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Abstract

Although reported gene variants in the RET oncogene have been directly associated with multiple endocrine neoplasia type
2 and hereditary medullary thyroid carcinoma, other mutations are classified as variants of uncertain significance (VUS) until
the associated clinical phenotype is made clear. Currently, some 46 non-synonymous VUS entries exist in curated archives.
In the absence of a gold standard method for predicting phenotype outcomes, this follow up study applies feature selected
amino acid physical and chemical properties feeding a Bayes classifier to predict disease association of uncertain gene
variants into categories of benign and pathogenic. Algorithm performance and VUS predictions were compared to
established phylogenetic based mutation prediction algorithms. Curated outcomes and unpublished RET gene variants with
known disease association were used to benchmark predictor performance. Reliable classification of RET uncertain gene
variants will augment current clinical information of RET mutations and assist in improving prediction algorithms as
knowledge increases.
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Introduction

Medical genetics involves diagnosis, management, and deter-

mining risk of hereditary disorders [1,2]. The genotype:phenotype

correlation of gene variants in disease is a major component of

medical genetics. In monogenic diseases, gene mutations are

typically curated as either pathogenic or benign. However, many

gene variants must be classified as ‘‘unknown’’ or ‘‘uncertain’’

significance because they have not been clearly associated with a

clinical phenotype.

The outlay of time and labor to validate the disease association

concerning a variant of uncertain significance (VUS) within the

coding portion of a gene can be daunting and cost prohibitive

[3,4]. This is in large part, due to the communication between

clinicians and laboratory geneticists needed to resolve these

variants [5,6]. To help bridge this genotype:phenotype gap, the

use of machine learning classification algorithms to narrow the

uncertain ‘‘grey area’’ between pathogenic and benign sequence

variants warrants careful evaluation [7,8,9,10]. Reliable machine

learning based classification may augment costly patient recruit-

ment, family histories, and biochemical confirmation of a gene

variant with no associated disease correlation [11,12,13].

There are established methods for predicting mutation severity

based on amino acid substitution penalties, structural disruption,

sequence homology (ortholog conservation) or neural nets, such as

PolyPhen [13], SIFT [14], MutPred [9] and PMut [15]. However,

prediction algorithms are not always in agreement with curated data

or each other [16,17,18]. Thus, there are opportunities to explore

the use of other informatics approaches to this problem. Machine

learning methods that can be trained on data available in well-

curated gene variant collections may be promising tools to improve

the predictive capabilities available to the research community.

The human RET gene (REarranged during Transfection) is

located on chromosome 10q.11 codes for 20 exons. The transcript

length is 5,659 bps and translates to the 1,114 amino acid residue

protein (UniProt RET_HUMAN, #P07949) as shown in Figure 1.

The gene belongs to the cadherin superfamily and encodes a

receptor tyrosine kinase which functions in signaling pathways for

cell growth and differentiation. RET plays a critical role in neural

crest development. It can also undergo oncogenic activation in vivo

and in vitro by cytogenetic rearrangement. It can be further

classified by Gene Ontology (GO) categories (www.geneontology.

org) of biological process of homophilic cell adhesion, posterior

midgut development, and protein amino acid phosphorylation. Its

GO annotated cellular location is component integral to

membrane and the GO category of molecular functions lists

ATP binding, calcium ion binding and transmembrane receptor

protein tyrosine kinase activity. Functional domains of the RET

protein are also summarized in Figure 1.

RET is essential for the development of the sympathetic,

parasympathetic and enteric nervous systems. Disruption of

function by germline mutations in RET have been associated

with several diseases in humans including three related inherited

cancers: multiple endocrine neoplasia type IIA (MEN2A), multiple
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endocrine neoplasia type IIB (MEN2B), and familial medullary

thyroid carcinoma (FMTC). [19,20] RET has also been implicated

in congenital aganglionosis (absence of enteric nerve cells) in the

gastrointestinal tract (Hirschsprung’s disease) lack of the neuroen-

teric plexi impairs smooth muscle activity of the intestines

(particularly the colon) resulting in refractory constipation. [21]

Although well understood codon changes often guide patient

therapy or surgical options [22], RET gene variants may vary in

functional severity, where some are reported as benign, some

pathogenic, and some of uncertain significance. Curated RET

oncogene mutations have been recently reported by Margraf et al.

