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Abstract

Significance: NADPH oxidases (Noxs), of which there are seven isoforms (Nox1–5, Duox1/Duox2), are
professional oxidases functioning as reactive oxygen species (ROS)-generating enzymes. ROS are signaling
molecules important in physiological processes. Increased ROS production and altered redox signaling in the
vascular system have been implicated in the pathophysiology of cardiovascular diseases, including hyperten-
sion, and have been attributed, in part, to increased Nox activity.
Recent Advances: Nox1, Nox2, Nox4, and Nox5 are expressed and functionally active in human vascular cells.
While Nox1, Nox2, and Nox4 have been well characterized in models of cardiovascular disease, little is known
about Nox5. This may relate to the lack of experimental models because rodents lack NOX5. However, recent
studies have advanced the field by (i) elucidating mechanisms of Nox5 regulation, (ii) identifying Nox5
variants, (iii) characterizing Nox5 expression, and (iv) discovering the Nox5 crystal structure. Moreover, studies
in human Nox5-expressing mice have highlighted a putative role for Nox5 in cardiovascular disease.
Critical Issues: Although growing evidence indicates a role for Nox-derived ROS in cardiovascular
(patho)physiology, the exact function of each isoform remains unclear. This is especially true for Nox5.
Future Directions: Future directions should focus on clinically relevant studies to discover the functional
significance of Noxs, and Nox5 in particular, in human health and disease. Two important recent studies will
impact future directions. First, Nox5 is the first Nox to be crystallized. Second, a genome-wide association study
identified Nox5 as a novel blood pressure-associated gene. These discoveries, together with advancements in
Nox5 biology and biochemistry, will facilitate discovery of drugs that selectively target Noxs to interfere in
uncontrolled ROS generation. Antioxid. Redox Signal. 30, 1027–1040.
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An Introduction to Reactive Oxygen Species
and Cell Biology

Reactive oxygen species (ROS) are signaling molecules
that influence gene expression, oxygen sensing, cell

growth, and cell death. They define the cellular phenotype by
regulating functions such as migration, contraction, differ-
entiation, and secretion (109). ROS have been implicated in

many biological processes, including immune cell activation,
bone reabsorption, sperm–oocyte fusion, aging, and regula-
tion of vascular tone (87, 129).

The most well-known function of ROS relates to host de-
fense responses, where superoxide production by phagocytes
plays a key role in killing of microorganisms (118). The
phagocyte respiratory burst oxidase, NADPH oxidase (Nox),
catalyzes NADPH-dependent reduction of molecular O2 to
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produce superoxide (NADPH +2O2 / NADP+ + H+ + 2O2
-),

which can dismute to generate secondary species, including
hydrogen peroxide (H2O2) and hypochlorous acid, which to-
gether play a role in host defense by killing or damaging mi-
crobes (9, 111). Phagocytic Nox comprises two plasma
membrane-associated subunits (gp91phox [also called Nox2]
and p22phox), three cytosolic subunits (p47phox, p67phox, and
p40phox), and a low-molecular-weight G protein (Rac1 or
Rac2), which are disassociated in the resting state (77, 97). Upon
stimulation, assembly of the plasma membrane subunits with
cytosolic subunits and Rac1/2 leads to superoxide generation.
The catalytic subunit is Nox2, which forms a transmembrane
heterodimer with p22phox and functions as an electron transport
chain. Phagocytic Nox has been very well described and its
critical role in clinical medicine is highlighted in patients with
chronic granulomatous disease (CGD) (14, 22), which is caused
by a deficiency in one of the phox subunits. Patients with CGD
are unable to generate superoxide and the disease is character-
ized by severe, and often fatal, infections that require bone
marrow transplant to reduce clinical symptoms (43).

Nox, in particular Nox2, the Nox prototype (23, 25), was
discovered in the 1960s, with studies demonstrating its func-
tional activity in phagocytic cells such as neutrophils and
monocytes/macrophages. Interestingly, some of the earliest
studies actually identified Nox in nonphagocytic cells, in-
cluding the liver, heart, and brain (9, 91, 98). However, it has
only been in the past 20 years that the importance of non-
phagocytic Nox-derived ROS in physiological and patholog-
ical processes has become evident. It is now clear that various
cell types, including kidney cells, fibroblasts, adipocytes,
spermatozoa, osteoclasts, thyroid, brain, colon, cardiomyo-
cytes, and hepatocytes, as well as vascular cells, generate ROS
(60, 69, 79, 89, 116, 122). Although many enzymatic sources,
such as mitochondria, peroxisomes, and cytochrome P450, can
produce ROS in these cells, Nox is especially important as its
primary function is ROS generation, whereas other enzymes
produce ROS as by-products of enzymatic activity (21).

