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a b s t r a c t 

The recent events of outbreaks related to different respiratory viruses in the past few years, exponentiated by the 
pandemic caused by the coronavirus disease 2019 (COVID-19), reported worldwide caused by SARS-CoV-2, raised 
a concern and increased the search for more information on viruses-based diseases. The detection of the virus 
with high specificity and sensitivity plays an important role for an accurate diagnosis. Despite the many efforts to 
identify the SARS-CoV-2, the diagnosis still relays on expensive and time-consuming analysis. A fast and reliable 
alternative is the use of low-cost biosensor for in loco detection. This review gathers important contributions 
in the biosensor area regarding the most current respiratory viruses, presents the advances in the assembly of 
the devices and figures of merit. All information is useful for further biosensor development for the detection of 
respiratory viruses, such as for the new coronavirus. 
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. Introduction 

At the end of 2019, the whole world was affected by a new pan-
emic, respiratory virus, named Severe Acute Respiratory Syndrome
oronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019
COVID-19), reported initially in Wuhan, in China. According to the data
rovided from the Centers for Disease Control and Prevention (CDC) and
he World Health Organization (WHO), respiratory diseases outbreaks
ave become more constant over the past few years, as the Severe Acute
espiratory Syndrome (SARS) in 2002, H5N1 Influenza (avian FLU) in
004, H1N1 Influenza (swine FLU) in 2009, the Middle East Respiratory
yndrome (MERS) in 2012, H7N9 Influenza in 2013, the Enterovirus
68 in 2014, and more [1 , 2] . 

The determination of the sequence of virus genome, proteins struc-
ure and the host immunologic response is important to understand the
irus pathogenicity, transmission, and infectivity, which facilitates the
evelopment of efficient vaccines and therapies. Moreover, these stud-
es open novel possibilities to different methodologies for early detec-
ion, like biosensors, an easy-to-use device that can rapidly detect the
isease even in asymptomatic conditions with high reliability and low
ost. 
∗ Corresponding author. 
E-mail address: diegoleoni@ufu.br (D.L. Franco). 
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One effective way, reported at media briefing from WHO Director-
eneral to slow down the virus dissemination during the 2019 Covid-19
andemic, was the social isolation, recommendation adopted worldwide
3] . The most effective way to this date, to detect the virus is the use of
eal-time quantitative polymerase chain reaction (RT-qPCR) [4] , while
ntibody-based techniques (IgG/IgM) are being introduced as supple-
ental tools [5] . So far, expensive, time-consuming detection systems
ith the need for skilled labor personal are being used and evaluated.
oreover, during the social isolation, the individual need to break out

rom the confinement to perform the medical test, which increases the
isk to enter into contact with the virus in the process. Therefore, the
evelopment of biosensors is important because the device can be oper-
ted in loco and it is ready-to-use by any personal. 

This review focus on the most current contributions of biosensors
esigned for respiratory virus detection. The world scenario with the
OVID-19 pandemic and the concerns regarding the latest and worrying
utbreaks makes this survey of great importance for researchers plan-
ing to develop strategies for fast diagnosis. Some papers developing
iosensors for SARS-CoV-2 determination have already been published,
hich proves that the biological material is already at hand to researches

or further studies regarding this subject. 
st 2020 
ticle under the CC BY-NC-ND license 
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Fig. 1. A general illustration of a biosensor. 
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. Biosensors 

Biosensors are analytical devices that convert biological reactions
nto measurable signals. The biological material such as enzymes, tis-
ues, microorganisms, antibodies, cell receptors, or a biomimetic com-
onent, is immobilized over a transducer, and interacts with the analyte
n the solution, producing a biochemical response ( Fig. 1 ). The trans-
ucer, in turn, converts this biochemical response into a quantifiable
ignal measured by the digital detector module [6 , 7] . The main types of
ransducing systems are the electrochemical, optical, and piezoelectric.
lectrochemical biosensors monitor alterations in charge distribution
ver the transducer surface, based on potentiometric [8 , 9] , amperomet-
ic [10–12] or impedimetric [13–15] transduction principles. Optical
iosensors are versatile tools for analytical purposes because it provides
ultiplexed detection within a single device. These devices focus on the
easurement of optical properties and characteristics of the transducer

urface when occurring the interaction of the analyte with the recogni-
ion element. [16–19] . Piezoelectric biosensors employ transducers that
esonate when an external alternating electrical field is applied. They
re based on the measurement of changes in the resonance frequency
aused by the mass of the crystal and the immobilized biological mate-
ial. According to the corresponding variation of electrical signal upon
ontact with the analyte, the difference in mass can be assessed. Among
he many applications, these biosensors have been used in a wide in
edicine to detect targets in biological systems [20–22] . 

The fast detection of biological pathogens plays a crucial role in the
revention of disease spread, infections, and pathologies [23] . Biosen-
ors have found immense applications in medical diagnostics, and it of-
ers more specific, sensitive, fast, and reproducible results as compared
o the conventional techniques like biochemical assays and immunoas-
ays [24] . 

Moreover, biosensors are been increasingly applied in clinical anal-
sis due to their portability and point of care testing, which can ana-
yze real biological samples in routine clinical use [25] . The incorpo-
ation of nanotechnology in the design of biosensors has improved the
etection of biological specimens, as the preparation of biointerfaces
f self-assembled monolayers (SAMs), improving biocompatibility and
esistance against nonspecific adsorption [26–29] . 

Point-of-care testing (POCT) is one of the most important applica-
ions of biosensors for infection diagnosis. POCT measurement is the
ractice of performing a diagnostic test near the patient to provide rapid
esults, providing appropriate, convenient care to patients, and more
2 
ffective treatment of rapidly progressing infections. Moreover, these
evices can be used without expensive instrumentation [30 , 31] . Accu-
ate and early diagnoses play a crucial role in identifying the actual
ause and nature of any disease. Currently, the focus shifted toward
he early detection of COVID-19 disease. Saliva has a pivotal role in
on-invasive salivary diagnostics that provide a convenient and cost-
ffective POCT platform for fast detection and may be an attempt to
mprove the chances of survival of patients from COVID-19 disease
32 , 33] . 

Biosensors can be further classified according to the analytes or re-
ctions that they monitor as immunosensors (antibody–antigen inter-
ction), enzymatic biosensors (enzyme–target analyte interaction) DNA
iosensor (hybridization) and whole-cells biosensor. 

.1. Immunosensors 

Immunosensors are biological sensors based on the specific interac-
ion between antibodies and antigens. The lymphocyte B produces the
ntibody upon the host contact with an antigen and performs clonal ex-
ansion and differentiation. After, the antigens are eliminated, followed
y the apoptosis of effector lymphocytes and remaining of memory B
ells [34] . It has been developed for continuous monitoring of analytes
hrough point-of-care devices, which provide low cost, full automation,
ortability, fast response, high sensitivity, accuracy, and precision [35] .
he application of immunosensors in clinical diagnosis and monitor-

ng of diseases has been emphasized in recent works and it is mainly
eported for the detection of biomarkers [36 , 37] hormones [38–40] ,
athogenic bacteria [41–45] , viruses [46–49] and toxins [50–53] . 

.2. Enzymatic biosensors 

Enzymatic biosensors exploit the catalytic property of enzymes,
iorecognition molecules that possess high chemical specificity and
ave provided excellent selectivity for their targeted substrate. In en-
ymatic sensing, the device is combined with a transducer, which reacts
electively with its analyte, generating an electrochemical [54] , optical
55] or piezoelectric [56] signal. This signal correlates to the concen-
ration of the analyte in the sample [57–59] . Since enzyme electrodes
evices offer several distinct advantages, they are used in many point-
f-care and clinical applications for a broad range of analytes [60–63] . 
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Table 1 

Data of the deadliest RNA viruses around the world. 