[23] The disease classification of RET gene variants has been

curated as benign (6%), pathogenic (52%) and VUS (42%),

meaning unknown or uncertain association with disease or

phenotype outcome. This archive currently hosts 146 RET

variants, including 62 VUS entries that can be accessed at

http://www.arup.utah.edu/database/.

Accurate prediction of disease association for novel mutations

and uncertain gene variants is of great importance to medicine and

biology. Informatics tools for predicting disease severity of

uncertain gene variants will aid in the improvement of

genetically-informed patient care. With a rapidly growing number

of on-line resources for gene variants collections, the opportunity

to apply machine learning algorithms to well curated disease

causing gene sets becomes increasingly desirable.

The absence of any gold standard for predicting phenotype

severity in uncertain gene variants prompts two questions. Are

algorithms trained specific to a gene/disease setting more

appropriate to use than generalized on-line prediction tools? Does

agreement between several and varying algorithms influence

clinician decision-making? This study expands a recently reported

algorithm, we here term Primary Sequence Amino Acid Properties

(PSAAP), which uses feature selected amino acid physicochemical

properties of primary amino acid sequence [24]. This previous

work detailed algorithm performance using only gene variants

with known disease association, while here we report applying the

PSAAP algorithm classification for pathogenicity of novel and

uncertain gene variants found in the RET proto-oncogene into

categories of benign or pathogenic. The PSAAP algorithm

performance has also been compared to four well-established

prediction tools available on-line and agreement between

algorithms summarized.

Results

The independent test set of RET curated mutations was used to

evaluate performance of different categories of classifier algo-

rithms. The best performing algorithm (using Weka) was Naı̈ve

Bayes. Algorithm metrics for this novel Bayes classifier of RET

disease outcome were calculated using the above test set data.

Evaluation of the classifier yielded a sensitivity of 0.938, specificity

of 0.867 and positive predictive value (precision) of 0.883.

Performance for our Primary Sequence Amino Acid Properties

(PSAAP) classifier is summarized in Table 1. A benchmark of

prediction performance for the established algorithms (MutPred,

PolyPhen, PMut and SIFT) was also performed using curated RET

gene variants with known disease outcomes. Following the 88% of

the PSAAP classifier, MutPred was next closest to predicting the

correct disease outcomes for the known RET variants with 84%

precision. PolyPhen yielded the highest specificity for RET variant

disease association of 92%, yet had the lowest precision at 54%.

PMut correctly predicted gene variant disease outcomes with 72%

precision but had the lowest specificity at 59%. Table 1 also

summarizes performance metrics (sensitivity, specificity, precision)

for curated RET mutations using the four established prediction

algorithms.

Next, evaluation of RET non-synonymous VUS mutations

(n = 46) was performed using our recently reported algorithm [24].

The PSAAP algorithm classified 22 of the uncertain variants as

pathogenic, while the remaining 24 fell within the benign

Figure 1. Schematic of the full length 1114 amino acid RET protein showing the signal peptide (SP, residues 1-24), cadherin domain
(CAD, residues 191-270), transmembrane domain (TM, residues 636-652), and tyrosine kinase motif (Kinase, residues 724-1005).
doi:10.1371/journal.pone.0018380.g001

Table 1. PSAAP algorithm performance of predicted phenotypes using curated RET mutations.

PSAAP Predictiona MutPred Predictionb PolyPhen Predictionc PMut Predictiond SIFT Predictione

Sensitivity 0.938 0.767 0.597 0.783 0.816

Specificity 0.867 0.823 0.920 0.591 0.821

Precision 0.883 0.843 0.541 0.723 0.779

aPrimary Sequence Amino Acid Properties (PSAAP) algorithm.
bAnalyzed with default settings at http://mutdb.org/mutpred.
cAnalyzed with default settings at http://genetics.bwh.harvard.edu/pph.
dAnalyzed with default settings at http://mmb.pcb.ub.es/PMut.
eAnalyzed with default settings at http://sift.jcvi.org.
doi:10.1371/journal.pone.0018380.t001

Predicting RET Mutation Severity

PLoS ONE | www.plosone.org 2 March 2011 | Volume 6 | Issue 3 | e18380



grouping. For those variants classified as predicted pathogenic, the

PSAAP algorithm estimated confidence remained above 90%.

