of each animal to measure 

responses from an auditory oddball paradigm. Unlike previous animal work employing 

invasive measurement techniques for studying TBI, the piglet model provides a novel means 

to capture EEG responses with potential translation to pediatric concussion. Atlan et al. 

(2018) reported a reduction in the P60 amplitude and an increase in the N40 latency were 

associated with injured animals.

These studies demonstrate the efficacy of EEG as a diagnostic tool able to detect differences 

between injured and healthy brains in both human and animals. There is still a need to 

identify relevant features of the EEG signal that consistently indicates an injured brain in 

addition to those that are sensitive to differing severities and symptoms across species. 

Human studies provide a subset of potentially relevant features with which to guide and 

evaluate the experimental animal work, such as the N1 and P3. However, homologous EEG 

features that represent similar cognitive processes and functioning between the human and 

animal remains elusive. Such works that have attempted to identify homologues between 

human and pigs were examined by Arnfred et al. (2004); Arnfred et al. (2003). These 

authors conducted auditory odd-ball paradigms to adult male pigs, attempting to describe 

ERP homologues to human ERPs. The authors concluded that the pig P30 is equivalent to 

the human P300a in distribution and latency, showing promise of the pig model of TBI for 

studying injury mechanisms in the human.

3.3. Actigraphy

Mild traumatic brain injury has been documented to result in abnormal sleep and activity 

patterns in humans and animals (Sandsmark et al., 2017). In the pediatric population, 

disruptions in the sleeping and waking hours can lead to problems with cognition, chronic 

pain, and psychological distress, normal neurocognitive development and impaired learning 

(Tham et al., 2015). The gold standard for measuring sleep quality is through the use of 

polysomnography (PSG). Patients are often required to stay at a sleep laboratory fitted with 
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a series of electrodes (EEG, electrocardiographic and video) to record physiological patterns 

during sleep. While these studies provide the ideal laboratory environment with which to 

observe and take measurements of the patient throughout the stages of sleep, it takes place in 

an unfamiliar environment (not at home in their own bed), often requiring sophisticated and 

expensive equipment. A promising alternative to polysomnography is actigraphy to capture 

sleep disturbances inferred from changes in activity. Actigraphy employs an accelerometer

based device (usually in the form of a watch worn on the non-dominant wrist) to capture 

time-stamped perturbations in the acceleration signal (Allan et al., 2017).

Kaufman et al. (2001) compared sleep and activity in adolescent subjects whom 

sustained a mild TBI approximately 4 years prior in comparison with healthy controls. 

Polysomnographic recordings taken in a sleep laboratory for one night, followed by 

actigraphic recordings and a sleep diary at home for 5 nights. Both the PSG techniques and 

the actigraphic recordings combined with sleep diaries were able to detect that the injured 

group had poorer sleep quality, including lower sleep efficiency and more time spent awake 

(Kaufman et al., 2001). Furthermore, this study demonstrates persistent sleep disturbances 

in adolescent children years after head injury. In one study by Milroy et al. (2008) whom 

compared actigraphic data in a sample of children with mild TBI (n = 18) in comparison 

with a non-head injured, orthopedic injury control group (n = 30) using an actigraphic watch 

for 5 nights. These authors reported no significant differences in sleep disturbances between 

groups, however, Tham et al. (2015), using larger sample sizes of children with mild TBI 

(n = 50) and healthy controls (n = 50) found that actigraphy was able to detect poorer sleep 

quality including shorter sleep durations and more active minutes during the night for the 

injured group.

Animal research examining the relationship between brain injury with activity patterns and 

sleep disruptions have primarily used invasive techniques with EEG data captured from 

an implanted electrode on the surface of the animal brain (Petraglia et al., 2014; Sabir et 

al., 2015; Sandsmark et al., 2017). Research employing non-invasive techniques used an 

instrumented cage system that measured pressure on the cage floor to infer on activity in 

rodents (Rowe et al., 2014a; Rowe et al., 2014b), as well as an accelerometer imbedded 

harness in piglets (Olson et al., 2016). The animal TBI research employing rats and mice 

mentioned above often involved invasive techniques either from the injury model itself (FPI 

and CCI) or from the implanted EEG electrodes in addition to the cage system. In the piglet 

model of TBI, Olson et al. (2016) instrumented 4-week old piglets with an accelerometer 

embedded harness jacket to monitor the animal’s day and night time activity 4 days after 

both CCI and RNR. In comparison with naïve piglets, brain injured animals demonstrated 

longer periods of inactivity during the day time and increased activity during the night time. 