Since the discovery of Nox2, six other Nox isoforms have
been identified, including Nox1, Nox3, Nox4, Nox5, Duox1,
and Duox2 (83, 115). The existence of multiple homologs of
Nox2 in nonphagocytic cells/tissues suggests that production
of ROS in these sites is distinct and different from host de-
fense functions (6).

Although there has been enormous advancement in the
field of Nox biology, the specific biological significance and
mechanisms of regulation of the different Noxs still remain
elusive (6). Rodent vascular, cardiac, and renal cells express
Nox1, Nox2, and Nox4, and in humans, Nox5 is also present
(64, 85, 107). These Noxs have been implicated in many
redox-sensitive pathophysiological processes in the heart and
vascular and renal systems (64, 85, 107) and have been
suggested to be a cause of altered redox status in cardiovas-
cular disease, including hypertension and atherosclerosis.

ROS and Hypertension

Mechanisms contributing to hypertension are complex,
involving many pathological processes, including altered
renal Na+ regulation, endothelial dysfunction, vascular re-
modeling, vascular hypercontractility, arterial calcification,
immune cell activation, and inflammation (106, 114). Com-
mon to these processes is oxidative stress due to excessive

Nox-derived ROS generation, reduced nitric oxide (NO)
bioavailability, and decreased antioxidant capacity (31).
Oxidative stress is associated with increased redox signaling,
activation of transcription factors, stimulation of proin-
flammatory and profibrotic signaling pathways, induction of
stress-related kinases and DNA damage, molecular processes
that lead to cell damage, and vascular dysfunction (49).

Abnormal redox signaling and oxidative stress have been
shown to play a role in development of hypertension in ex-
perimental models. In angiotensin II (Ang II)-induced hyper-
tension in rodents, production of O2

- and H2O2 is increased in
vascular, renal, cardiac, and neural cells and antioxidant en-
zymatic activity is reduced (13, 26, 71, 95, 96). Oxidative
stress has also been demonstrated in salt-sensitive forms of
hypertension (29). Rats with deoxycorticosterone acetate
salt-induced mineralocorticoid hypertension exhibit ele-
vated vascular O2

- production due to activation of Noxs and
mitochondrial oxidases and uncoupling of endothelial nitric
oxide synthase (110, 133). Nox1-dependent ROS produc-
tion has also been demonstrated in experimental models of
pulmonary hypertension (56) and seems to be especially
important in arterial fibrosis and vascular aging in stroke-
prone spontaneously hypertensive rats (52).

While extensive experimental data support a causative role
for oxidative stress in hypertension, there is a paucity of evi-
dence for a direct role of ROS in the pathophysiology of human
hypertension (82, 84, 101). However, many clinical studies have
demonstrated a positive association between blood pressure and
plasma levels of biomarkers of oxidative stress, including
malondialdehyde, F2-isoprostanes, and advanced oxidation
protein products, and an inverse association between blood
pressure and plasma antioxidants, including total antioxidant
capacity, superoxide dismutase (SOD), and antioxidant vita-
mins (vitamins E and C) (35, 101, 120). Despite these strong
suggestions linking oxidative stress and human hypertension,
further studies are still required to unambiguously demonstrate a
causal relationship. Moreover, to date, there are still no con-
vincing data supporting a role for antioxidants in the prevention
or treatment of essential hypertension (47, 104).

Of the many ROS-generating enzymes in the cardiovascular
system, Noxs appear to be especially important in the patho-
physiology of hypertension. A direct causal role for Noxs in the
development of hypertension has been demonstrated in mice
lacking Nox1, Nox2, Nox4, or p47phox where Ang II-induced
endothelial dysfunction and hypertension are blunted (100, 124).
While acute models of Ang II-mediated hypertension involve
Nox activation, chronic models of Ang II-dependent hyperten-
sion seem to be independent of Nox1 and Nox2 (119, 131).
Transgenic mice overexpressing Noxs in the vascular wall have
exaggerated vascular and blood pressure responses to Ang II
(100). In Ang II-infused mice overexpressing p22phox in a
vascular smooth muscle cell-specific manner, vascular hyper-
trophy and pressor effects were exacerbated compared with
control mice (125a). These mice also exhibited an increase in NO
and H2O2 generation (65). Treatment of hypertensive mice and
rats with various antioxidants, including vitamins C and E, SOD,
and tempol, reduced vascular and systemic oxidative stress and
decreased blood pressure (11, 127). Strategies to increase NO,
including treatment with BH4, have been shown to have anti-
hypertensive and vasoprotective effects in models of experi-
mental and pulmonary hypertension (15, 105). Treatment of
hypertensive mice with Nox inhibitors, such as apocynin,
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diphenyleneiodonium, gp91ds-tat, GKT137831, or antioxidants,
to reduce ROS bioavailability improved vascular function and
normalized blood pressure, further supporting an important link
between Nox activation, oxidative stress, and blood pressure
elevation (19, 123). With increasing interest in development of
Nox isoform-specific inhibitors, the need to fully understand the
differential role of Noxs in vascular oxidative stress is growing.
We provide an overview on current knowledge regarding the
role of p22phox-dependent Noxs (Nox1, Nox2, and Nox4) in the
vascular system and discuss in detail the importance of p22phox-
dependent Noxs, specifically Nox5, which is emerging as an
important Nox isoform in human disease.