Virus Cases Deaths Reference 

Influenza (seasonal) a 3 – 5 million 290,000 – 650,000 [98] 

RSV a ~30 million > 100,000 [99] 

MERS b 2494 858 [100] 

SARS c 8096 774 [101] 

a These are annual estimates. 
b Data obtained from September 2012 – February 2019. 
c Data obtained from November 2002 – July 2003. 
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.3. Genosensors 

Deoxyribonucleic acid (DNA) biosensors, or genosensors, have been
xploited for their inherent physicochemical stability and suitability to
rovide practical ways to identify and diagnose various diseases. DNA
s the carrier of genetic information, and it is distinct in any living or-
anism, virus, or pathogen. Therefore, through their specific nucleic
cid sequences, the DNA biosensor can be able to discriminate differ-
nt organisms and diagnose various diseases and human pathogens.
he principle of detection of a DNA biosensor relies on the immobi-

ization of an immobilized DNA or RNA strand (probe), on the surface
f a physical transducer, to detect its complementary (target) sequence
ia hybridization. The duplex formation can be detected following the
ssociation of an appropriate hybridization indicator, or through other
hanges accrued from the binding event [64–66] . Through the efforts of
esearchers, many new genosensors have emerged in recent years into
linical applications to detect various diseases and pathogens [67–70] . 

.4. Whole-cells biosensors 

Whole cells can be used as recognition elements. A variety of sur-
ace antigens presented on the cell envelopes, including proteins, glyco-
roteins, lipopolysaccharides, and peptidoglycan, can act as targets for
iorecognition. The development of biosensors for whole microorgan-
sms is challenging because it requires the detection of analytes that are
uch larger (micrometer scale) than typical molecular analytes, such as
roteins (nanometer scale). Many surface epitopes can lead to nonspe-
ific interactions with the sensor surface. Nevertheless, organisms used
o develop whole-cell biosensors are generally experimentally modified
o incorporate transducer capacity or increase their sensitivity [71–75] .
he whole cell-based biosensor is increasingly being reported in the lit-
rature, and these reports have shown high selectivity, sensitivity, and
reat potential for their use in biomedical diagnostics [76–79] . 

. Virus 

As intracellular parasites, viruses use the cellular machineries for
ompletion of their replication cycle. The basic structure of virus is com-
rised of genome (DNA or RNA), protein capsid (for nucleic acid pro-
ection) and in some a lipidic envelope that covers the capsid. [80 , 81] . 

The first reported studies on viruses began at the end of the XIX and
he beginning of the XX century, through experiments with tobacco mo-
aic, in 1882, and with the action of bacteriophages in Shigella culture,
n 1915 [82 , 83] . The first Influenza virus (FLU) isolated in laboratory
as reported in 1933 [84] . It is a respiratory virus, associated with the
918–1919 pandemic Spanish FLU that resulted in the death of about
 quarter of the entire population, and is still the cause of seasonal flu
n several countries [85] . From this and previous works, several types
f researches on cell culture during the 40 s and 50 s alongside with
he bacteriophage studies of Hershey and Chase in 1952, increased the
nterest regarding viruses, culminating at the beginning of the modern
irology [86–88] . 

A virus replication only occurs in intracellular space, a crucial step
or virus cycle. Fig. 2 represents a generic enveloped RNA virus cycle,
he most common among respiratory viruses. In general, the replication
teps consist firstly in the attachment between a viral protein and the
eceptor of the target-cell surface. After the attachment, the virus pen-
trates the membrane cell to cytoplasm. Right after, an uncoating step
s responsible for the release of viral nucleic acid into the host cell and
llows the synthesis of viral proteins and genome. Then, the viral par-
icles are assembled according to the viral symmetry. With the new vi-
al particles assembled, the maturation step leaves the virus infectious,
ncreasing the viral tropism. Finally, the virus is released by different
echanisms, like cell lysis, budding, or exocytosis [89 , 90] . 
3 
.1. Respiratory viruses 

In upper and lower airways in the respiratory tract, there are physi-
al barriers composed by epithelial cells and mucus besides the alveolar
acrophages in the lungs [91] . This set of protection seeks to safeguard

he immune response of the host body in several ways, like the inhibition
f interferon, latent infections, or the presence of fusion proteins in the
iral capsid [90] . Besides, viruses can mutate and might result in more
ropism and virulence, thus increasing the evasion from the immuno-
ogic system, aggravating the clinical condition of the host [92 , 93] . 

The most worrying respiratory viruses in public health: respiratory
yncytial virus (RSV), coronavirus (MERS and SARS-CoV), and FLU [2] ,
re based in RNA, in which the mutation process is more accentuated
94] . This mutation comes from the low fidelity of RNA polymerase, re-
ulting in the incorporation of nucleotides errors during the replication
f the material genetic with more frequency (10 − 3 to 10 − 4 nucleotides)
ompared to DNA polymerase (10 − 8 to 10 − 11 nucleotides), which is
resent in eukaryotic cells and some classes of viruses, as adenoviruses
94–97] . The RNA viruses are responsible for countless cases of illness
rom these acute respiratory tract infections resulting in deaths world-
ide, as summarized in Table 1 . 

Despite the shorter evaluated period, SARS and MERS shows a high
ortality rate. With annual estimates, unfortunately, Influenza and RSV

re still the deadliest among the respiratory viruses. The other viruses,
lthough data are not shown in the table, can also lead to death, even
n a small proportion or in a local scenario, as it is the case for some
eports regarding human adenovirus [102] , human metapneumovirus
103] and rhinovirus [104] . 

The gold standard test to diagnose respiratory virus disease is based
n cell culture, upon the evaluation of the cytopathic effect and hemad-
orption caused by the virus [105] . However, molecular assays based
n nucleic acid have also been employed [106–110] as the respiratory
irus multiplex PCR systems for respiratory virus detection, with high
ccuracy for early diagnosis [111] . However, the need for a diagnosis
ith high accuracy and precision, associated with fast analysis, low cost,

n an easy-to-handle device, is still not observed [112 , 113] . Therefore,
lternatives as the use of biosensors have been under evaluation to sup-
ly these demands [114 , 115] . The next topics surveyed the most recent
ontributions related to biosensors applied to the determination of respi-
atory viruses. This compilation is important to disseminate information
o researches interested in the development of such devices. 

. Viral respiratory biosensors 

.1. Influenza 

Influenza virus is a member of the Orthomyxoviridae family, with
-)ssRNA nucleic acid, and the species A and B are the most com-
on associated with human infection and disease [116] . The Influenza

irus exhaust path consists of the alteration in the hemagglutinin anti-
ens (1–18) and the neuraminidase (1–11), responsible for the attach-
ent and penetration in the host cell, respectively [117 , 118] . Upon

hat, it is possible to distinguish the virus A subtypes. As for the sea-
onal specie B, it differs basically in the HA1 antigen between the two
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Fig. 2. RNA virus replication in an intracellular space. 
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Fig. 3. A schematic diagram of the designed triple-arrayed three-electrode im- 
munosensor chip consisting of a top PDMS channel layer and a bottom glass 
substrate. (a) Top view of immunosensor chip with three different sensing re- 
gions for H1N1, H5N1, and H7N9, respectively. (b) Cross sectional view of H5N1 
sensor region with ZnO NRs grown on the surface of PDMS and three electrodes 
aligned to the sensing chamber. Republished from [130] ; permission conveyed 
through Copyright Clearance Center, Inc, License Number 4855350166819. 
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trains, B/Yamagata/16/88, and B/Victoria/2/87, and the classification
s based on this difference [119 , 120] . 

The Influenza virus is responsible for countless deaths around the
orld, especially at the end of the pandemic in 1910, and only in the
0 s, researchers acquired useful information regarding the virus. It is
stimated that the Influenza virus, especially the subtype H1N1, has
nfected about 500 million people [117] . 