Overall, animal models of TBI have indicated altered sleep and wake disturbances that are 

like those reported in humans with TBI (Wickwire et al., 2016).

Actigraphic measurements are a promising tool to non-invasively monitor active and inactive 

periods in both humans and animals. Actigraphy provides an inexpensive alternative to 

PSG, and while lacks specificity, it permits an understanding of the behavioral responses 

affected in mild BTI in comparison to healthy controls. Future research efforts employing 

actigraphy in an animal model of TBI includes increasing the time points studied to provide 
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an idea of the progression of sleep disturbances over time and their resolution. Correlation 

of actigraphy with other measures of cognitive functional and behavioral tests, serum 

biomarkers and EEG, can provide further insight on the interrelation between sleep quality 

with on-going symptoms and behaviour states. A link between these objective measures 

and subjective symptoms can inform clinical management and decisions on prognosis with 

regarding rest and recovery after TBI.

3.4. Gait and balance assessments

Increase in postural instability and vestibulomotor impairment are frequently reported as 

outcomes of TBI. Reliable balance assessments are essential to identifying balance problems 

for both diagnostic and rehabilitation purposes. Several balance assessment techniques have 

been introduced and their reliability have been investigated in the literature. Among those 

are the Balance Error Scoring System (BESS) which is a low-cost balance assessment that 

consists of single leg, double leg, and tandem stances on a firm and on a foam surface 

while hands are on the hips. Errors are tallied to calculate a BESS score. Errors include 

opening eyes, hands lifted off iliac crest, step, stumble, fall, moving hips > 30 degrees 

abduction, lifting forefoot or hill and remaining out of test position > 5 s. The BESS has 

been utilized in several studies as a diagnostic tool for TBI in pediatrics and adults and has 

shown to detect significant difference between concussed and control groups. (Cushman et 

al., 2018; Guskiewicz et al., 2001; Quatman-Yates et al., 2014; Riemann and Guskiewicz, 

2000). Later, BESS was modified to improve its reliability to three stances on a hard surface 

only. Modified BESS has also shown significant changes in postural stability for a TBI 

group (Muir et al., 2014). In a few studies, it was shown that instrumenting BESS with 

measurement tools such as accelerometers (King et al., 2014) and force plates (Chang et al., 

2014) can increase its reliability to evaluate balance improvements (Shetty et al., 2018). The 

Berg Balance Scale and the Pediatric Balance Scale are other common balance assessments 

that can be utilized for school-aged children (Franjoine et al., 2003). These assessments 

consist of 14 items such as the time for sitting to stand, standing with eyes closed, standing 

with feet together, turning 360 degrees, and reaching forward with outstretched arm. There 

are also two simple balance performance assessments: the functional reach test (FRT) that 

evaluates the reaching ability while standing and Timed Up and Go (TUG) that is the 

recorded time for a task of standing from a chair, walking 3 m, turning around, walking 

back and sitting down. Lower FRT values and higher TUG values in children post-TBI 

in comparison with the controls were reported in the literature (Katz-Leurer et al., 2008). 

Ghent Developmental Balance Test (GDBT) was developed for younger children from the 

moment of independent walking until the age of 5 and it consists of 35 balance items 

such as the time and the ability of bipedal standing, standing on a balance pad, kicking 

a ball, and standing on a line with eyes closed. Each item is scored from 0, for the case 

that the child cannot attempt the items, to 2 for the successful performance. The sum of 

the scores on all items can be converted to a percentile score based on GDBT manual 

for standardization (De Kegel et al., 2012). Use of force plates and wearable sensors 

(e.g. accelerometer) have become a key advancement to develop more quantitative balance 

assessment techniques. In one of the first studies, Lehmann et al. (1990) utilized force 

plate to assess balance and found significant differences in all balance parameters such 

as postural sway between TBI patients and controls. Computerized posturography testing 
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(CPT) is a more advance quantitative technique to assess balance in human and has become 

the gold standard of balance assessment. CPT utilizes moving force plate and provides 3 

test protocols including: 1) “Sensory Organization Test” that assesses the patient’s ability 

to make effective use of visual, vestibular, and proprioceptive information under three 

visual conditions (eyes open, eyes closed, sway-referenced visual surrounding); 2) “Motor 