p22phox-Dependent Nox Isoforms
in the Vascular System

p22phox, a nonglycosylated membrane-associated protein
of molecular mass 22 kDa, associates with Nox in a 1:1 ratio
(114). p22phox expression increases in response to Ang II
and is upregulated in experimental diabetes and hyperten-
sion. Its major functions are to stabilize Nox proteins (Nox1,
Nox2, Nox3, and Nox4) and to interact with cytosolic orga-
nizer subunits for Nox1, Nox2, and Nox3 (106). While Noxs
1–4 have an obligatory need for p22phox for activation, Nox5
does not require p22phox for activity (5).

Details about vascular Nox1, Nox2, and Nox4 have been
extensively reviewed (8, 40, 68, 70, 90) and only an overview is
given here for completeness. The message and protein for Nox1,
Nox2, and Nox4 have been identified in arteries in rodents and
humans. All Noxs are expressed to varying degrees in endothelial
cells, vascular smooth muscle cells, perivascular adipocytes, and
fibroblasts (36, 103, 112). Nox4 is abundant in endothelial cells.
Nox1 and Nox2 are expressed in vascular smooth muscle cells,
with Nox1 being predominant in large conduit arteries and Nox2
in peripheral arteries (68). Constitutively active Nox4 seems to
play a role in basal generation of ROS.

The function of Nox-derived ROS in the vascular system is
complex and depends on the target cell type, predominant Nox
isoform, type of species generated, stimulating factor, and re-
dox state. Ang II and other prohypertensive factors cause
upregulation of vascular Nox1 and Nox2, important in redox-
mediated hypertension in various experimental models. Vas-
cular Nox1/2-derived ROS has also been suggested in athero-
sclerosis, diabetic vasculopathy, vascular remodeling, and
aortic aneurysm (46, 113, 125, 126). The role of Nox4 is less
clear because it has been shown to be both vasoinjurious and
vasoprotective (8, 78), depending on experimental conditions.
Endothelial Nox4 influences angiogenesis and vascular aging
(67), and perivascular Nox4 is important in vascular remodel-
ing in pulmonary hypertension (4). In ischemic or hypoxic
conditions, endothelial Nox4 plays a role in blood–brain barrier
breakdown and neural autotoxicity. Nox4-/- mice were pro-
tected from oxidative stress, blood–brain barrier leakage, and
neuronal apoptosis in a stroke model (12), indicating a patho-
logical role of Nox4 in this model. Nox4 is also important in
fibrosis and cardiovascular remodeling (63).

On the other hand, emerging evidence indicates vasoprotec-
tive and antiatherosclerotic functions for endothelial and car-
diomyocyte Nox4 because deletion of Nox4 in these cell types is
associated with worse cardiovascular injury and endothelial
dysfunction in experimental models of atherosclerosis, cardiac
ischemia, and hypertension (86, 134). Reasons for the discrep-

ant results likely relate to the site of Nox4 activation, type and
site of ROS production, and experimental models studied.

The exact role of Nox4 in humans is still unclear, although
clinical studies imply that Nox4 is important in fibrosis. Var-
ious drugs and small-molecule inhibitors targeting Nox4 in
pathological fibrosis are under development (117). A Nox1/4
inhibitor, GKT136901, is currently in Phase 2 clinical trials for
treating hepatic fibrosis (71). Whether such approaches will be
beneficial in cardiovascular fibrosis and remodeling is unclear.

p22phox-Independent Nox Isoforms: Focus on Nox5

In addition to Noxs 1–4, three other Nox isoforms have
been identified, including Nox5, Duox1, and Duox2, which
share &50% homology with Nox2 (2, 27). These Noxs are
unique, in that they possess a long NH2 terminus containing a
Ca2+-binding EF-hand domain and do not require p22phox or
cytosolic Nox subunits for their activation. Nox5 has a mo-
lecular mass of &85 kDa and does not seem to be glycosy-
lated, whereas Duox1 and Duox2 have N-glycosylation sites
and a molecular mass of 160–190 kDa (2). These Noxs are
directly activated by Ca2+, which binds to the EF-hand Ca2+-
binding domains, causing conformational change and acti-
vation of Nox to generate O2 (2, 3, 27).

Duox1/2

Duox1 and Duox2 were originally identified in the thyroid
gland and are critically involved in redox-dependent synthesis
of thyroid hormone (10). Duox1/2 are highly expressed in the
thyroid gland, but Duox1 has also been identified in low levels
in respiratory epithelium, while Duox2 has been identified in
gastrointestinal glandular epithelium, salivary glands, and tu-
mors (32, 128). Little is known about Duoxs in the cardiovas-
cular system. A single study reported that aortic smooth muscle
cells express low levels of Duox1 mRNA (59); however, the
function is unclear. In the heart, Duox-mediated H2O2 gener-
ation has been observed in zebrafish (51), but to our knowledge,
nothing is known about Duox in the mammalian heart.