The virus isolation at 1933 [84] , alongside with Louis Pasteur re-
earch on a vaccine against rabies, in 1885 [121] , were important de-
elopments for the soviet development of the first known attenuated
accine against the influenza virus A [122] . However, only in the 40 s,
n inactivated vaccine was approved. Although safer, it was less effi-
ient [81] . It contained viral particles from both Influenza A and B, for
opulation distribution [123] . 

The majority of biosensor development found in the literature are de-
igned to Influenza virus detection, as attested by the high number of re-
iews regarding this subject [124–128] . Table 2 contains data based on
iosensor research directed to Influenza virus detection in the past five
ears. It is the most studied virus among the other respiratory viruses,
nd some reports stand out for low limit of detection, simplicity, fast-
ess, and cutting-edge technology. 

In a fast analysis, high sensitivity and selectivity are manda-
ory. Veerapandian [129] developed an electrochemical biosensor us-
ng a carbon screen-printed electrode modified with graphene oxide
anosheets followed by methylene blue adsorption, chitosan, protein-A
rom S. aureus , and monoclonal antibodies (H5N1 and H1N1) immobi-
ized through drop-casting. Despite the many steps, a simple device can
e assembled, with the possibility to detect two different subtypes si-
ultaneously with a limit of detection below nM (9.4 pM for H1N1 and
.3 for H5N1). The authors also informed the fastness of the analysis,
ith the detection time below 1 min, far better characteristics than the

raditional methods. This work presents a biosensor with all the desir-
ble features required for this device as high sensitivity, specificity, low
ost, fastness, besides the simultaneous determination of two different
irus subtypes in one measurement using small-volume samples (50 to
00 𝜇L). 

Regardless of their classification, antibodies present a unique and
pecific interaction with the correspondent antigen with a low equi-
ibrium dissociation constant. The use of immunosensors stands out in
umbers for Influenza virus detection, as can be seen in Table 2 , includ-
ng the simultaneous determination of different subtypes. An attractive
spect of the immunosensor is the possibility of the development of two
ifferent devices for the same purpose. It is possible to immobilize ei-
her the antibody or the antigen. Han [130] developed a biosensor for
[  

4 
imultaneous detection of H1N1, H5N1, and H7N9 virus using a triple-
rrayed three-electrode chip over a polydimethylsiloxane (PDMS) with
 limit of detection as low as 1 pg.mL − 1 . In their work, the antibod-
es were immobilized over the transducer, and the virus antigens were
etected. Fig. 3 depicts the sensor used by Han. 

On the other hand, Miluka [131] immobilized the antigen, re-
ombinant His-tagged HA subtype H1N1- monomer from the H1N1
dm09 influenza virus for the detection of anti-hemagglutinin anti-
odies against the swine virus H1N1 . The antigen was immobilized
ver a dipyrromethene-Cu(II)-modified gold electrode, and the anti-
emagglutinin H1 antibodies from mice sera were determined. Wong
132] reported a biosensor for H5N1 based on the H5N1 virus protein-
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Table 2 

Influenza virus biosensors data. 

Detection technique Substrate 
Immobilized 
material / Analyte 

Monitored 
compound Working Range LOD Sample Ref. 

Electrochemical –

Chronoamperometry and 

DPV 

Dual carbon 

SPE 

H1N1 antibody/ 

HA protein of the 

H1N1 

Methylene Blue 25.0 – 500 pM 9.40 pM Commercial 

H1N1 

[129] 

H5N1 antibody/ 

HA protein of the 

H5N1 

8.30 pM Commercial 

H5N1 

Electrochemical –

Amperometry 

Glass 

wafer/PDMS 

H1N1 antibody/ 

H1N1 antigen 

(sandwich 

ELISA-like assay) 

TMB 1.00 pg.mL − 1 –

10.0 ng.mL − 1 
1.00 pg.mL − 1 Commercial 

ELISA kits 

[130] 

H5N1 antibody/ 

H5N1 antigen 

(sandwich 

ELISA-like assay) 

H7N9 antibody/ 

H7N9 antigen 

(sandwich 

ELISA-like assay) 

Electrochemical – OSWV Gold electrode His 6 –H1 HA/ 

anti-H1N1 

Potencial of peak 

redox Cu(II)/Cu (I) 

current 

1.00 × 10 9 - 

1.00 × 10 8 sera 

dilution 

1.00 × 10 9 –

1.00 × 10 8 sera 

dilution 

Vaccinated mice 

sera 

[131] 

Optical – SPR Gold sensor H5N1 antigen/ 

H5N1 antibody 

Label-free 

detection 

Not determined 193.3 ng.mL − 1 – [132] 

Electrochemical - EIS Gold SPE ssDNA of the 

H1N1/ ss-cDNA of 

theH1N1 

Label-free 

detection 

0.000 ng.mL − 1 –

166,7 ng.mL − 1 
0.667 ng.mL − 1 Nasal swab and 

oropharyngeal 

samples 

[133] 

Electrochemical –

Amperometry 

Gold electrode DNA tetrahedral 

probe of the H7N9/ 

ssDNA of H7N9 

TMB 1.00 pM – 2.50 

nM 

0.750 pM Throat swab 

samples 

[134] 

Electrochemical – EIS Rolled-up gold 

nanomembrane 

microelec- 

trodes 

ssDNA of the 

H1N1/ ssDNA of 

the H1N1 

Label-free 

detection 

20.0 aM – 2.00 

pM 

20 aM Commercil 

samples 

[135] 

Optical – UV–vis 

spectrometer 

PDA vesicles H5N1 antibody/ 

HA of the H5N1 

PDA color change 5.40 × 10 − 4 – 13.5 

copies. 𝜇L − 1 
0.530 copies.μL − 1 Tracheal swabs 

collected from 

wild birds 

[136] 

Electrochemical – DPV Super- 

hydrophobic 

paper / 

conductive 

carbon paste 

H1N1 antibody/ 

H1N1 antigen 

Label-free 

detection 

10.0 – 1 × 10 4 

PFU.mL − 1 
113 PFU.mL − 1 Saliva from a 

healthy person 

[137] 

Optical – Scanner and 

ImageJ 

Gold paper 

electrode 

H1N1 antibody/ 

H1N1 antigen 

(sandwich 

ELISA-like assay) 

TMB 0.000 – 1 × 10 4 

PFU.mL − 1 
1.34 PFU.mL − 1 

2.27 PFU.mL − 1 
Commercial 

sample 

Spike saliva 

[138] 

Electrochemical – EIS Label-free 0.000 – 1 × 10 4 

PFU.mL − 1 
3.30 PFU.mL − 1 

4.70 PFU.mL − 1 
Commercial 

sample 

[138] 

Spike saliva 

Electrochemical – EIS Gold electrode Glycan / H3N2 

virus 

Label-free 8.00 aM – 0.800 

nM 

5.00 aM Intact, but 

inactivated H3N2 

particles 

[139] 

BioScan nanomechanical 

cantilever system Nanomechanical 

cantilever 

3 ′ SL-PAA polymer / 

H5N3 surface 

glycoprotein 

Label-free 10.0 6 – 10.0 8 

vp.mL − 1 
10.0 6 vp.mL − 1 Commercial 

H5N3 

[141] 

Piezoelectric – SPM Lead zirconate 

titanate 

piezoelectric 

disk 

3 ′ SL-PAA polymer / 

H5N3 surface 

glycoprotein 

Label-free 10.0 5 – 10.0 7 

vp.mL − 1 
10.0 5 vp.mL − 1 

(100 μm thick) 

Commercial 

H5N3 

[142] 

10.0 4 vp.mL − 1 

(10 μm thick) 

Electrochemical – EIS BDD anti-M1 H1N1 

protein/ M1 

protein of H1N1 

Label-free 5.00 – 10.0 

PFU.mL − 1 
1.00 fg.mL − 1 Saliva buffer [143] 

Electrochemical – EIS ITO/glass 

electrode 

H1N1 antibody/ 

H1N1 antigen 

Label-free 10.0 – 10.0 4 

PFU.mL − 1 
26.0 PFU.mL − 1 

(PBS) 

Saliva sample [144] 

33.0 PFU.mL − 1 

(Saliva) 

Multiplex 

RT-PCR-electrochemical 

genosensor - Voltmeter 

Gold electrode ssDNA of the H1N1 

PCR products/ 

H1N1 antigen 

Ferrocene 10.0 4 TCID 50 to 

10.0° TCID 50 

10.0 TCID 50 .mL − 1 

(H1N1) 

Pediatric 

pneumonia 

patients samples 

[145] 

ssDNA of the H3N2 

PCR products/ 

H3N2 antigen 

100 TCID 50 .mL − 1 

(H3N2) 

( continued on next page ) 
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Table 2 ( continued ) 

Detection technique Substrate Immobilized 
material / Analyte 

Monitored 
compound 

Working Range LOD Sample Ref. 

