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Abstract

Background: The use of hyperspectral cameras is well established in the field of plant phenotyping, especially as a part of
high-throughput routines in greenhouses. Nevertheless, the workflows used differ depending on the applied camera, the
plants being imaged, the experience of the users, and the measurement set-up. Results: This review describes a general
workflow for the assessment and processing of hyperspectral plant data at greenhouse and laboratory scale. Aiming at a
detailed description of possible error sources, a comprehensive literature review of possibilities to overcome these errors
and influences is provided. The processing of hyperspectral data of plants starting from the hardware sensor calibration,
the software processing steps to overcome sensor inaccuracies, and the preparation for machine learning is shown and
described in detail. Furthermore, plant traits extracted from spectral hypercubes are categorized to standardize the terms
used when describing hyperspectral traits in plant phenotyping. A scientific data perspective is introduced covering
information for canopy, single organs, plant development, and also combined traits coming from spectral and 3D
measuring devices. Conclusions: This publication provides a structured overview on implementing hyperspectral imaging
into biological studies at greenhouse and laboratory scale. Workflows have been categorized to define a trait-level scale
according to their metrological level and the processing complexity. A general workflow is shown to outline procedures and
requirements to provide fully calibrated data of the highest quality. This is essential for differentiation of the smallest
changes from hyperspectral reflectance of plants, to track and trace hyperspectral development as an answer to biotic or
abiotic stresses.
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Background

During recent years, hyperspectral sensing of plants has devel-
oped as a valuable tool for plant phenotyping [1] [2]. The prin-
ciple of hyperspectral imaging (HSI) is based on the fact that all
materials reflect electromagnetic energy in prominent patterns
and specific wavelength owing to differences in their chemical
composition, inner physical structure, and surface properties.
This signal is characterized by measuring hundreds of narrow

bands within the electromagnetic spectrum [3]. Spectroscopy
is defined as the method of acquiring and explaining the hy-
perspectral characteristics of an object regarding light intensity
emitted, reflected, or transmitted from molecules at different
wavelengths to provide a precise fingerprint of an object. HSI
combines spectral and spatial information in a manner simi-
lar to that of a digital camera [4]. HSI extends the measurable
spectral range from the visible (RGB camera) to the near-infrared
(NIR) range and samples the spectrum in a large number of nar-
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2 Technical workflows for hyperspectral plant image assessment and processing

row bands (>20 bands). If only a few (<20) spectral bands are
sampled, the literature defines this as multispectral. Compared
with spectroscopy, which measures the same spectral area, HSI
is able to measure spectral and spatial information in an image,
which enables a more detailed analysis of the object.

Hyperspectral cameras have become affordable during re-
cent years. Unlike RGB cameras that image the visible spec-
trum (400–700 nm), this area is extended by the ultraviolet (UV,
200–400 nm) [5]), the NIR (700–1000 nm) [6], or even the short-
wave infrared spectrum (1000–2500 nm) [7]. This is highly in-
teresting for plant science because many plant traits and bio-
physiological processes can be traced beyond the visible spec-
tral range [8]. HSI of plants has been used to measure plant tis-
sue characteristics [9] and to detect abiotic stresses [10] or plant
diseases [11] among others.

Typically, laboratory workflows differ in their use of cameras,
measurement set-ups, and data handling such as calibration,
smoothing, and segmentation. There are several hardware cali-
bration steps to understand and execute, starting from the cam-
era pixel position mapping to the proper wavelength, the correc-
tion of the camera and lens distortion, to the correction of the
3D set-up when measuring upper and lower leaves of a plant.
Thus, the introduction of a standardized workflow of hyperspec-
tral image processing is needed to enable the comparison of re-
sults from different laboratories regarding their hyperspectral
analysis.

To introduce HSI as a state-of-the-art tool for plant phenotyp-
ing, we present a literature overview showing the different bio-
logical objectives that hyperspectral sensors are used for in the
laboratory and at the greenhouse scale. The overview comprises
stress detection, disease classification, and a link to molecular
analysis (quantitative trait locus [QTL] analysis). All found use-
cases are grouped by the introduced trait level description.