Control Test” that assesses the patient’s ability to quickly and automatically recover from 

unexpected external provocations; and 3) “Adaptation Test” that assesses the patient’s ability 

to modify motor reactions and minimize sway when the support moves unpredictably in the 

toes-up or toes-down direction. Eye closed tests in CPT assessments showed that patients 

with severe TBI have more difficulty processing information from their vestibular system to 

maintain balance in compare to controls (Pickett, 2007) that may be attributable to the fact 

that TBI subjects are often over reliant on visual compensatory rather than vestibular system 

strategies to compensate for vestibular dysfunction and maintain balance. Wearable sensors 

have also been used to quantify clinical balance test results. Gera et al. (2018) quantified 

postural sway of 38 athletes who had sustained a mild TBI and 81 control athletes using 

a commercially available wearable inertial sensor that contains a tri-axial accelerometer, a 

tri-axial gyroscope, and a tri-axial magnetometer. They observed higher postural sway and 

increased postural sway in the mild TBI group compared to the control group due to a higher 

dependence on visual cues to maintain balance.

Several studies have explored balance deficits in more dynamic settings (i.e. gait analysis 

using motion capture systems). Katz-Leurer et al. (2008) performed gait analysis on children 

diagnosed with severe closed head injury and healthy controls and found significantly 

shorter step length, longer step time, higher hip abductor and knee extensor strength values 

as well as higher variability of step length and time in children post-TBI in comparison 

to controls. In another study, Basford et al. (2003) performed gait analysis using a motion 

capture system and found lower walking velocity and stride length in adult TBI subjects 

with complaints of instability in compare to healthy controls.

In pre-clinical research, several techniques have been developed to assess balance in 

animals. One of the most common assessments of the vestibulomotor system in mice is 

with the use of a beam balance. Mice are placed on a narrow beam and balance is scored 

from 0, for no attempt to keep balance, to 5 for a steady posture. Another common balance 

test used in mice and rats is the rotarod (Hamm et al., 1994). The rotarod consists of a 

motorized rotating rod and two large plexiglas discs positioned on each side. The mice 

walk on the rotating disks at various speeds and the latency until the animal falls is an 

indicator of balance performance. Inclined plane is another assessment that measures ability 

of rats to maintain its position at a given angle (Hamm, 2001). There are limited studies 

in large animal balance assessment for TBI diagnosis. In one study an accelerometer and 

video camera were used to measure postural sway of piglets subject to sham, CCI and RNR 

TBI. A significant increase in the root mean square acceleration in the anterior-posterior 

and medial-lateral directions in both CCI and RNR models in comparison to sham animals 

(Jaber et al., 2015). In another study, gait parameters of sham and CCI injured piglets 

were investigated using video analysis. A significant increase in percent stance time, a 

significant decrease in stride velocity and 2-limb support were reported in the more severe 

CCI injured animals (Baker et al. (2018)). By reviewing the literature, it is evident that 
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quantitative balance and gait assessments are reliable low-cost tools for TBI diagnosis. 

However, most of these assessment methods rely on instructional-based assessments rather 

than non-instructional involuntary movements. A challenge in balance assessment that needs 

to be addressed is the development of methods that rely on non-instructional involuntary 

movements that can be implemented for non-verbal populations including animal models 

and young children.

3.5. Eye response

The cognitive symptoms such as deficits associated with concentration, attention, memory, 

planning and decision making are associated with microstructural changes in the frontal 

white matter in TBI (Maruta et al., 2010). These deficits may result from disruption of 

cerebellar-cortical tracts due to diffuse axonal injury (Suh et al., 2006). On the other hand, 

measuring eye response is a prominent, cost effective, quantitative diagnostic tool with 

high reliability. Eye response assessments include a variety of measures such as pupil 

response to light, fixation, smooth pursuit eye movements, saccades (rapid shifting of 

gaze to a new area of interest), measuring the point of gaze and visual tracking. Among 

these measures, visual tracking performance which is tracking of a moving target requires 

integration of attention and planning. This measure includes smooth and saccadic elements 

of eye movement (Heitger et al., 2009) that have been widely used to study the cognitive 

symptoms associated with TBI in pediatrics (Ellis et al., 2015)and adults (Caplan et al., 

2015; Heitger et al., 2009; Maruta et al., 2010; Samadani et al., 2016; Samadani et al., 