Electrochemical – DPV ITO/glass 

electrode 

ssDNA of the 

H1N1/ mini-HA 

protein 

Potassium ferro- 

cyanide/ferricyanide 

10.0 – 10.0 4 

PFU.mL − 1 
3.70 PFU.mL − 1 Commercial 

H1N1 

[146] 

Electrochemiluminescence Gold electrode HA of the H1N1/ 

anti-H1N1 

Immunoliposome 

encapsulating tris 

(2,2 ′ - bipyridyl) 

ruthenium (II) 

complex 

2.70 × 10 2 –

2.70 × 10 3 

PFU.mL − 1 

Not determined Commercial 

H1N1 

[147] 

Electrochemical – EIS Gold electrode 

in PDMS 

microchannels 

H1N1 antibody/ 

H1N1 antigen 

Label-free 1.00 –

10.0 4 PFU.mL − 1 
0.500 PFU.mL − 1 Commercial 

H1N1 

[148] 

Optical – IM-SPR Gold chip H7N9 antibody/ 

Attenuated 

reassorted H7N9 

antigen 

Label-free 2.30 × 10 2 –

2.30 × 10 5 

copies.mL − 1 

402 copies.mL − 1 Nasal mucosa 

from flu-like 

syndrome 

patients 

[149] 

144 copies.mL − 1 Commercial 

H7N9 

Electrochemical – DPV SPCE H5N1 DNA 

aptamer/ 

anti-H5N1 

(sandwich 

ELISA-like assay) 

Electrocatalytic 

reaction of the 

surface ALP with 

APP 

100 fM –10.0 pM 100 fM Diluted human 

serum samples 

spiked 

[150] 

Electrochemical – CV Gold electrode Multi-functional 

DNA 3WJ/ HA 

protein of H5N1 

Fe 3 + /2 + of hemin 1.00 pM – 100 nM 1.00 pM Chicken serum [151] 

Optical – UV–vis spectra 96-well 

microplate 

H5N1 antibody/ 

H5N1 antigen 

(sandwich 

ELISA-like assay) 

TMB 0.100 –

4.00 ng.mL − 1 
0.040 ng.mL − 1 Commercial 

H5N1 

[152] 

Optical – SPR Gold chip H5N1 aptamer/ 

H5N1 whole virus 

(sandwich 

ELISA-like assay) 

Aptamer-AuNPs 1.00 × 10 4 –

8.00 × 10 4 

EID 50 .mL − 1 

200 EID 50 .mL − 1 H5N1-infected 

feces samples 

[153] 

Electrochemical – OSWV Gold electrode His 6 –H5 HA/ 

anti-H5N1 

Cu(II) ions redox 

current decreasing 

4.00 –

100 pg.mL − 1 
2.40 pg.mL − 1 Hen sera from 

individuals 

vaccinated and 

non-vaccinated 

[154] 

Electrochemical – OSWV Gold electrode ssDNA of H5N1/ 

RNA of the H5N1 

Fe 3 + 3.00 × 10 3 –

3.00 × 10 5 

copies.mL − 1 

3.00 copies.mL − 1 Biological sample [155] 

Optical – Fluorescence Ag@SiO 2 NPs H5N1 aptamer/ 

Recombinant HA 

protein of the 

H5N1 

Thiazole orange 2.00 –

100 ng.mL − 1 
2.00 ng.mL − 1 Commercial 

H5N1 

[156] 

3.50 ng.mL − 1 Human serum 

Electrochemical – EIS BDD 2 – 4 mers peptide 

dendrimer/ H1N1 

and H3N2 antigens 

Label-free 6.00 – 400 

PFU,sample − 1 for 

H3N2 and 3.00 –

400 PFU.sample − 1 

for H1N1 

0.330 

PFU.sample − 1 for 

H1N1 and 0.91 

PFU.sample − 1 for 

H3N2 

Commercials 

HxNx 

[157] 

Electrochemical – IT 

method 

SPCE H1N1 antibody/ 

H1N1 antigen 

TMB 4.00 – 64.0 HA 

unit 

0.430 HA unit Chick embryo 

allantoic saliva 

simulated 

sample 

[158] 

Electrochemical – CV Tungsten rods Anti-AIV NP 

aptamer/ AIV NP 

Methylene blue 2.00 – 12.0 nM 1.13 nM Negative oral 

and cloacal 

swabs from 

chicken 

[159] 

Electrochemical 

- modified and tailored 

MOSFET 

Portable TFT AIV antibody/ 

Nucleoprotein of 

the AIV 

Label-free 10.0 1 – 10.0 6 

EID 50 mL − 1 
10.0 2 EID 50 .mL − 1 Ducks and 

Mallards swab 

samples 

[160] 

Electrochemical – LSV Gold electrode H7 antibody / AIV 

H7 (sandwich 

ELISA-like assay) 

AgNPs 1.60 × 10 − 3 –

16.0 ng.mL − 1 
1.60 pg.mL − 1 Commercial AIV 

H7 

[161] 

Optical – NNLFA Sample pads AIV antibody/ AIV 

nucleoproteins 

from H5N2 

(sandwich 

ELISA-like assay) 

AIV antibody/ AIV 

nucleoproteins 

from H5N6 

(sandwich 

ELISA-like assay) 

Ca 2 + enhanced 10.0°.5 to 10.0 4 

EID 50 mL − 1 

10.0 2.5 to 10.0 5 

EID 50 mL − 1 

10.0 2 EID 50 .mL − 1 

10.0 3.5 

EID 50 .mL − 1 

Oropharyngeal 

swabs and 

cloacal swabs 

from ducks 

experimentally 

infected 

[162] 

( continued on next page ) 
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Table 2 ( continued ) 

Detection technique Substrate Immobilized 
material / Analyte 

Monitored 
compound 

Working Range LOD Sample Ref. 