The following section introduces techniques to overcome dif-
ferent impairments on the measured spectrum coming from the
experimental set-up, the sensor, the role of illumination, and the
challenges when measuring complex plants with plant-specific
optical properties. The complete workflow from sensor adjust-
ment, correction, calibration, and segmentation to the extrac-
tion of hyperspectral plant traits and to a deeper analysis using
routines of machine learning (ML) to extract biological informa-
tion is described.

The application part describes the different aspects of plant
traits based on HSI. Finally, a level description model is intro-
duced from the perspective of a data scientist. It describes the
increase of complexity in data acquisition and data handling
when switching from an averaged spectrum of the plant canopy
to an organ-specific spectrum to spectral development in time
course to multi-sensor plant models. The latter is needed for the
geometrical correction of the spectral data.

HSI: A Tool for Plant Screening

A comprehensive literature review shows examples for hyper-
spectral application from detection of biotic stresses such as dis-
eases or viruses and abiotic stresses such as heavy metal or cold
exposure and extraction of plant traits such as biochemical traits
or leaf water content at greenhouse and laboratory scale. Table 1
emphasizes different use-cases from plant science, where HSI
cameras were used to differentiate between different situations.

In Table 1 hyperspectral data are grouped by TL, which cate-
gorizes traits by complexity, starting from simple image analysis
(TL 1) to organ identification (TL 2), to time series (TL 3), and to

a final multi-sensor data acquisition (TL 4). HSI is shown to be
used for classification and regression problems across all 4 TLs.
A closer introduction into these phenotypic trait levels can be
found below in the text.

Three main groups can be identified including (i) detection
and quantification of biotic stresses such as disease [11], (ii)
detection and quantification of abiotic stresses such as heavy
metal exposure [12] or water stress [13], and (iii) extraction of
plant traits to describe water content [14] or biochemical traits
[15].

Thus, HSI is widely used for different aspects of plant screen-
ing and can be depicted to be a state-of-the-art tool for plant
phenotyping.

Data Acquisition and Processing

Hyperspectral systems and resulting data will vary owing to
many factors, including camera characteristics, experimental
set-up, calibration, environmental characteristics, and data pro-
cessing. This leads to inconsistencies regarding the data quality
and the validity of results. This increases the difficulty of com-
paring data from different sensors. Multiple steps are needed to
acquire valid physical reflectance data, starting from the sen-
sor wavelength calibration to the instrument function, the ra-
diometric calibration, and spectral and pixel binning.

The goal of calibration is to standardize the spectral axis, to
determine whether the sensor is working properly, to provide
the accuracy of the extracted data (sensor + processing), to val-
idate the credibility and to quantify the instrument errors, ac-
curacy, and reproducibility under different operating conditions
[4].

Four categories of factors that influence the measured spec-
trum of plants can be defined (see Fig. 1): (i) the experimental
set-up including the optical configuration; (ii) the sensor charac-
teristics including sensor offset, noise, and sensitivity behaviour
and distortion effects [16]; (iii) the illumination effects from the
light source when using active illumination or the surrounding
light when using environmental light; and (iv) the object and its
properties. Plant object properties means spectral variability due
to differences in genotypes, plant organs and materials within
the image such as pot and background data; inclination influ-
ence due to the architecture of plants; absorption, transmission,
and backscattering due to plant tissue properties; and temporal
variation due to growth.

Camera characteristics
HSI can be performed using 3 different sensor types: the push
broom/line scanner, the filter-based sensor set-up, and a whisk
broom set-up (see Fig. 2). Push broom cameras scan the region
below the sensor in lines and complete the full scan by either
moving the sensor [15] or using a mirror that is panned over
the object of interest. A filter-based system measures the com-
plete region of interest using different filters either by splitting
the scan ray using prisma or by using a combined filter pattern.
Whisk broom sensors measure the full spectral range pixel by
pixel similar to a spectrometer that is moved over the region of
interest. All 3 set-ups result in a 3D hypercube showing 2 spatial
axes and 1 spectral axis.