The classifier predicted disease outcome using our algorithm is

listed in Table 2.

Results from analysis of the RET uncertain gene variants (VUS)

using the established on-line prediction tools are also summarized

in Table 2, with predicted pathogenic variants bolded and ranked

by agreement. The MutPred tool calculates the probability of a

deleterious mutation and corresponding hypothesis of disrupted

molecular mechanism. We used MutPred’s default probability

cutoff of 0.75 for differentiating between benign and disrupted/

pathogenic mutations. Our PSAAP algorithm agreed with

MutPred in 16 benign and 8 pathogenic predictions for 52%

agreement (24 out of 46). PolyPhen has outcomes of ‘‘benign’’,

‘‘possibly damaging’’ and ‘‘probably damaging’’. The PSAAP

classifier agreed with PolyPhen in 13 benign and 22 pathogenic

Table 2. Algorithm agreement for RET uncertain gene variants and predicted pathogenicity.

RET uncertain gene
variant PSAAP Predictiona MutPred Predictionb PolyPhe Predictionc SIFT Predictiond PMut Predictione

5/5 agreement

A510V
R600Q
K603Q
E632K
A640G
V648I
Y791N
E843D
R844L
R844W
R886W
R912Q

Benign
Benign
Benign
Benign
Benign
Benign
pathogenic
benign
pathogenic
pathogenic
pathogenic
pathogenic

Benign
Benign
Benign
Benign
Benign
Benign
disrupted
Benign
disrupted
disrupted
disrupted
disrupted

Benign
Benign
Benign
Benign
Benign
Benign
probably damaging
benign
probably damaging
probably damaging
probably damaging
probably damaging

Tolerated
tolerated
tolerated
tolerated
tolerated
tolerated
affects function
tolerated
affects function
affects function
affects function
affects function

Neutral
neutral
neutral
neutral
neutral
neutral
pathological
neutral
pathological
pathological
pathological
pathological

4/5 agreement

C611S
D631G
E805K
S819I
R833C
S904C
S904F

pathogenic
pathogenic
benign
pathogenic
pathogenic
pathogenic
pathogenic

disrupted
benign
disrupted
disrupted
benign
benign
benign

Probably damaging
probably damaging
probably damaging
probably damaging
probably damaging
probably damaging
probably damaging

Affects function
affects function
affects function
affects function
affects function
affects function
affects function

neutral
pathological
pathological
neutral
pathological
pathological
pathological

3/5 agreement

Y606C
C531R
G533S
D631A
D631V
R635G
P841L
L881V
K907M

pathogenic
pathogenic
pathogenic
pathogenic
pathogenic
pathogenic
pathogenic
benign
pathogenic

benign
benign
benign
benign
benign
benign
benign
disrupted
benign

probably damaging
probablydamaging
probably damaging
probably damaging
probably damaging
probably damaging
probably damaging
probably damaging
probably damaging

tolerated
tolerated
affects function
affects function
affects function
tolerated
tolerated
affects function
affects function

pathological
pathological
neutral
neutral
neutral
pathological
pathological
neutral
neutral

2/5 agreement

C630S
D631E
S649L
H665Q
R844Q
M848T
I852M
K907E

pathogenic
benign
pathogenic
benign
benign
benign
benign
benign

benign
benign
benign
benign
benign
benign
benign
benign

probably damaging
probably damaging
probably damaging
probably damaging
probably damaging
probably damaging
probably damaging
probably damaging

tolerated
tolerated
tolerated
tolerated
tolerated
tolerated
affects function
affects function

Neutral
pathological
neutral
pathological
pathological
pathological
neutral
neutral