Electrical - 

Magnetoresistance 

GMR sensor AIV antibody/ AIV 

antigen (sandwich 

ELISA-like assay) 

Binding magnetic 

nanoparticles onto 

the GMR causes 

change in the 

resistance 

1.00 × 10 3 –

1.00 × 10 5 

TCID 50 .mL − 1 

1.50 × 10 2 

TCID 50 .mL − 1 
AIVs obtained 

through 

colaboration 

[163] 

Electrochemical – DPV Carbon 

DEP-chip 

H1N1 antigen/ 

Aptamer-AuNPs 

AuNPs 0.400 –

100 μg.mL − 1 
0.51 𝜇g. L − 1 Human serum [164] 

Optical – Reflectance 

measurements 

SiO 2 -based IO 

nanostructures 

H1N1 antibody/ 

H1N1 antigen 

Label-free 

detection 

10.0 3 – 10.0 5 PFU Not determined Commercial 

H1N1 

[165] 

Optical – LSPR ITO DNA 3WJ/ HA 

protein from H5N1 

Label-free 1.00 pM – 100 nM 1.00 pM Chicken serum [166] 

Electrochemical – IPA SPCE Biotin and 

fluorescein- 

labelled H5 PCR 

amplicons 

TMB 1.00 – 15.0 mM 7.43 μM Commercial 

H5N1 

[167] 

Volumetric assay MWCNT-IDE H1N1 aptamer / 

H1N1 antigen 

(sandwich 

ELISA-like assay) 

AuNPs 0.010 – 100 pM 10.0 fM (using 

aptamer for 

sandwich) 

Commercial 

H1N1 

[168] 

MWCNT- IDE H1N1 antibody / 

H1N1 antigen 

(sandwich 

ELISA-like assay) 

AuNPs 1.00 pM (using 

antibody for 

sandwich) 

Optical – SPR Gold optical 

fiber 

H6 antibody/ H6 

antigen 

Label-free 10.0 5 – 10.0 9 

EID 50 .mL − 1 
5.14 × 10 5 

EID 50 .mL − 1 
Tracheal samples 

from chickens 

[169] 

Optical – IE Silicon wafer H5N1 antibody / 

H5N1 antigen 

Label-free 

detection 

Not determined Not determined Commercial 

H5N1 

[170] 

3 ′ SL-PAA = synthetic sialylglycoconjugates based on a polymer matrix; 3WJ = 3 way-junction; AgNPs = silver nanoparticles; Ag@SiO 2 NPs = silver@silicon dioxide 
nanoparticles; AIV = Avian influenza viruses; ALP = alcaline phosphatase; APP = 4-amino phenyl phosphate; AuNPs = gold nanoparticles; BDD = boron-doped 
diamond; DEP = disposable three-electrode screen-printed; DPV = differential pulse voltammetry; EIS = impedance spectroscopy; GMR = giant magnetoresistance; 
His6-H5 = histidine-tagged hemagglutinin; IDE = interdigitated dielectrode; IE = imaging ellipsometry; IM-SPR = intensity-modulated surface plasmon resonance; 
IO = inverse opal; IPA = intermittent pulse amperometry; ITO = indium tin oxide; LSPR = localized surface plasmon resonance; LSV = linear sweep voltammetry; 
MOSFET = metal − oxide semiconductor field-effect; MWCNT = multiwalled carbon nanotube; NNLPA = NIR-to-NIR lateral flow immunoassay;. 
OSWV = Osteryoung square-wave voltammetric; PDA = polydiacetylene; PDMS = polydimethylsiloxane; SiO 2 = silicon dioxide; SPCE = screen-printed carbon 
electrode; SPE = screen-printed electrode; SPM = scanning probe microscopy; SPR = surface plasmon resonance; ss-cDNA = single stranded-cDNA; TFT = thin film 

transistor; TMB = 3,3,5,5-tetramethylbenzidine;. 
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I  
odified gold electrode for the detection of H5N1 antibodies. The au-
hors of these two works claimed that their devices present a lower limit
f detection than commercial systems. 

Another type of sensor growing considered attention is the genosen-
or, also applied to Influenza virus detection. An advantage of using
NA or DNA is that the classic biosensor assembly is dependent on

he hybridization of single strands, a reversible process, meaning that
he transducer surface can be regenerated. Genosensors are also known
or their excellent limit of detection. Ravina [133] reported a biosensor
ased on a gold screen-printed electrode modified with 5 ′ -amine labeled
2-mer ssDNA of hemagglutinin gene to the detection of the comple-
entary DNA strand through electrochemical impedance spectroscopy

EIS). A limit of detection of 4 pg was obtained. Dong [134] developed
n electrochemical genosensor for H7N9 with a limit of detection of 0.75
M. However, Medina-Sánchez [135] has found an outstanding limit of
etection of 20 aM through EIS without any amplification, introducing
 new electrode with tubular geometry. 

Electrochemical transducers are the basis of most of the devices stud-
ed for Influenza virus determination, but optical transducers also pro-
ide high efficiency and sensitivity. He [136] has found a remarkable
imit of detection of 0.53 copies.mL − 1 for H5N1 detection in a 20 min
xperiment using a colorimetric transducer based on the chromism and
uorescence properties of polydiacetylene vesicles modified through co-
alent binding to HA of H5 monoclonal antibody. 

The variety of different electrodes, transducers, and detection tech-
iques for Influenza virus detection, encouraged the development of in-
ovative systems. Jang was the first to develop a low-cost, miniaturized
aper-based [137] , followed by a flow-based paper [138] immunosensor

or electrochemical and colorimetric detection of Influenza H1N1 virus. i  

7 
he evolution from simple paper to flow-paper promoted a decrease
n the limit of detection from 113 PFU.mL − 1 to 3.3 PFU.mL − 1 (elec-
rochemical) and 1.34 PFU.mL − 1 (colorimetric). Hushegyi [139] devel-
ped a glycan biosensor for the Influenza virus. Glycan are complex
rganic structures present in the surface of viruses and host cells, as for
nfluenza viruses and human cells [140] . Tkac used a polycrystalline
old electrode modified with a mixture of two thiols in a self-assembled
onolayer (SAM) to immobilize a glycan (a 2,3-sialyllactose deriva-

ive). This biosensor was used to detect two Influenza virus subtypes,
1N1 and H5N1, through the interaction between the immobilized gly-
an and the virus glycoprotein hemagglutinin. This was the first detec-
ion at aM range (140 aM for H5N1 and 14 fM for H1N1) using an
mpedimetric glycan biosensor. A similar approach was used by Ero-
eev and Gorelkin [141 , 142] , a syalylglycopolymer constituted of an
5N3 glycoprotein modified-polyacrylamide. The striking difference is

he detection methodologies. In the first moment, they used a standard
antilever from atomic force microscope as the transducer. The mea-
urement was based on the cantilever deflection induced by lateral in-
ermolecular forces in a flow system upon contact with the virus. As it
sed a complex optical system, it was not classified by the authors for
ome appliances. Therefore, in the second moment, they switched into
 piezoelectric transducer using a lead zirconate titanate piezoelectric
isk. By keeping the flowing system and the same syalylglycopolymer,
hey achieved a sensitive, selective, label-free device that can be applied
or commercial use. 

Real biological samples are usually based on blood, but fluids as
rine and saliva can also be used. Another advantage of biosensors for
nfluenza virus detection is the possibility of using less invasive flu-
ds obtained from mouth, throat, or nose to get viral biological mate-
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ial. Nidworski [143] developed an impedimetric immunosensor for the
nfluenza virus based on a boron-doped diamond (BDD) electrode func-
ionalized with polyclonal anti-M1 antibodies. Real samples based on
hroat and nasal swabs were treated to release the M1 protein from the
irus. The sensor showed high sensitivity, selectivity, and rapid analysis
5 min). 

.2. Coronaviruses 

The first studies of the coronavirus were performed in the late 1960s
y distinct researcher groups. They have isolated, independently, dif-
erent strains of a new virus in cell culture, which presented an un-
sual ether-sensitive property. Tyrrell demonstrated through electron
icroscopy that this new group of viruses was also morphological iden-

ical, with a crown-like appearance (so the name corona ). Years after the
nderstanding of the first coronavirus strains – B814, 229E, and OC43,
nd due to the virus study and its presence in many animals, the coro-
avirus was divided into three distinct groups: the first one containing
29E; the second one containing OC43; and the third one containing
viary virus, all with classification based on the genome and specific
ntigens [171] . 