Whisk broom sensors have more moving parts and thus are
likely to wear out. Push broom cameras have fewer moving parts
but need high-quality calibration because the different regions
of the chip can show different sensitivity, which can result in
stripes within the data cube. Filter-based systems are commonly
restricted by the number of filters and provide less spectral res-
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Table 1: Overview of a representative selection of HSI use-cases in plant science at the greenhouse and laboratory scale

Purpose Group Plant Method Trait level Target Reference

Detection of impurities in seeds Traits Wheat, spelt, barley SVM TL 1 Classification [17]
Insect damage detection Biotic stress Soybean SVDD TL 1 Classification [18]
Cold stress detection Abiotic stress Maize CNN TL 1 Regression [19]
Heavy metal stress detection Abiotic stress Rice SVM TL 1 Classification [12]
Germination detection Traits Trees LDA TL 1 Classification [20]
Virus detection Biotic stress Tomato, tobacco SVM TL 1 Classification [21]
Weed resistance analysis Traits Amaranth FLDA TL 1 Classification [22]
pH-value determination Traits Rice and water hyacinth PLS and NN TL 1 Regression [23]
Nitrogen concentration Traits Oilseed rape SAE and FNN TL 1 Regression [24]
Leaf water content Traits Maize PLSR TL 1 Regression [14]
Disease detection Biotic stress Sugar beet ANN, DT, SVM TL 2 Classification [25]
Disease resistance and QTL analysis Biotic stress Sugar beet SAM TL 2 and 3 Classification [26]
Disease development Biotic stress Wheat DT TL 2 and 3 Classification [27]
Biomass and biofuel potential Traits Maize SDA TL 3 Classification [28]
Water stress detection Abiotic stress Tomato DT TL 3 Classification [13]
Salt stress detection Abiotic stress Wheat SiVm TL 3 Classification [29]
Biochemical trait analysis Traits Maize, soybean PLSR TL 3 Regression [15]
Detection of plant communication Traits Maize LDA TL 3 Classification [30]
Disease forecast Biotic stress Barley GAN TL 3 Classification [31]
Disease early detection Biotic stress Sugar beet SVM, PLS, DT TL 3 Classification [32]
Disease differentiation Biotic stress Cucumber SDA TL 4 Classification [33]
Disease detection Biotic stress Sugar beet SVM TL 4 Classification [34]

HSI is widely used for detection of biotic and abiotic stresses as well as for trait description. Traits are categorized by a complexity description starting from trait level (TL)
1 (TL1, whole plant) to TL2, organ-specific traits; TL 3, time series; and TL4, multi-sensor traits. ANN: artificial neural network; CNN: convolutional neural network; DT:
decision tree; FLDA: Fisher linear discriminant analysis; FNN: fully connected neural network; GAN: generative adversarial network; NN: neural network; PLS: partial
least squares; PLSR: partial least squares regression; SAE: stacked auto encoder; SDA: stepwise discriminant analysis; SiVm: SiVm: simplex volume maximization;

SVDD: support vector data descriptor; SVM: support vector machines.

Figure 1: Influences on the measured spectrum of a plant. The four main sources of influence are the experimental set-up—the way the camera is mounted, the
distance to the plant and so forth; the light spectrum and focus; the object of interest with its absorbing and transmitting properties when imaging plants; and the

sensor, in particular the dark and white referencing, its noise and sensitivity, distortion, discretization, and binning.
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Figure 2: Overview of common HSI techniques: 3 different HSI set-ups are commonly used. Push broom cameras (yellow) are line scanners that are moved over the
object or alternatively use a mirror; filter-based systems (green) scan single wavelengths according to the filters one after the other; and whisk broom cameras (blue)
scan the full spectrum pixel by pixel. All set-ups result in a 3D hypercube (purple) showing 2 spatial axes and 1 spectral axis.

olution. Currently most state-of-the-art plant phenotyping cen-
ters use push broom line scanners.