2015). All eye tracking systems either measure the position of the eye relative to the head or 

the orientation of the eye in space (Duchowski, 2007). In general, eye movement techniques 

can be categorized into three groups: (1) Electro-OculoGraphy which is based on the electric 

potential differences of the skin around the eye; (2) scleral contact lens that relies on a 

search coil embedded in contact lenses; and (3) video-based methods that utilize combined 

pupil and corneal reflection of the light source (typically infrared) and image processing 

(Duchowski, 2007). There are numerous studies that have been conducted to investigate 

the utility of these techniques to diagnose TBI in pediatrics and adults. Significant change 

in saccade latency and fixation error and initial fixation error have been reported in eye 

response in pediatric TBI (DiCesare et al., 2017). In an adult TBI studty, Caplan et al. 

(2015) captured horizontal and vertical binocular gaze data for subjects with post concussive 

syndrome (n = 60) and asymptomatic control subjects (n = 26). They reported significant 

differences in a number of eye tracking components including saccades and smooth pursuit 

eye movements for subjects with symptomatic mild TBI which can discriminate between 

individuals with mild TBI and the control group. Similar findings were observed in another 

study (Suh et al., 2006) on adult subjects with mild TBI (20 chronic and 6 acute) and 

controls (n = 26) using a circular pursuit target-blanking paradigm. Increased oculomotor 

deficits during target blanking were reported for the TBI subjects, indicated by earlier 

generation of saccades, increased oculomotor error, and increased intra-individual variability 

compared to controls. In another mild TBI study, eye movement function with sensitivity 

and specificity of nearly 100% was reported as the most effective metric in identifying 

adult patients with post-concussion syndrome (Heitger et al., 2008). Samadani et al. (2016) 

developed an eye tracking algorithm to assess eye movements of the adult subjects watching 

a video clip rather than following instruction. They investigated 89 eye tracking measures 
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and suggested a subset as the best predictor of brain injured subjects. They also reported that 

the severity of disconjugate gaze in TBI and concussion patients were detectable with their 

algorithm and was proportionate to the severity of concussion symptoms.

On the pre-clinical side, several eye tracking systems have been developed for animals for 

different purposes such as peahens to study the process of mate choice (Yorzinski et al., 

2013), dogs to measure canine visual behavior (Williams et al., 2011) and rats to study 

the response to sensory stimuli (Schriver et al., 2018). However, there is a paucity of 

preclinical studies using eye response in animals as a TBI diagnostic biomarker which is 

a critical gap in the literature worthy of future consideration in TBI pre-clinical studies. 

Another area that has not been adequately studied is the effect of TBI on non-voluntary 

eye response that brings insight to potential biomarkers based on non-voluntary movement 

and non-instructional cognitive tasks. Therefore, the pursuit of non-voluntary eye response 

measures of particular interest in translational TBI research.

4. Translational challenges and pathways for exploration

TBI biomarkers are valuable tools for diagnosis of TBI and monitoring its progression 

as well as evaluation of therapeutic efficacy in TBI patients. In the process of biomarker 

discovery, animal models are extremely valuable as they can provide unique opportunities 

to closely explore molecular and cellular pathology in the brain tissue, which is not easily 

possible in the clinical setting. TBI biomarker studies in animals also play an important 

role in the development of new therapies, and to quantitate the therapeutic efficiency. 

However, translation of preclinical outcomes to clinical applications face several challenges. 

In this section, we review the advantages, challenges and prospects of translating pre-clinical 

knowledge into the human clinical setting.

4.1. Heterogeneity

Heterogeneity remains the main challenge in the field of clinical TBI. Mechanisms of 

injury, injury severity, spatial and temporal pathophysiology, and clinical outcomes are 

just a few examples contributing to variability in clinical data. One approach to address 

the heterogeneity of human TBI into pre-clinical studies is to integrate several preclinical 

models to find the biomarkers that are applicable to a spectrum of TBI mechanisms 

and severities (Hajiaghamemar et al., 2017; Margulies et al., 2015; Shultz et al., 2017). 

Conducting studies across species and over variety of TBI models is also an important 

step toward identifying preclinical-clinical compatible panel of biomarkers which can help 

to achieve more translational success. This effort would be possible through large scale 

collaborative research initiatives between multiple centers.

4.2. Age equivalency of humans and animals

The selection of an appropriately aged animal model to reflect the desired human population 

under study is based on the stages of development of the animal that closely resembles 

the human stage of maturation and is not simply based on age after birth (Finnie, 2012). 