Nox5

Nox5, of which there are multiple isoforms (Nox5a, -b, -c,
and -e [also called Nox5S]), is the most recently discovered
Nox and is unique (Fig. 1) (20). Nox5e is a short form of Nox5
and lacks Ca2+-binding domains. Unlike other isoforms, the
Nox5 gene is absent in rodents, it generates ROS from a
single gene product, and does not require Nox subunits for its
activation. Its long, intracellular N-terminal domain with EF-
hands undergoes conformational changes upon Ca2+ binding.
Increased cytoplasmic Ca2+ concentration ([Ca2+]i) is es-
sential for Nox5 activation, as evidenced in cell studies where
ROS are not generated in Ca2+-free buffer (20, 71). Because
of its close association with Ca2+, Nox5 is likely to be in-
volved in Ca2+-activated redox-dependent processes. Nox5
regulation also depends on its gene expression, subcellular
localization, and post-translational modifications. Of all the
Nox isoforms, only Nox5 has recently been crystallized (72).

Nox5 Compartmentalization and Regulation

Unlike p22phox-regulated vascular Noxs (Nox1, Nox2,
and Nox4), Nox5 is expressed primarily in intracellular
compartments localized mainly in the perinuclear area and
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endoplasmic reticulum (ER) (Fig. 2) (66). In COS7-Nox5-
transfected cells, Nox5 is also found in the Golgi and mito-
chondria, and in Nox5-overexpressing endothelial cells, Nox5
localizes in caveolae (66, 121). The significance of Nox5 in ER is
unclear, but this is a site of Nox synthesis and post-translational
modification. In addition, ER function is redox dependent and
ER stress influences Nox5-ROS regulation (92). Hence, there
may be bidirectional dependency. Nox5 seems to traffic from
intracellular membranes to the plasma membrane where it may
associate with cholesterol-rich microdomains, including caveo-
lae and lipid rafts. The distinct intracellular distribution of Nox5
not only regulates ROS generation in a site-specific manner but
also influences the function of redox-sensitive signaling mole-
cules in close proximity, thereby controlling cell function.

In addition to its distinct subcellular localization, Nox5 ac-
tivity is regulated, in part, by phosphorylation of serine/threonine
(Ser475, Ser490, Ser494, and Ser498). Nox5 phosphorylation
increases sensitivity to Ca2+, thereby facilitating ROS generation
at lower Ca2+ levels (33). Numerous kinases, including protein
kinase C (PKC)a, c-Abl, Ca2+/calmodulin-dependent protein
kinase II (CAM kinase II), extracellular signal-regulated kinase
1/2 (ERK 1/2), and tyrosine, influence phosphorylation of Nox5
(Table 1) (16, 33, 108). Nox5 protein-binding partners, including
Hsp90 and calmodulin, increase Nox5 activity, whereas binding
to Hsp70 and caveolin-1 decreases Nox5 activity (16). Proin-
flammatory transcription factors, nuclear factor jB (NF-jB),
AP-1 (activator protein 1), and signal transducer and activator of
transcription 1/3 (STAT1/STAT3), which increase [Ca2+]i, also
regulate Nox5 expression in human aortic smooth muscle
cells (74).

Nox5 is also modulated by other forms of post-
translational modifications besides phosphorylation, in-
cluding S-nitrosylation, SUMOylation (SUMO, small
ubiquitin-related modifier), and palmitoylation (17). How-
ever, the significance of these different states of modification
has yet to be elucidated.

Tissue Distribution and Cell Expression of Nox5

The Nox5 gene is expressed in a variety of fetal tissues and
in adult testes, spleen, lymph nodes, pancreas, placenta, bone
marrow, uterus, kidney, stomach, and cancer cells. It is also
present in cells of the cardiovascular system, including

FIG. 1. Diagram demonstrating the structure and regulation of Nox5. Nox5 possesses a six-transmembrane domain,
N-terminal domain with EF-hands, and C-terminal domain with phosphorylation sites. Nox5 is regulated by changes in
intracellular Ca2+ levels, regulated, in part, by Ca2+ influx through Ca2+ channels. Nox5 is regulated by various kinases,
transcription factors, and binding proteins, which may influence phosphorylation of Nox5. Nox5 activation generates O2

-,
which is dismutated by SOD to H2O2. O2

- and H2O2 act as signaling molecules influencing redox-sensitive signaling
pathways. H2O2, hydrogen peroxide; Nox, NADPH oxidase; O2

-, superoxide; SOD, superoxide dismutase. To see this
illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars

FIG. 2. Subcellular localization of Nox5. Nox5 has been
identified in the plasma membrane as well as various intra-
cellular locations. It is highly expressed in the perinuclear
area and is also detected in mitochondria and ER. The site-
specific location of Nox5 may influence the function of this
isoform through close association with specific signaling
molecules. Increased Nox5-induced generation of ROS leads
to oxidation of signaling molecules that influence redox sig-
naling. ER, endoplasmic reticulum; ROS, reactive oxygen
species. To see this illustration in color, the reader is referred
to the web version of this article at www.liebertpub.com/ars
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cardiomyocytes, and endothelial and vascular smooth muscle
cells (18, 73). In the spleen, Nox5 is abundant in regions of
mature B cells and T lymphocytes. The presence of Nox5 in
circulating lymphocytes is controversial because original
studies failed to identify Nox5 in circulating cells (76),
whereas recent studies suggest that Nox5 regulates human
monocyte differentiation into dendritic cells (75). Human
monocytes and macrophages were also found to express
Nox5; however, studies were performed mainly in human
leukemia cell line cells (leukemia cell line) (75). The function
of Nox5 is still unclear and what is known is indirect and
based on Nox5 expression patterns. Nevertheless, growing
evidence suggests an important role for Nox5 in cardiovas-
cular and renal (patho)physiology, as highlighted below.

Nox5 and Contraction

Considering the importance of [Ca2+]i in Nox5 regulation,
and the critical role of Ca2+ in controlling the contractile
machinery in muscle, we questioned whether Nox5 plays a
role in vascular contraction. Our recent data show that in
human vascular smooth muscle cells, Nox5 regulates pro-
contractile signaling pathways, effects that are attenuated in
siRNA Nox5-silenced human vascular smooth muscle cells
(Fig. 3) (8, 81).

The possible role of Nox5 in contraction was previously
highlighted in arthropod models, which express an ortholog
of Nox5, called dNox (38, 99). Depletion of dNox in the
musculature of Drosophila resulted in retention of mature
eggs within ovaries, leading to female sterility (99). These
effects were due to failure of ovarian muscles to contract in an
agonist-dependent manner (99). Findings from this study
highlighted the potentially important role of Nox5 in the
regulation of smooth muscle contraction.

Function of Nox5 in Vascular and Renal Systems

Vascular Nox5

The expression and functional relevance of Nox5 and its
isoforms in vessels remain unclear. In an attempt to address

this, Pandey et al. (94) comprehensively characterized the
expression and ROS-generating function of Nox5 and its
splice variants in human arteries and veins. They found that
mRNAs encoding Nox5a and Nox5b were present in isolated
human internal mammary arteries and saphenous veins.
However, unlike studies in cultured vascular cells, Nox5d
and Nox5c were not detected in intact vessels and may reflect
the absence of these Nox isoforms in blood vessels or pos-
sibly very low expression levels. Vascular Nox5a and Nox5b
variants are catalytically active and generate ROS in both the
endothelium and vascular media of arteries and veins.

In cultured human aortic endothelial cells, all Nox5 variants
have been identified (107). However, only Nox5a and Nox5b
seem to produce ROS (107). While Nox5d, Nox5c, and Nox5e
are expressed in cultured vascular cells, they are catalytically
inactive, but associate with active Nox5 and function as domi-
nant negatives by inhibiting ROS generation. In human micro-
vascular endothelial cells, Nox5b and Nox5e increased basal
ROS levels, but in ionomycin-stimulated cells, only Nox5b was
activated to generate O2

- (80). Differential expression of Nox5
variants in human endothelial cells may reflect cellular hetero-
geneity between the aorta and microvessels.

In cultured human endothelial cells, Nox5 is regulated by
Ca2+ and calmodulin, but not by Rac1 (109). Nox5 inactivates
NO signaling and promotes phosphorylation of ERK1/2, c-Jun
N-terminal kinases, P38 mitogen-activated protein kinase, and
Janus kinase 2, inducing apoptosis, proliferation, migration, and
angiogenesis (80). Nox5 also plays a role in thrombin-induced
actin cytoskeleton derangement, monocyte adhesion, and mi-
gration in endothelial cells, effects that are inhibited by Ang-(1–7)
through downregulation of Nox5-induced ROS generation
(93). In cultured human vascular smooth muscle cells, Nox5
stimulates MAP kinase signaling and Ca2+-activated K+

channels and induces cell proliferation and migration (37).
Of the Nox isoforms present in human vessels, Nox5

seems to be the major ROS-generating oxidase (58). In hu-
man vascular cells, Nox5 is activated by Ang II, endothelin-1
(ET-1), tumor necrosis factor-a, and platelet-derived growth
factor (PDGF) and it plays an important role in agonist-
stimulated O2

- generation and redox signaling (80, 58) and
has been implicated in vascular smooth muscle cell migra-
tion, proliferation, angiogenesis, inflammation, and contrac-
tion (Fig. 4). Human studies demonstrated increased vascular
Nox5 expression in atherosclerosis, hypertension, myocar-
dial infarction, and aortic aneurysm (58).