Measurement set-up
Choosing the right camera for a sensor set-up has to take into
account the point of interest, side view or top view, depending
on whether a single image from the top is sufficient or mul-
tiple images obtained by rotating the plant are needed. Other
factors to take into account include the spectral region of in-
terest depending on the camera chip (silicon for 380–1, 000 nm,
indium-gallium-arsenide for 1, 000–2, 500 nm), the focal length,
the minimum working distance, the maximum resolution re-
sulting from sensor height and plant height, the focused signal-
to-noise ratio, dynamic range, spectral and spatial resolution,
pixel size, frame rate, lenses, and operating temperature [35]. In
general, the field of view should cover the complete plant from
small seedlings to the bigger plants in a time-series experiment.
This is accompanied by a periodical adaption of the focal plane
because the plant height is changing due to plant development.
Here the desired resolution has to be considered because the
ratio between plant pixels and background pixels is changing
continuously. For reference panels the options are a permanent
reference measurement after each plant if a box design is used,
referencing within the measurable volume at the same height as
the majority of the plant pixels, or a periodical referencing along
the scan axis when using a measurement set-up at a longer line
stage. More information about reference panels can be found in
the section “Data preprocessing—reflectance retrieval.”

Illumination for measuring
Illumination is essential for HSI, but not every light source can be
used. The use of passive light such as sunlight, which is avail-
able outdoors and in greenhouses, is preferred. Some types of
greenhouse glass can alter the sunlight spectrum if a coating
or special glass is used. Active light sources need a closer con-
sideration. Tungsten halogen lamps are a broad-band emitter
(400–2, 600 nm) and are economically affordable and technically
easy to set up. In contrast, gas discharge tubes (fluorescent tubes
or uncoated tubes) are not usable because they emit high narrow
lines in the spectrum. Nevertheless, deuterium gas discharge
can be used for UV-measurement applications and arc sources
such as xenon lamps can be used for snapshot cameras. LED
lamps can be used depending on the implemented technology

and use-case according to the measurement scenario and emit-
ted wavebands [36].

To acquire a proper data cube different calibration routines
are needed to ensure highly accurate reflectance values. Fig. 3
shows a generalized processing pipeline for hyperspectral cubes
for the demands of plant imaging in greenhouses and laborato-
ries as is common for plant phenotyping.

Wavelength calibration—from pixel to wavelength
When a pushbroom sensor is used, 1 dimension of the detector
represents the spatial information of the lines of the target. The
other dimension represents the full spectrum of a single line of
pixels. The wavelength calibration describes the comparison of
measured spectral values with known values [37] and, conse-
quently, the mapping of the dispersed geometric axis to wave-
length in nanometers.

Calibration is needed after manufacturing and after any
physical changes to the optical path [38]. Wavelength calibra-
tion is obtained by exposing the optical system to a calibration
light source or sources. Three aspects are critical for obtaining a
proper wavelength calibration including (i) the selection of the
calibration light, (ii) the determination of the center of charac-
teristic peaks, and (iii) polynomial fitting to the data [39]. The
calibration light source(s) should cover the wavelength range to
be calibrated. Wavelength calibration light sources emit atomic
emission lines of known wavelengths. A polynomial fit of the
geometric position of the atomic emission lines on the chip and
the known wavelength is conducted. This step is usually per-
formed primarily by the manufacturer and enables the spectral
axis to be displayed in units of wavelength (nanometers).

Instrument function/point-spread function—overcoming spectral
distortion
Measurements of any optical device can be described as a con-
volution of the original data with the appropriate transfer func-
tion of the sensor and optical set-up. This convolution is char-
acterized as a (spectral and spatial) blurring or smearing of the
data [40]. The terms “instrument function” and “point-spread
function” are both used to describe this convolution. The term
“point-spread function” typically refers to the spatial convolu-
tion. The term “instrument function” refers to the convolution
in the spectral domain. Both terms define the highest possible
spectral and spatial resolution. Effects resulting from the point-
spread function are described in the following paragraphs. In
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Figure 3: A generalization of a hyperspectral workflow. The workflow to extract information from sensor data and to bring it into a biological context to generate
knowledge starts with data acquisition, hardware calibration, a proper normalization step, data pre-processing, and masking to focus on the object of interest—the

plant—and to eliminate background (e.g., plant pot and stabilization sticks). Depending on the experiment set-up, data and the analysis type have to be divided into
validation (val), training, and test dataset to train a model and then evaluate it on the test data. This is followed by the result interpretation and identification of
diseases, stresses, or other properties of the plants. Vertical dashed lines describe in a general way the transition between the imaging process, the processing of the
data, the generation of information, and interpretation of knowledge.

contrast to spatial distortions the (spectral) instrument function
is typically not corrected.