In this century, three significant outbreaks have already changed the
orld scenario regarding the Coronaviridae family. At the end of 2002
nd the beginning of 2003, in southern China, a new type of coron-
virus was discovered. Named severe acute respiratory syndrome coro-
avirus (SARS-CoV), it promoted an outbreak with near a thousand
eaths and more than eight thousand infected [172] . In 2012, a sec-
nd outbreak was attributed to the middle east respiratory syndrome
oronavirus (MERS-CoV) [173] , with origin in the south of Asia and the
iddle east of Africa. Around 35% of the patients died, a higher mortal-

ty than SARS. At the end of 2019, the new pandemic spread worldwide
rom China was due to the severe acute respiratory syndrome coron-
virus 2 (SARS-CoV-2), which causes COVID-19 disease. 

These viruses’ transmission to humans is believed to occur via an-
mals as natural virus reservoirs, especially bats, civets, and camels
172] . The human contact with the animal environment, their secre-
ions, and their meat may be the principal transmission mode. The
eason for the high infection rate reported for SARS-CoV-2 is because
he virus is easily transmitted via respiratory droplet, through aerial
roplets and contact. SARS-CoV-2 has a higher propagation rate when
ompared to other coronaviruses. It is believed that it has a high vi-
al load right in the beginning of the infection, which can lead to an
nter-human transmission ever since. In the other hand, SARS-CoV has
ifferent moments of high viral load, higher at the end of the disease,
hich justify its lower transmission in the beginning of the infection

174] . It is considered that humans are transient or terminal host re-
arding inter-human infection by the MERS virus, and there are, until
ow, no supporting evidence that the transmission can occur [175] . 

The coronaviruses are developed in the host cellular cytoplasm, pro-
oting cell destruction [171] . The diseases can be asymptomatic, spe-

ially MERS. Some unspecific symptoms are fever, cough, loss of air,
nd, in severe cases, severe respiratory problems such as respiratory in-
ufficiency and associated comorbidities [173 , 176] . 

Despite the lethality of SARS-CoV, SARS-CoV-2, and MERS, it was
ot found in the literature many publications regarding coronavirus
iosensor development compared to the growing number of studies for
he Influenza virus. A partial explanation may come from the fact that
nfluenza virus has many harmful subtypes, and the morbidity and mor-
ality are reported annually worldwide, which demands the fast diagno-
is with reliability found in biosensors. The more significant events re-
ated to coronaviruses were the SARS-CoV and MERS outbreaks, which
ere controlled. Therefore, fewer efforts are found regarding these two

pecifics strains. However, the emergence of the new SARS-CoV-2 en-
anced the concern, and the research for coronavirus became vital.
ithin months it was published two papers reporting biosensor devel-

pment for detection of SARS-CoV-2, so far. These are the first steps for
8 
 real device that can be used to identify infected people and hasten the
reatment. Table 3 contains data of these two papers alongside other
eports regarding SARS, and MERS since the first outbreak, in 2002. 

It was observed for the biosensors developed for the Influenza virus
hat electrochemical systems were the majority among the papers found.
or coronavirus detection, only six optical systems were found as the
ain sensor type with one work using a piezoelectric system for SARS-
oV-1 determination, one work using an electrochemical system for
ERS determination and one electrochemical system for SARS-CoV-2

etermination. The efficient and innovative devices developed for the
nfluenza virus and presented in this paper can be used as models to the
etermination of these viruses, since the biological material are essen-
ially the same, such as antibodies, antigens, DNA, PCR products, and
ore. 

Huang [177] developed a fiber-optic biosensor to detect the nucleo-
apsid (N) protein, a specific SARS-CoV antigen as a faster and more
ensitive alternative to the RT-qPCR and serological tests. The same
imit of detection (0.1 pg.mL − 1 ) was also achieved two years after by
oh [178] using quantum dots-conjugated RNA aptamer immobilized
ver a designed chip to recognize the same N protein from SARS-CoV,
nd it is, to date, the lowest limit of detection found for a coronavirus
hrough biosensor devices. Seeking an efficient biomolecule immobiliza-
ion, Park [179] developed a surface plasmon-ressonance (SPR) biosen-
or for SARS-CoV based on the use of gold binding polypeptide (GBP).
BP was fused to enhanced green fluorescent protein (GBP-E) and to
ARS-CoV membrane envelope (SCVme), the latter that can bind to anti-
CVme antibodies. This interesting system presents high specificity to
old substrates without losing the biomolecule activity. A representation
f the work of Park can be seen in Fig. 4 . 

All MERS biosensors found were developed as nanoparticle-based
evices. An explanation may be that by the time of MERS outbreak,
he use of nanoparticles and quantum dots for the most diverse systems
ere sedimented in the scientific community with easiness in the fabri-

ation, stability, and many nanostructure options. Teengam [180] pre-
ented a biosensor for MERS detection as an innovative optical system.
t was used a pyrrolidinyl peptide nucleic acid (PNA) immobilized over a
aper-based analytical device (PAD) to detect synthetic oligonucleotides
ith a sequence corresponding to MERS. The paper-type colorimet-

ic biosensor response occurs through aggregation/de-aggregation of
egatively charged silver nanoparticles upon addition with positively
harged PNA followed by complementary DNA. The results analysis does
ot require a computer interface, as the responses can be observed in
he naked eye. Layqah has recently [181] developed the first electro-
hemical immunosensor for MERS detection. The biosensor consists of
n array of eight gold nanoparticles modified-carbon electrodes contain-
ng MERS antigen immobilized through glutaraldehyde cross-linking im-
obilization technique. The measurement of the specific antibody was
erformed through square wave voltammetry in a solution containing
errocyanide/ferricyanide, and a limit of detection of 0.4 pg.mL − 1 was
chieved. 

As far as we know, Qiu and coworkers [182] presented the develop-
ent of the first SARS-CoV-2 biosensor. Using the knowledge acquired

rom RT-PCR from SARS-CoV and SARS-CoV-2, they selected oligonu-
leotides containing specific sequences for both the diseases and their
hiol-complementary DNA receptor. The hybridization event was ana-
yzed through a dual-functional plasmonic system, integrating a plas-
onic photothermal (PPT) effect and localized surface plasmon reso-
ance (LSPR) transduction on a single chip. The innovative dual sensor
chieved a low limit of detection of 0.22 pM and the use of a label-free
ystem, with perspective to point-of-care use. With just a few days after
he work of Qiu, Seo [183] presented a label-free field-effect transistor-
ased biosensor using a specific spike antibody for the detection of
ARS-CoV-2 antigen protein. The sensor was evaluated in the univer-
al transport medium, used to suspend nasopharyngeal swabs and in
linical samples, and the results were satisfactory. Despite the fact that
ne system is a genosensor, in which the virus can be detected right af-
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Table 3 

Coronavirus biosensors data. 

Detection technique Substrate 
Immobilized material / 
Analyte Monitored compound Working Range LOD Sample Ref. 

Optical – LSPR PMMA optical 

fiber 

Anti-SARS-CoV N 

protein / SARS-CoV N 

protein (sandwich 

ELISA-like assay) 

Fluorophore DyLight TM 

649-modified 

secondary antibody 

0.100 pg.mL − 1 

– 1.00 ng.mL − 1 
1.00 

pg.mL − 1 
Human serum 

from healthy 

donor 

[177] 

Optical – Confocal 

laser scanning 

microscopy 

Glass chip SARS-CoV N protein/ 

QDs-conjugated RNA 

aptamer 

Fluorescence intensy 

of the QDs 

0.1 – 50 

pg.mL − 1 
0.100 

pg.mL − 1 
Synthetic RNA 

aptamer 

[178] 

Optical – SPR Gold- 

micropatterned 

chip 

GBP-E-SCVme 

(SARS-CoV) fusion 

proteins / anti-SCVme 

Label-free detection Not 

determined 

0.200 

μg.mL − 1 
Rabbit 

anti-SCVme 

[179] 

Colorimetric assay Multiplexed 

Paper 

MERS-CoV DNA/ 

acpcPNA-AgNPs 

Color change of AgNPs 

aggregation 

20.0 –

1.00 × 10 3 nM 

1.53 nM Synthetic DNA 

oligonu- 

cleotides 

[180] 