1/5 agreement

G321R
E511K
D631N
A641S
K666N
R770Q
N777S
V778I
E818K

benign
benign
benign
benign
benign
benign
benign
benign
benign

benign
benign
benign
benign
benign
benign
benign
benign
benign

benign
benign
benign
possibly damaging
probably damaging
probably damaging
possibly damaging
benign
possibly damaging

tolerated
tolerated
tolerated
tolerated
tolerated
tolerated
tolerated
affects function
tolerated

pathological
pathological
pathological
neutral
neutral
neutral
neutral
neutral
neutral

aPrimary Sequence Amino Acid Properties (PSAAP) algorithm.
bAnalyzed with default settings at http://mutdb.org/mutpred.
cAnalyzed with default settings at http://genetics.bwh.harvard.edu/pph.
dAnalyzed with default settings at http://sift.jcvi.org.
eAnalyzed with default settings at http://mmb.pcb.ub.es/PMut.
doi:10.1371/journal.pone.0018380.t002
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predictions for 76% agreement (35 out of 46). PMut yields

outcomes of ‘‘pathological’’ or ‘‘neutral’’ and a corresponding

reliability metric (lower is better). Our PSAAP trained algorithm

was in concordance with PMut in 13 benign and 14 pathogenic

predictions for 58% agreement (27 out of 46). The SIFT algorithm

gives outcomes of ‘‘tolerated’’ and ‘‘affects protein function’’. Our

algorithm agreed with SIFT in 19 benign and 16 pathogenic

predictions for 76% agreement (35 out of 46).

Of special interest, for predicted RET benign variants, 7 of 24

agreed across all algorithms, while only 6 of 22 predicted

pathogenic RET variants showed agreement across the different

methods. Although only 13 out of 46 (28%) were concordant,

these variants may count as having a higher degree of confidence

in prediction due to the varied methodologies and basis of

classification. Importantly, the focus of molecular research and

clinical efforts could therefore be directed to this prioritized listing

of RET uncertain variants. Curated variants are shown mapped

across the length of the protein in Figure 2A. This graphing

visually highlights the cysteine rich region just prior to the

transmembrane domain, and the transmembrane domain itself

which contain the majority of pathogenic variants. Our predic-

tions for the uncertain RET variants (VUS) are also mapped by

location across the length of the protein as added into Figure 2B.

Finally, several unpublished RET gene variants with known

pathological (MEN2) outcomes (n = 5) were identified during

routine genetic testing at ARUP Laboratories. To further

benchmark a gold standard of truth for RET mutation prediction,

all five algorithms were used to classify this set of not yet seen

variants. Our novel Bayes trained PSAAP classifier correctly

identified all five variants as pathogenic. PMut called 3 disease

causing variants correctly, but classified two others as ‘‘neutral’’

mutations, when in fact these changes were known to be associated

with disease. PolyPhen also correctly identified 3 as probably

damaging (pathogenic), but missed classified the same 2 variants as

PMut. SIFT predicted 4 of these variants would affect function

(pathogenic), but called one of the same variants ‘‘tolerated.’’

MutPred correctly predicted all 5 as pathogenic.

Discussion

Mutations in the RET proto-oncogene have been directly

associated with MEN2 and hereditary medullary thyroid carcino-

ma, and provide guidance for patient care. Accurate classification

of phenotype severity for novel mutations and uncertain variants

as relating to disease is of great importance to proper patient care.

Although correlation of genotype-phenotype offers therapy options

that would otherwise remain hidden and may lead to disease

specific mutation-guided management strategies, appropriate

caution is justified when clinicians are asked to trust computational

outcomes for determining patient care [6].

On-line mutation prediction tools have been available for many

years. Prediction tools such as PolyPhen [13] and SIFT [14] are

primarily based on multiple alignment and amino acid substitution

penalties. More recently, MutPred [9] which calculates probability

Figure 2. Schematic of the RET protein with A) clinically curated variants and B) predicted disease association for uncertain variants
mapped across protein location. The phenotype overlay shows regions of reported MEN2A, MEN2B and FMTC disease.
doi:10.1371/journal.pone.0018380.g002
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of deleterious mutations by disrupted molecular mechanism.