Renal Nox5

Nox5 is expressed in adult human kidneys and is upregu-
lated in chronic kidney disease, including diabetic nephrop-
athy (53). Nox5 has been identified in renal endothelial cells,
mesangial cells, podocytes, tubular epithelial cells, and in-
terstitial fibroblasts (44). In human diabetic glomeruli, Nox5
expression was increased compared with nondiabetic glo-
meruli. In human podocyte cultures, Ang II increased Nox5-
induced ROS production, effects that were attenuated in
siRNA-mediated Nox5 knockdown (42). Nox5 silencing in
podocytes was associated with altered cytoskeletal dynamics
and a Rac-mediated motile phenotype, with impaired podo-
cyte function (54). Nox5 is also expressed in human tu-
bule cells. Nox5 expression and Nox activity were increased
in renal proximal tubule cells from hypertensive patients

Table 1. Regulators of Nox5

Stimulators Inhibitors

Nox5-binding proteins/chaperone proteins
Calmodulin Cav-1
Hsp90 Hsp70

CHIP
Protein kinases

PKCa PKCe
CAM kinase II
ERK1/2
c-Abl
c-Src

Transcription factors
NF-jB
AP-1
STAT1/STAT3

AP-1, activator protein 1; CAM kinase II, Ca2+/calmodulin-
dependent protein kinase II; ERK1/2, extracellular signal-regulated
kinase1/2; NF-jB, nuclear factor jB; Nox, NADPH oxidase; PKC,
protein kinase C; STAT, signal transducer and activator of
transcription.
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compared with cells from normotensive counterparts (132).
This differential Nox5 expression in hypertension was at-
tributed to an abnormal renal dopaminergic system (57, 132).
Nox5 may also be important in sepsis-induced acute kidney
injury, where its expression is markedly increased (41). This
seems to be regulated by miR-4321 (41).

Insights from Mice Expressing the Human Nox5 Gene

Genes encoding isoforms of Nox5 have been identified in
invertebrates and vertebrates (38, 98). However, for unknown
reasons, the Nox5 gene was lost in rodents during evolution.
Hence, experimental data from mice or rats cannot be extrap-
olated to human physiology or disease, posing major challenges
in Nox5 research. To address this, we generated transgenic mice
expressing human Nox5 in a cell-specific manner. Nox5
transgenic mice with podocyte-specific expression of human
Nox5 exhibited increased renal ROS production, glomerular
injury and tubulointerstitial fibrosis, albuminuria, and elevated

blood pressure, phenomena that are exacerbated in the presence
of diabetes (Fig. 5) (44, 53). These mice also had podocyte foot
process effacement, suggesting a deleterious role of Nox5 in
podocyte damage and development of albuminuria in diabetic
nephropathy. In mice expressing human Nox5 in vascular
smooth muscle cells/renal mesangial cells and made diabetic
with streptozotocin, glomerular ROS production was increased
and this was associated with accelerated glomerulosclerosis,
mesangial expansion, and extracellular matrix protein (colla-
gen IV and fibronectin) accumulation (57). In addition, these
mice exhibited renal inflammation as evidenced by increased
macrophage infiltration and expression of the proinflammatory
chemokine monocyte chemoattractant protein 1. Together,
these studies in humanized Nox5 mice suggest an important
role for Nox5 in vascular injury and progression of nephropathy
in diabetes.

Mice expressing human Nox5 in an endothelial-specific
manner exhibited increased blood pressure and increased risk
of stroke (Fig. 5) (61). This seemed to be especially evident

FIG. 3. Possible role of Nox5 in vascular contraction. Nox5 may be a point of crosstalk between calcium and ROS,
placing Nox5 as an important regulator of vascular contraction and development of vascular dysfunction in cardiovascular
disease. Vasoactive factors, such as Ang II and ET-1, activate Nox5-induced ROS generation. Once ROS levels are
increased in VSMCs, oxidation of calcium channels in the cell membrane or intracellular compartments, for example, ER,
leads to dysregulated calcium influx and mobilization and activation of the contractile machinery—inhibition of MYPT1
and activation of MLCK and MLC, leading to contraction. Ang II, angiotensin II; ET-1, endothelin-1; MLC, myosin light
chain; MLCK, myosin light chain kinase; MYPT1, myosin light chain phosphatase 1; VSMCs, vascular smooth muscle
cells. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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FIG. 4. Schematic demonstrating
vascular signaling effects of Nox5.
Schematic demonstrating putative
mechanisms whereby activation of Nox5
leads to vascular dysfunction, contrac-
tion, and injury in cardiovascular disease.
Vasoactive peptides (Ang II and ET-1),
growth factors, cytokines, and hyper-
glycemia induce Nox5 activation and
increased levels of intracellular free
Ca2+ ([Ca2+]i), which influence redox-
sensitive and Ca2+-dependent signaling
molecules associated with contraction,
inflammation, growth, and endothelial
function. Increased Nox5-mediated oxi-
dative stress leads to increased protein
oxidation (reversible and irreversible
forms) and activation of signaling path-
ways that influence vascular function
and structure in cardiovascular disease.
PDGF, platelet-derived growth factor.
To see this illustration in color, the reader
is referred to the web version of this ar-
ticle at www.liebertpub.com/ars