Electrochemical –

SWV 

Array of carbon 

electrode 

MERS-CoV and 

HumanCoV proteins/ 

Antibody for each 

virus 

Reduction peak 

current of 

ferro/ferricyanide 

redox couple 

0.010 –

1.00 × 10 4 ng.mL − 1 
0.400 

pg.mL − 1 
Spiked nasal 

samples 

(HumasCoV) 

[181] 

0.001 –

100 ng.mL − 1 
1.00 

pg.mL − 1 
Spiked nasal 

samples 

(MERS-CoV) 

Optical – LSPR Two- 

dimensional 

gold 

nanoisland 

SARS-CoV 2 cDNA/ 

SARS-CoV 2 nucleic 

acid 

Label-free detection 0.100 pM –

1.00 𝜇M 

0.220 pM Synthetic 

oligonucleotide 

[182] 

Electrochemical –

Semiconductor 

analyzer 

Graphene FET SARS-CoV 2 spike 

antibody/ SARS-CoV 2 

spike protein 

Label-free detection 1.00 fg.mL − 1 –

10.0 pg.mL − 1 
1.00 

fg.mL − 1 
PBS buffer [183] 

16.0 –

1.60 × 10 4 

PFU.mL − 1 

1.6 × 10 1 

PFU.mL − 1 
Cells culture 

10.0 –

1.00 × 10 5 

copies.mL − 1 

242 

copies.mL − 1 Nasopharyngeal 

swab 

specimens 

from COVID-19 

patients 

Piezoeletric PQC sensor SARS-CoV NG-8 

aptamer/ SARS-CoV 

helicase protein 

Magnetic bead 

enrichment 

0.050 –

1.00 μg.mL − 1 
3.50 

ng.mL − 1 
Human serum [184] 

Optical – SPR Gold chip SARS-CoV 

oligonucleotide probe / 

SARS-CoV PCR product 

Label-free detection 1.00 nM – 1 

μM 

2.00 nM Throat swab 

specimens 

[185] 

acpcPNA = pyrrolidinyl peptide nucleic acid; FET = Field-effect transistor; GBP- E = Gold binding polypeptides-enhanced green fluorescent protein; QD = Quantum- 
dots; PMMA = Polymethyl methacrylate; PPT = Plasmonic photothermal; PQC = Piezoelectric quartz crystal. 
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er the infection, both systems present some drawbacks as complexity
nd noise signals. Work still needs to be done to develop low-cost and
iniaturized devices that can be accessible to the population in their

wn homes, avoiding agglomeration in health clinics and hospitals. 
The biosensors developed for coronavirus presented excellent sensi-

ivity, selectivity, and innovative assembly by taking advantage of the
anotechnology. The recent COVID-19 pandemic already boosted the
evelopment of the first biologic sensors, which can imply in revisiting
he study of older coronaviruses as SARS and MERS. It is expected more
esearch on these viruses, as simultaneous determination, miniaturiza-
ion, and development of point-of-care devices for the population. 

.3. Respiratory syncytial virus 

The respiratory syncytial virus (RSV) was firstly isolated from chim-
anzees in 1956 [186] . It presents an (-)ssRNA genome [187] and be-
ongs to the Paramyxoviridae family, which is composed of other viruses
f public health interest, as the measles virus and the Newcastle disease
irus [188] . It is one of the major causes of respiratory diseases around
he world with a lethality compared to the Influenza virus, mainly in
hildren under five years old [189] . In this group of children RSV can
ead to bronchiolitis and pneumonia, the former presenting in almost
0% of the cases [186 , 190] . 

There is currently no vaccine against RSV [187] . An attempt was
erformed in 1967 to develop an inactive vaccine, but it was not effec-
9 
ive [191] . This current scenario was responsible for more than 59,000
eaths of children under 5 years old in 2015 [192] with estimative
f deaths between 66,000 and 234,000 children, teenagers, and elders
191] . Just in Brazil, RSV was responsible for 2366 new cases from 2007
o 2012 with more deaths even than the deaths correlated with the In-
uenza virus [189] . 

It is interesting to evaluate the discrepancies in the biosensor de-
elopments in the past few years. There are currently only vaccines for
ome Influenza virus subtypes, but none for the coronaviruses presented
ere and RSV. Therefore, the previous determination of these viruses in
he contaminated people is of utmost importance for healthcare and to
revent new epidemics or even worse as SARS-CoV-2 pandemic. How-
ver, even with all of these concerns, few studies were reported with the
evelopment of biosensors for RSV detection. Table 4 contains the data
f the few papers found in the literature. Only three optical systems and
wo electrochemical systems were found. Nevertheless, regarding the
ther viruses approaches, RSV biosensors present more heterogenicity
han the others. 

With the purpose to detect viral particles, Peres [193] developed
n optic genosensor based in gold filament substrate. With a detec-
ion limit of 11.9 PFU, this is one of the most sensitive biosensors for
SV detection. Rochelet [194] developed an immunosensor based on a
olymer-modified screen-printed electrode. With a low limit of detec-
ion of 1:5000 RSV Ag dilution, the device showed efficiency compared
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Fig. 4. AFM images of the sequential binding of GBP-E-SCVme and anti-SCVme on the gold-micropatterned surface. (a) Bare gold surface, (b) binding of the GBP-E- 
SCVme fusion proteins onto the gold surface, and (c) subsequent binding of the anti-SCVme antibodies on the GBP-E-SCVme layer. Left, schematic diagrams for the 
successive binding of GBP-E-SCVme and anti-SCVme on the gold micropatterns; middle, three-dimensional topological images; right, the cross-sectional contours of 
samples a–c, sequentially (these are average height differences of the individual scan lines from each area). Republished from [179] ; permission conveyed through 
Copyright Clearance Center, Inc, License Number 4855350410966. 

Table 4 

Respiratory syncytial virus biosensors data. 

Detection technique Substrate 
Immobilized 
material / Analyte 

Monitored 
compound Working Range LOD Sample Ref. 

Optical – SPR Gold chip RSV 

oligonucleotide 

probe / RSV PCR 

product 

Label-free 

detection 

1.00 nM – 1.00 

μM 

3.00 nM Throat swab specimens [185] 

Optical –

Microarray scanner 

Gold- 

plated 

tungsten 

filaments 

RSV DNA hairpin 

structures 

(molecular beacon 

style)/ RNA from 

cell culture 

Label-free 

detection 

Not 

determined 

11.9 PFU RNA target extrated 

from cell culture 

[193] 

Electrochemical –

Amperometric 

through SPE 

Polystyrene 

slide 

Anti-RSV/ RSV 

antigen (sandwich 

ELISA-like assay) 

TMB Not 

determined 

1:5000 (RSV 

Ag dilution) 

Respiratory secretion 

clinical samples 

[194] 

Electrochemical –

Amperometric 

Gold chip aMB with SA-HRP/ 

RSV DNA 

TMB 100 pM – 100 

nM 

11.0 pM RSV DNA in 10% 

human serum 

[195] 

aMB with SA-HRP/ 

RSV miRNA let-7a 

20.0 pM – 100 

nM 

3.40 pM 

Optical –

Absorbance 

Plate/Gold 

nanoparti- 

cle 

layer 

Anti-RSV / RSV 

antigen 

TMB 0.050 – 30.0 

pg.mL − 1 
0.010 pg.mL − 1 Human serum from 

healthy donor 

[197] 

aMB = Allosteric molecular beacons; SA-HRP = Streptavidin aptamer-horseradish peroxidase; TMB = 3,3,5,5-Tetramethylbenzidine;. 