Additionally, PMut [15] is neural net based and trained on

human mutations. We recently reported classification of curated

RET gene variants using primary amino acid sequence properties

and Naı̈ve Bayes [24]. A key feature to highlight is the fact that the

PSAAP algorithm relies on Bayes probability trained on gene-

specific and clinically curated disease outcomes. Comparison of

this recent PSAAP algorithm with established on-line prediction

tools may improve our understanding of predicting mutation

status in the RET proto-oncogene.

Sorting Intolerant From Tolerant (SIFT) was first published in

2003 by Ng and Heinikoff from work done at the Fred Hutchinson

Cancer Research Center in Seattle [14]. The algorithm predicts

whether an amino acid substitution will affect the function of a

protein based on both sequence homology to various orthologs

and physical properties of amino acids. SIFT is a multistep

procedure that (1) searches for and chooses similar sequences (2),

makes an alignment of these sequences, and (3) calculates scores

based on the amino acids appearing at each position in the

alignment. It was initially developed and trained on nsSNP data

sets from LacI, Lysozyme, and HIV protease [25]. This algorithm

works especially well when adequate numbers of sequence

homologs are available for multiple alignment. Conversely, poor

performance is seen when multiple alignment in not reliable or

completely unavailable.

Polymorphism Phenotyping (PolyPhen) is an EMBL based tool

from 2002 from Ramensky et al. [13] It was developed to predict

the possible impact of an amino acid substitution on the structure

and function of a human protein using physical and comparative

considerations. It was originally developed from a set of disease-

causing mutations in human proteins with known structures

extracted from the SWISS-PROT database, and correlated to the

Online Mendelian Inheritance in Man (OMIM) database [26].

Since the algorithm relies on predicted structural disruption, it

works especially well where protein structure is known and less

reliable when a solved protein structure is not available.

MutPred is a recently developed prediction algorithm by Li,

Mooney and Radivojac [9]. It builds on the established SIFT

method but offers improved classification accuracy based upon

protein sequence, and models changes of structural features and

functional sites between wild-type and mutant sequences with

output of probabilities of gain or loss of structure and function. It

was trained on a set of disease SNPs from cancer and the OMIM

disease archive. This predicted disruption of molecular function

again work especially well for well studied proteins, where

homolog and solved structure is available.

PMut was first published in 2005 by the Molecular Modeling

Unit at the Institut de Recerca Biomédica, Parc Cientı́fic de

Barcelona, Spain [15]. It is based on a two layer neural network

and was trained using human mutational data. It allows for either

prediction of single point amino acidic mutations or scanning of

mutational hot spots. Results are obtained by alanine scanning,

identifying massive mutations and genetically accessible mutations.

A graphical interface for Protein Data Bank (PDB) structures,

when available, and a database containing hot spot profiles for all

non-redundant PDB structures are also accessible from the PMut

server.

Benchmarking the established prediction algorithms with

curated RET variants and associated MEN2 disease demonstrates

our PSAAP classifier model compares very well to other

established prediction tools. A distinguishing feature of the PSAAP

model herein reported is the algorithm was trained specifically to

curated RET disease outcomes, as summarized in Figure 3 . This is

in contrast to the less robust curated collections of mutations such

as OMIM or dbSNP. Further, no homolog alignment or solved

protein structure is necessary. Rather, it relies on primary

sequence information only - with calculated delta matrices of

substituted amino acid properties , and is therefore not limited to

scenarios where SIFT or PolyPhen (and others) have traditional

been used. These facts may explain the improved performance

when classifying RET variants as compared to generalized

prediction tools available on-line.

Ranking agreement of predicted phenotype severity across

several complimentary algorithms may provide an additional level

of clinical confidence in computational classifiers. At a minimum,

these five all-in-agreement ‘‘predicted pathogenic’’ RET variants

warrant closer investigation by traditional and molecular tech-

niques. Furthermore, algorithm agreement in a clinical setting

may be just as important for ‘‘benign’’ as it might be for

‘‘pathogenic.’’