FIG. 5. Insights from animals expressing Nox5. Studies in animals with inducible expression of human Nox5 in mice in
a cell-specific manner demonstrated possible roles of Nox5 in the pathophysiology of cardiovascular diseases. Glomerular
damage, kidney dysfunction, and hypertension were observed in mice expressing Nox5 specifically in podocytes. Nox5
expression in mesangial cells influenced processes related to fibrosis and inflammation. In endothelial cells, expression of
Nox5 induced changes in blood pressure and increased risk of stroke. Nox5 in vascular smooth muscle cells is associated
with vascular hypercontractility and endothelial dysfunction. To see this illustration in color, the reader is referred to the
web version of this article at www.liebertpub.com/ars
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in female mice. These studies suggested that targeting Nox5
may be vaso- and neuroprotective in ischemic stroke.

Nox5, Coronary Artery Disease, and Atherosclerosis

One of the earliest studies suggesting a link between vas-
cular NOX5 and human cardiovascular disease was per-
formed in coronary arteries in patients undergoing heart
transplantation (48). In patients with coronary artery disease,
expression of Nox5, both at the mRNA and protein levels,
was markedly increased compared with those patients with-
out coronary artery disease. Moreover, the magnitude of
Nox5 expression and ROS generation correlated with the
severity of atherosclerosis (48). Nox5 has also been identified
in the heart and is expressed in endothelial and vascular
smooth muscle cells in intramyocardial vessels and in car-
diomyocytes. In infarcted hearts, Nox5 expression is in-
creased, especially in infarctions older than 12 h (50).

The close association between Nox5 and Ca2+ may be
especially important in the heart and coronary circulation
where cardiovascular contractility is highly regulated. Stu-
dies in porcine coronary arteries demonstrated that Nox5
plays an important role in regulating the potassium inter-
mediate/small-conductance calcium-activated channel, sub-
family N member 4 (KCNN4), which seems to be important
for coronary artery smooth muscle cell phenotypic modula-
tion, contraction, and progression of atherosclerosis (45). AP-
1 seems to be the link between Nox5 and KCNN4 in coronary
arteries.

Nox5 and Hypertension

Although the exact role of Nox5 in the pathophysiology of
human hypertension is unclear, findings show that mice ex-
pressing human Nox5 in the kidney and endothelium have
elevated blood pressure, suggesting a potential role for Nox5

FIG. 6. Nox5 and human disease. Nox5 is demonstrated to be a key regulator of calcium influx and signaling in many
human cells. Nox5 regulates physiological signaling in cells from the cardiovascular, renal, and reproductive systems.
Through ROS generation and oxidation, Nox5 influences signaling kinases, phosphatases, and transcription factors, re-
sulting in contraction, inflammation, proliferation, fibrosis, and remodeling. These effects contribute to development of
cardiovascular diseases, renal pathologies, and cancer. To see this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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in blood pressure regulation (54, 57, 61, 132). The clinical
relevance of this has recently been highlighted in a study
searching for novel blood pressure-associated genes. In a
genome-wide association study (GWAS) of 475,000 indi-
viduals, Nox5 was identified as an important blood pressure-
associated gene, especially linked to systolic blood pressure
(62). Comprehensive Nox5 phenotyping in patients with
hypertension is needed to better clarify the potential impor-
tance of Nox5 as a pathophysiological factor in cardiovas-
cular disease.

Nox5 Beyond the Cardiovascular System

In addition to its potential role in cardiovascular
(patho)physiology, Nox5 has been implicated to play an
important role in various physiological and pathological
processes (Fig. 6).

Nox5 and regulation of sperm function

Nox5 seems to be critically involved in normal sperm
function and motility, which are regulated by ROS (88).
Nox5 is expressed in human spermatozoa and localizes in
the flagella/neck region and acrosome. Stimulation of sper-
matozoa with a calcium ionophore, phorbol ester, or H2O2

increased sperm motility, effects that were dependent on
Nox5-induced ROS generation (124, 125). These processes
are regulated by the tyrosine kinase c-Abl and the Hv1 proton
channel, which interact physically with Nox5 (2, 88).