10 
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Fig. 5. The principle of the RSV-aMB E-sensor for RSV DNA detection. Repub- 
lished from [195] ; permission conveyed through Copyright Clearance Center, 
Inc, License Number 4855350615984. 
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Fig. 7. A schematic view of the Epic R ○ biosensor. When the glass substrate is 
illuminated with broadband light, only a ‘single’ wavelength that is resonant 
with the waveguide grating structure is strongly reflected. The Epic R ○ system 

measures the wavelength reflected by the sensor which is determined by the 
optical properties of the sensing zone within approximately 150 nm of the sen- 
sor. The magnitude of this wavelength shift is proportional to the amount of 
DMR. Republished from [204] ; permission conveyed through Copyright Clear- 
ance Center, Inc, License Number 4876710020488. 

 

s  

d  

v  

t  

o  

s
 

t  

d  

H  

s  

h
 

n  

m  

a  

r  

s  

S  

t  

J  

fi  

m  

a  

i

o a standard serological assay. Moreover, the device also presented low
ost, and fast response time (25 min), features not related to the ELISA
r the RT-PCR assays. 

Cai [195] developed a genosensor based on an interesting allosteric
olecular beacon (aMB), as depicted in the Fig. 5 . The aMB used in their
ork, upon contact with an RSV specific DNA target, has its stem opened
nd formed a streptavidin aptamer that was coupled to a streptavidin-
orseradish peroxidase enzyme (SA-HRP). The electrochemical reduc-
ion signal of 3,3 ′ ,5,5 ′ -tetramethylbenzidine (TMB) formed by the en-
ymatic reaction in the hydrogen peroxide presence was correlated to
SV concentration. With a limit of detection of 11.0 pM using a small
ample volume (4.0 𝜇L), this biosensor presented the lowest LOD among
he studies found for RSV detection. The aMB strategy provides excel-
ent sensitivity, which was also observed for the Influenza virus [196] ,
nd it is a new alternative for genosensor development. 

Shi [185] developed a genosensor based on gene gold chips through
urface plasmon resonance that was able to detect simultaneously nine
espiratory viruses: influenza virus A and B, H1N1, RSV, parainfluenza
irus 1–3 (PIV1, 2, 3), adenovirus, and SARS-CoV-1. The biosensor
resents high sensitivity and selectivity. Moreover, it represents an im-
ortant step for further studies in the simultaneous determination of
everal viruses, since the associated illnesses cause similar symptoms.
he possibility to discard and to confirm diseases with reliability is the
ltimate goal in the frontline in the fight against respiratory viruses. 

.4. Other respiratory viruses 

Despite the high incidence rates and mortality related to the viruses
reviously described in this paper, other respiratory viruses present
ower virulence, but they are responsible for complications in humans
nd overload in health systems, like human adenovirus (AdV), human
ocavirus (HBoV) and human Rhinovirus (HRV) [198–200] . 
11 
Probably because of their low virulence, there are just a few biosen-
ors reporting their determination. Regardless, the development of such
evice is of the most importance because the symptoms that these
iruses cause are the same of the other viruses reported so far. The use of
hese specific biosensors by the population may be the first step to rule
ut other deadly viruses and, thus, to decrease the swelling in health
ervices. 

From the few papers found, it is worth mention the work of Os-
roff [201] , the only biosensor developed for human rhinovirus (HRV)
etermination, using an optically coated silicon surface modified with
RV polyclonal antibodies. The system was able to detect the virus-

pecific non-structural protein 3C protease. The biosensor presented
igh sensitivity (picomolar range) and fast response 28 min. 

One significant advantage of biosensors is the possibility of simulta-
eous determinations of several analytes. Alongside the many require-
ents for a biosensor, the development of a device that could analyze

nd discriminate several respiratory viruses in one single analysis is a
emarkable achievement. The works of Jin [202] , Shi [185] , and Jeni-
on [203] were performed regarding human adenovirus. The work of
hi was already discussed for RSV because this device was able to de-
ermine nine different respiratory viruses, including human adenovirus.
in developed an electrochemical biosensor based on gold chips modi-
ed with carbon nanotubes to determine the virus through surface plas-
on resonance. The work of Jenison went through the same way, with
 ten-minute assay for the detection of seven respiratory viruses, includ-
ng rhinovirus, as depicted in Fig. 6 . 
Fig. 6. Schematic representation of the thin 
film biosensor. (A) Unreacted thin film biosen- 
sor surface with covalently attached capture 
probe. The surface coating, silicon nitride 
(Si3N4), appears gold in white light. (B) Sur- 
face reacting with target sequence to produce 
thin film. Target immobilization triggers reac- 
tions that enzymatically transduce the forma- 
tion of hybrids on the surface into molecular 
thin films causing a change in color from gold 
to purple. Republished from [203] ; permission 
conveyed through Copyright Clearance Center, 
Inc, License Number 4876701161684. 
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A great number of papers are addressed to the development of
iosensors, but still, few devices are available in commerce as the glu-
ose biosensor or using commercial detection systems. One good exam-
le of respiratory virus detection is the work of Owens [204] , in which
t was developed a label-free optical biosensor for the determination of
RV using the Corning Epic R ○ system, as depicted in Fig. 7 . This work,
longside other studies presented here, shows an excellent perspective
or commercial devices. 

There are other important respiratory viruses, but it was not found
ny biosensors reports, such as the human bocavirus, which proves
hat much work can still be performed to achieve early diagnosis
nd availability of commercial devices for these viruses determination
198] . 

onclusion 

The diseases caused by respiratory viruses are a matter of public
ealth, with more than a million new cases and hundreds of deaths re-
orted annually. Moreover, viruses can evolve with time, and humans
re continually susceptible to new deadly forms, as it is the case of the
OVID-19 pandemic that is plaguing the world. The current scenario re-

ies upon the use of specific diagnosis, but with time-consuming analysis,
igh cost of the whole procedure, with the possibility of false-positives
nd false-negatives results, and it is not accessible to the entire popula-
ion. The concept of point-of-care devices has been growing considered
ttention because of its advantages, such as the high sensitivity, selec-
ivity, reproducibility, low-cost, small sample requirement, allied to a
iniaturized device that can be used with simple handling and easy

peration. 
Biosensors satisfy these requirements, and they have been developed

or many purposes, including in the health area. This review exploited
he most recent development in biosensors regarding the respiratory
iruses, with a stress on the Influenza virus, the coronaviruses, and the
espiratory syncytial virus. The majority of papers found in the litera-
ure approached the Influenza virus. This number of studies considers
he existence of many subtypes (H1N1, H5N1, H7N9, H3N2, and oth-
rs), the annual recurrence, and the high number of deaths. SARS-CoV
nd MERS present valuable, but fewer studies when compared to the In-
uenza virus. Despite their lethality, these viruses were controlled after
heir respective outbreaks, which seems not to justify many efforts in
iosensor development. Unfortunately, biosensors for RSV determina-
ion are the scarcest. With annual reports of new cases and deaths, just
ike Influenza, but especially of young children, it was expected more
fforts regarding its determination through the point of care devices. 

Researches have been using different approaches and innovative sys-
ems to develop their sensors. With the advent of nanotechnology, high
ensitivity is being reached, with the detections in the attomolar range,
etter than the traditional methods. Optical and electrochemical are the
entral choices for transducing, as the specific nucleic acids, and anti-
en/antibodies are the usual choices for biological material to be immo-
ilized. Previous serological assays and the genome study of the viruses
re important because allows researchers to use this information and
he virus’s biological material to the development of immunosensor and
enosensors. 

The use of commercial electrodes such as screen-printed, and sys-
ems that can detect more than one respiratory virus in a simultaneous
etermination, provide some perspective. There is not available any de-
ice, as the glucose biosensor, regarding the determination of the viruses
eported in this review. Nevertheless, with just months since the be-
inning of the COVID-19 pandemic, at least two biosensors were de-
eloped for SARS-CoV-2 determination, which can be the first step for
urther studies to evolve from the proof of concept to the point of care
evice. 
12 
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