Researchers have proposed that rodent models at 7 days old, 7–11 days, 17–21 days, and 

adult can be used to represent human birth, infants, and toddlers, and adults respectively 
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(Hagberg et al., 2002; Kochanek et al., 2017). While rodents tends to be the most 

commonly used species in research with a large number of published studies available 

regarding pathophysiology, functional and behavior outcomes, these animals have smaller, 

lissencephalic brains, composed of less white matter tissue than grey matter than those 

typically seen in the human brain (Cernak, 2005; Finnie, 2001; Vink, 2018). Adult humans 

have gryencephalic brains with a 2–4 mm thick grey matter ribbon enclosing the white 

matter (Dahnke and Gaser, 2018). These characteristics play an important role affecting the 

movement of the brain within the skull and subsequent patterns of localized mechanical 

stress culminating on the neural tissues (Duhaime, 2006; Ho and Kleiven, 2009; Xiong 

et al., 2013). Larger animal models, such as sheep and pigs have distributions of grey 

matter and white matter tissues that are more similar to the human brain. Additionally, 

the presence of well-formed gryi and sulci in these large animal models better resemble 

the pathology of white matter injuries (Duhaime, 2006; Finnie, 2001). More recent efforts 

employing magnetic resonance imaging techniques for longitudinal assessment of white 

matter composition of the 3-month old piglet brain demonstrated similar trajectories to the 

human adolescent brain (ages 10–19 years old), which further supports the piglet model for 

studying pediatric concussion (Ryan et al., 2018a; Ryan et al., 2018b). Newborn piglets, 

piglets at 1–5 days, and 3–4 weeks old resemble the newborn human, infant and children 

brain maturations (Hagberg et al., 2002; Kochanek et al., 2017).

The age-dependency of some of the TBI biomarkers discussed in this review also emphasize 

the importance of using age appropriate animal models in TBI studies especially with the 

purpose to translate to the pediatric clinical setting. In addition, utilizing age-independent 

metrics and/or narrow age groups in study designs are a good path to minimize age 

dependency of tests and establish robust biomarkers.

4.3. Temporal profile

One of the challenges that prevents successful translation of clinical and pre-clinical studies 

is the neglect of distinct biomarker temporal profile in human and animal models due to 

different life span and time scale of biological process, metabolomic rate, pharmacokinetic, 

pathophysiological responses. The proper selection of the sequential time points is necessary 

to capture the dynamic progression of biomarkers. This selection is achievable through 

parallel clinical/pre-clinical studies as well as more precisely characterizing the temporal 

pattern of biomarkers by more frequent serial sampling. Direct comparison of the temporal 

profile in pathophysiology response in animals and humans can help to identify appropriate 

translating time scaling factors, which is an important parameter for the successful 

translation of biomarkers. On the other hand, most animal TBI models have focused on 

acute outcomes but the majority of clinical studies concentrate on long term outcomes 

of TBI. This misalignment is a clear deficiency in the literature and more work needs 

to be done to assess long term outcomes after TBI in preclinical studies. One of the 

challenges with animal TBI studies is the difficulty to maintain and house severely injured 

animals post TBI to mimic the intensive care settings of humans. Often, a human subject 

diagnosed with TBI receives medication that can affect the assay and trajectory of serum 

biomarkers as well as long-term outcomes of TBI measured using other indicators (Oli et 

al., 2009). Overall, increasing the number of studies employing parallel clinical/pre-clinical 
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longitudinal research designs provides the opportunity to directly compare biomarker 

occurrence between preclinical models and human data and is a promising path toward 

overcoming some of the challenges in translation of animal data into clinical practice.

4.4. Panel of multi-domain translatable metrics

Many TBI studies in the literature have assessed TBI diagnostic and prognostic capability of 

one or a few targeted biomarkers individually. However, brain injury is a multifactorial 

process involving complex linkage between metabolic evolution, molecular interaction 

between brain tissue and biofluids, and neuropathological sequelae of injury that can 

lead to many deficits such as neurodegeneration, neurological, functional and cognitive 

impairments and many more. Given all the complexity and variation of TBI especially 

in pediatric population, it is unlikely that a single biomarker will be able to predict TBI 

with enough sensitivity and specificity. A panel of biomarkers considering different deficits 

of TBI seems to be more promising to diagnose the diversity of injury and monitor its 