Personalized treatment in genomic medicine cannot advance

until questions such as what was found, what does it mean and what to do

about it can be answered for each individual patient and genetic test

result. Among the key features critical for a decision support

framework in clinical genetic testing is a reliable phenotype

classification tool and scoring metric to predict consequences of a

variation that alters protein structure. For these uncertain gene

Figure 3. Overview of the PSAAP classifier workflow, high-
lighting the gene-specific algorithm training on clinically
curated disease association.
doi:10.1371/journal.pone.0018380.g003
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variants, the in-house algorithm trained specifically on available

RET curated outcomes seems to outperform well-established and

generalized prediction tools available on-line. More importantly,

agreement between several predictors may provide research

priority for novel and uncertain gene variants.

The use of machine learning algorithms to classify uncertain

gene variants in disease is a promising tool to strengthen our

underlying knowledge of disease pathogenesis. Software algo-

rithms to better classify gene variants of uncertain significance are

necessary to move translational research forward. This follow up

study used the PSAAP algorithm to ‘‘reclassify’’ 46 variants of

uncertain significance within the RET proto-oncogene into

categories of benign or pathogenic. This novel application of

classification algorithms for computational prediction of pheno-

type severity in uncertain gene variants could be generally applied

to any gene-disease setting where a corpus of curated gene variants

are trusted and where reported mutations impact clinical care.

Methods

Non-synonymous RET variants were characterized by physico-

chemical differences in primary amino acid sequence resulting from

the mutation. Attributes of mutation status were characterized using

values of 544 physical, chemical, conformational, or energetic

properties (AAindex v9.4) [27]. AAindex is a database of numerical

indices representing various physicochemical and biochemical

properties of amino acids and pairs of amino acids. For each RET

variant, matrices of delta values for each biochemical property of

the substituted amino acid were calculated by Python scripting and

the resulting mutation described by an array of variables archived

using SQL - where each matrix corresponds to the absolute value of

the difference between the value of the property in the amino acid

present in the wild type and the one in the mutant.

As previously described, representative algorithms from differ-

ent categories of classification (such as nearest neighbor, bayes,

regression, rule-based and support vector machine) were evaluated

for their ability to correctly predict mutation status in the training

set [24]. Briefly, a clinically curated set (n = 84) of non-

synonymous RET mutations with known pathogenicity was used

to train and test machine learning classification algorithms.

Although training and test sets included different disease subtypes

such as MEN2A (n = 40), MEN2B (n = 3), FMTC (n = 5), MEN2A

and FMTC (n = 36) - class labels of ‘‘pathogenic’’ and ‘‘benign’’

were used to describe all curated disease association. Random

selection was used to build a 2/3 training set (n = 56) and 1/3 test

set (n = 28). Attribute selection (feature selection) was performed

during classification training/testing. Machine classification algo-

rithms were implemented using the Weka software package (v3.6)

[28]. When a given classification algorithm produced posterior

probabilities of mutation status, we assigned each variant’s

mutation status according to the higher posterior probability

(Weka’s default behavior).

The PSAAP algorithm performance was evaluated using the test

set, with sensitivity (true positive rate), specificity (true negative

rate), and positive predictive value (precision) calculated. A data

set of non-synonymous RET uncertain variants (n = 46) was then

analyzed using our PSAAP (Naı̈ve Bayes, gene-specific trained)

classification algorithm. The workflow of our PSAAP algorithm is

summarized in Figure 3.

Next, both curated RET mutations (known disease association)

and RET uncertain variants (VUS data) were analyzed and

compared using four existing mutation prediction algorithms.

These established prediction tools are mainly based on phyloge-

netic properties such as sequence homology, amino acid

substitution penalties or structural disruption. MutPred (mutd-

b.org/mutpred) [9], PolyPhen (genetics.bwh.harvard.edu/pph)

[13], SIFT (sift.jcvi.org) [14], and PMut (mmb2.pcb.ub.es:8080/

PMut) [15] were accessed during July/August 2010. Both curated

RET variants and RET VUS entries were evaluated using

respective default settings.

Finally, several unpublished RET disease variants (n = 5) with

known pathogenic outcomes (by surgical pathology, molecular

testing and family history) were identified during routine genetic

testing at ARUP Laboratories. This nascent set of RET variants

was also analyzed and compared by all prediction algorithms to

further benchmark some standard of performance and precision.

Data and methods used for this study were approved by the

Institutional Review Board of the University of Utah.
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