Nox5 and cancer

Growing evidence indicates that Nox-derived ROS genera-
tion, either constitutively or as a result of chronic inflammation
or cell stress, plays a role in proliferation of cancer cells and
tumor growth (1, 24, 102). Nox1, Nox4, and Nox5 have been
identified in various types of cancers. Increased Nox activity
promotes redox-mediated DNA damage, tissue injury, dysre-
gulated cell proliferation, adhesion, angiogenesis, and tumor
growth (102). Nox5 is highly expressed in malignant melano-
mas, prostate cancer, breast cancer, and Barrett’s esophagus-
associated adenocarcinomas (28, 34, 130). Signaling pathways
implicated in Nox-ROS-associated cancer involve protein ki-
nases of the MAPK cascade, phosphatidylinositol-3-kinase, and
PKC and transcription factors, including apurinic/apyrimidinic
endonuclease 1/redox effector factor 1, hypoxia-inducible factor
1a, AP-1, nuclear factor erythroid 2-related factor 2, tumor
protein 53, forkhead box protein, STAT, and b-catenin (39, 55).
Similar redox-sensitive pathways have been identified in vas-
cular hypertrophy associated with hypertension and athero-
sclerosis (11, 65, 120).

Conclusions

The importance of Noxs in ROS generation in the cardio-
vascular system and other systems is now clear. Nox isoforms
are differentially regulated. Whereas Nox1, Nox2, and Nox4
have an obligatory need for p22phox for their activation to
generate ROS, Nox5 is p22phox independent and produces O2

-

in a constitutive and inducible manner. Experimental models
have identified a role for Nox1, Nox2, and Nox4 in various
cardiovascular pathologies, including hypertension, athero-
sclerosis, cardiovascular and renal complications of diabetes,
and pulmonary hypertension. While there have been ad-

vancements in the molecular biology and biochemistry of
Nox5, there is a paucity of information on its pathophysio-
logical role in humans. This is reflected by the relatively few
publications on Nox5 (164 original articles with ‘‘Nox5’’ as
keyword since its discovery in 2001) and may relate, in part, to
the lack of rodent experimental models that express Nox5.
However, studies in transgenic mice that express human Nox5
and investigations in larger mammals that contain Nox5 en-
dogenously, including rabbits and primates, will shed light on
the physiological and pathological significance of Nox5.
Moreover, studies in humans in health and disease will unravel
the clinical role of Nox5. The recent GWAS highlighting the
association between the Nox5 gene and hypertension is cer-
tainly interesting and provides a credible foundation for further
investigation of Nox5 in human cardiovascular disease.
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R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J,
Lazou A, Li H, Martı́nez-Ruiz A, Matsui R, McBean GJ,
Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I,
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64. Lassègue B, San Martı́n A, and Griendling KK. Bio-
chemistry, physiology, and pathophysiology of NADPH
oxidases in the cardiovascular system. Circ Res 110:
1364–1390, 2012.

65. Laude K, Cai H, Fink B, Hoch N, Weber DS, McCann L,
Kojda G, Fukai T, Schmidt HH, Dikalov S, Ramasamy S,
Gamez G, Griendling KK, and Harrison DG. Hemody-
namic and biochemical adaptations to vascular smooth
muscle overexpression of p22phox in mice. Am J Physiol
Heart Circ Physiol 288: H7–H12, 2005.

66. Laurindo FR, Araujo TL, and Abrahão TB. Nox NADPH
oxidases and the endoplasmic reticulum. Antioxid Redox
Signal 20: 2755–2775, 2014.

67. Lee HY, Zeeshan HMA, Kim HR, and Chae HJ. Nox4
regulates the eNOS uncoupling process in aging endo-
thelial cells. Free Radic Biol Med 113: 26–35, 2017.

68. Li Y and Pagano PJ. Microvascular NADPH oxidase in
health and disease. Free Radic Biol Med 109: 33–47,
2017.

69. Liang S, Kisseleva T, and Brenner DA. The role of
NADPH oxidases (NOXs) in liver fibrosis and the acti-
vation of myofibroblasts. Front Physiol 7: 17, 2016.

70. Liao Y, Gou L, Chen L, Zhong X, Zhang D, Zhu H, Lu X,
Zeng T, Deng X, and Li Y. NADPH oxidase 4 and en-
dothelial nitric oxide synthase contribute to endothelial
dysfunction mediated by histone methylations in meta-
bolic mory. Free Radic Biol Med 115: 383–394, 2018.

71. Lopes RA, Neves KB, Tostes RC, Montezano AC, and
Touyz RM. Downregulation of nuclear factor erythroid 2-
related factor and associated antioxidant genes contributes
to redox-sensitive vascular dysfunction in hypertension.
Hypertension 66: 1240–1250, 2015.

72. Magnani F, Nenci S, Millana Fananas E, Ceccon M,
Romero E, Fraaije MW, and Mattevi A. Crystal structures
and atomic model of NADPH oxidase. Proc Natl Acad Sci
U S A 114: 6764–6769, 2017.

73. Mahbouli S, Der Vartanian A, Ortega S, Rougé S, Vasson
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