progression. For example, in biofluid biomarkers, a panel of multiple glial, neuronal, 

metabolism, inflammatory, and microRNA biomarkers seems to be a more appropriate 

approach to identify and assess the severity, timing and pattern of injury. The concept 

of using multivariate biofluid biomarkers for TBI is growing and several clinical studies 

showed superiority of multivariate biofluid biomarker over single biomarker for TBI (Beers 

et al., 2007; Diaz-Arrastia et al., 2014; Hajiaghamemar et al., 2017; Lo et al., 2009; Peacock 

et al., 2017). In addition, a panel of different EEG features or scores have shown promise as 

a potential tool to detect and monitor concussion (Jacquin et al., 2018; Kiefer et al., 2015).

Ideal translatable biomarkers should be accessible, non-invasive, nonverbal, effort

independent, and rely on objective rather than subjective measures. For example, serum 

biomarkers are minimally invasive and relatively objective measures and several biofluid 

biomarkers showed good potential to be used as diagnostic and prognostic tools for TBI. 

Actigraphy and EEG metrics are also non-invasive, both measure passive responses, and 

thus require minimal effort from the studied subject. In addition, as discussed in this 

review, both actigraphy and EEG measures have demonstrated promise in differentiating 

between healthy controls and brain injured cohorts. Similarly, balance and eye response 

assessment techniques that are based on involuntary movements also have a high potential 

of translatability between animals and human outcomes. Especial, conspicuous is the fact 

that these preclinical biomarkers and techniques can be tailored for nonverbal infants 

and toddlers. Combining these clinical/pre-clinical translatable measures considering their 

distinct temporal profiles seems to be a path toward development of comprehensive and 

unbiased panel of biomarkers capable of diagnosis and monitoring the progression of TBI 

from different deficit aspects. All of the reviewed metrics showed the capability to be 

implemented in clinical as well as preclinical studies especially using large animal models 

of TBI. Measuring multi-domain biomarkers at uniform time points across clinical and 

preclinical allows for relationships to be established that relate cellular, functional and 

behavioral processes and identify markers that are more sensitive and specific at different 

post injury time windows that can relate to prognosis.
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5. Conclusion

A large proportion of TBI related emergency department visits are from young children 

and adolescents where falls, assaults, motor vehicle accidents, and sport related injuries 

are among the top events leading to injury. The acute and potential long-term effects 

include cognitive, physical, and behavioral deficits, which may be exacerbated in the 

developing brain affecting their productivity in academics, contributions to society, and 

life at home with close family and friends. The nature of TBI is complex, with diverse 

clinical presentations, causes and mechanisms of injury contributing to challenges associated 

with diagnosis, treatment, and management practices. In efforts to minimize the detrimental 

long-terms effects of TBI, an increase in pre-clinical and clinical research have sought to 

determine translatable diagnostic and prognostic measures of TBI and especially concussion 

in order to expedite injury resolution and reduce long term risks associated with TBI. 

Animal models of TBI are necessary in addressing the heterogeneity of TBI by isolating 

the mechanisms of injury in a reproducible manner, however translation to humans is 

difficult due to inter-species differences such as brain anatomy, behavior, life-span and 

time scale of biological process, metabolomic rate, pharmacokinetic, pathophysiological 

responses. In this review, we presented the findings, advantages, challenges and prospects 

of biofluid biomarkers, EEG, actigraphy, eye responses, and balance as potential tools for 

diagnosis, prognosis and TBI monitoring. These tools are valuable for bridging the gap 

between animal and human TBI outcomes because they involve effort-independent and 

non-verbal tasks capturing specific deficits. In addition, they are easily accessible and are 

non/minimally invasive. TBI causes dynamic, age dependent deficits in multiple domains, 

and thus, combining a number of biomarkers into a panel may be more suitable to detect 

these subtleties in deficits across age groups. These techniques can be used in parallel 

clinical and pre-clinical studies involving both human and animals and help to overcome 

some of the challenges associated with translation. Direct comparison of the temporal profile 

in different pathophysiological responses and behavioral and functional deficits in animals 

and humans can help to identify appropriate translating time scaling factors to enhance 

translation of biomarkers. Multicenter collaborations and large-scale data sharing will help 

to close this gap and promote advancements in therapies and interventions.
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Fig. 1. 
Schematic of cellular origins and causations of biomarkers and relation between 

biomechanical event and biomarkers at cellular, neuronal network and functional levels.
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