Spatial calibration—overcoming spatial distortion
Similar to 2D-RGB cameras, which come with barrel and pillow
distortion [41], the images of a hyperspectral line scanner tend
to show similar effects called smile and keystone effects. Smile
is the curvature distortion of the horizontal spectra lines [16],
or a shift in wavelength in the spectral domain [42]. Keystone is
the distortion of the focal plane rectangle into a trapezoid [16],
or a band-to-band misregistration [42]. These effects can be cor-
rected using geometric control points [16]. A spatial calibration
of the hyperspectral cube describes the character of the spatial
mapping process. This process results in a rectified image. Not
all manufacturers provide this calibration by default.

Radiometric calibration—from counts to a physical unit
Owing to differences in quantum efficiency of the detector
and varying efficiency of the grating and other optical compo-
nents (e.g., lenses), measurements using different optical sys-
tems of the same object under the same illumination condi-
tions may not be identical [38]. The data level is influenced
by sensor characteristics, atmospheric conditions, and surface
properties of the plants. On the most basic level cameras re-
turn their measurement values as digital numbers. To correct for
such instrument-related variability within these returned digital
numbers, radiometric calibration of the measurement device or
white referencing is needed. Radiometric calibration transforms
these digital numbers to radiance values. Radiance depicts the
physical measurement of the spectral power flux emitted, re-
ceived, transmitted, or reflected by an object per unit solid angle
and projected area. It uses an integrating sphere to measure the
calibration coefficients for each wavelength band (pixel) [43].

The camera digital output is mapped to a physical quan-
tity (radiance) using a certified spectral transfer standard (in-
tegrating sphere plus calibrated emitter). Thus, radiometric

calibration accounts for the spectral variation of the exter-
nal lens system, internal optics, sensor, and dispersive ele-
ments (grating and filter). Radiance values are typically used
in high-altitude/long-distance measurement scenarios (plane-
or satellite-based measurements). Radiometric calibration does
not account for a potential active illumination light source or at-
mospheric absorption between the object under study and the
camera system, as well as surface properties of the specimen. It
corrects for the camera and optics spectrally varying efficiency.

Radiance data can be converted to reflectance data if the ir-
radiation source is known or measured [44]. In many applica-
tions absolute radiometric calibration and the corresponding ra-
diance data are not required. Often, it is preferred to use re-
flectance data rather than radiance data. In contrast to radiance
data, which involve an absolute calibration, reflectance data do
not require absolute calibration. A relative spectral calibration
to correct for the spectrally varying system efficiency using a
simple white reference and dark offset subtraction is sufficient
for reflectance measurements. Reflectance data are corrected for
camera effects, atmospheric conditions, and lighting effects, so
only the surface properties of the measured object remain.

Spectral and spatial binning—reducing the noise level
To acquire a high retrieval accuracy within the acquired data a
high signal-to-noise ratio (SNR) is required. SNR is the ratio of
the radiance measured to the noise created by the detector and
instrument electronics [4]. This ratio can be increased by com-
bining spectral image information along the spectral axis (spec-
tral binning) or by integrating the neighbour pixels (spatial bin-
ning) [35]. It was shown that binning along the spectral axis us-
ing just a few neighbours reduces the (spectral) image size in
favour of an enhanced SNR [45]. Nevertheless, the lowest SNR is
usually found at the beginning and end of the measurable range
of a sensor. A common step to deal with this area is simply cut-
ting the first and last few spectral bands of the sensor [36].
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In general, wavelengths next to each other are highly corre-
lated [46]. Thus it can be stated that a limited spectral binning
will not affect the informative value of the remaining spectrum.

Binning can be performed directly at the camera internal
hardware (hardware binning) or by processing software when
loading the data cube (software binning). In general, hardware
binning results in less noise than software binning because the
sensor signal is directly merged in the camera prior to analog-
digital conversion. In hardware binning, this step has to be per-
formed before any calibration. In software binning, it is the first
step in the pre-processing right after the hardware calibration
steps.

Data pre-processing

Pre-processing can be initiated after hardware calibration and
measurement validation. A standardized process is needed to
compare measurements from different timepoints and from dif-
ferent measurement set-ups. The pre-procesing steps include
the reflectance retrieval, the spectral smoothing and 3D correc-
tion, masking of the object of interest, data splitting, dimension
reduction, and feature selection for ML.

Reflectance retrieval—overcoming the light source influence
To enable comparable measurements for time series within the
same measurement set-up, between different sensor set-ups, or
under different illumination conditions it is necessary to nor-
malize the data cube according to the maximum and minimum
reflectance intensity. Therefore the dark image is captured by
recording the hypercube with a lid on the camera or a closed
shutter. This dark data cube describes the lowest possible sensor
signal. Right after this the white reference spectrum is acquired
using a spectrally known reference target. Most often highly re-
flective materials such as barium sulfate (available from such
suppliers as SphereOptics or Labsphere)act as a reference. Alter-
natively the use of materials with a known spectral reflectance
across the entire spectral range is established as a standard pro-
cedure. Here black, dark, and light gray objects can be mea-
sured with a point spectrometer to get a known reflectance
value. When sharing datasets the reference spectral charac-
teristics should be provided as metadata to ensure reusabil-
ity and compatability. For performing the normalization step
the object scan, the dark current scan, and the reference panel
scan are needed. The normalization step can be described by
Equation 1:

INorm = cubeO − cubeD
O

cubeW
R − cubeD

R

. (1)

Equation 1 has already been described in the literature [3, 4].
The numerator describes the subtraction of the measured ob-
ject cube cubeO and the associated dark current cubeD

O , while
the denominator describes the subtraction of the white refer-
ence measurement cubeW

R and the associated dark reference
cubeD

R . An important feature of Equation 1 is the reduction of
non-uniformity caused by either the imaging chip, the illumina-
tion, or the measurement situation (e.g., box).

For measurements in a greenhouse with a variable environ-
ment such as a change in light conditions, or when measuring
time series or measurements that cover a large area, it is recom-
mended to use multiple targets or periodic recalibration of the
sensor set-up.

Spectral smoothing—dealing with peaks and spectral outliers
Based on the assumption that the plant spectrum is smooth and
that peaks covering just 1 or 2 bands within the spectrum are
the result of outliers and noise, the use of soft smoothing algo-
rithms is valid. The Savitzky-Golay smoothing algorithm [47] is
the most established one for hyperspectral data. Bohnenkamp
et al. [48] showed the applicability for use of 15 centered points
and a third-degree polynomial for a Specim FX10 camera provid-
ing 220 bands within 400–1, 000 nm. Furthermore multiplicative
signal correction [49] and standard normal variate [50] are well-
established routines for signal correction.

3D Correction—correcting the influence of the sensor-object distance
The measured reflectance on the detector depends on the re-
flected light intensity and the distance between sensor and re-
flection point on the object/plant. For measuring a plant with
upper and lower leaves, the distance to the sensor is different
for each leaf. This results in differences in the measured inten-
sity. Some publications show the normalization of the spatial
distance [22, 51]. A prerequisite for this is the integration of a
3D measuring device in the measuring set-up (e.g., laser scan-
ner, ultrasound). Depending on the distance, the corrected cube
contains equal reflectance values for similar surfaces although
the distance to the camera is different by using pixel-wise dis-
tance normalization.

Segmentation masking
Image segmentation is used to partition an image into meaning-
ful parts that have similar features and properties [52]. For the
demands of plant phenotyping this usually means the separa-
tion from plant and background pixels. This is mostly based on
simple vegetation indices or thresholds using a specific wave-
length [53]. Further segmentation such as the identification of
single leaves or the detection of disease symptoms is focused on
later in the workflow pipeline as ML methods are used to tackle
this problem.

After masking, the transition between foreground and back-
ground is very sharp. Pixels at this transition include parts of
both classes and are depicted as “mixed pixels.” To overcome
the influence of these pixels on the analysis result, these pixels
have to be removed. The literature shows that the use of erosion
as a binary image processing technique is efficient. A filter ele-
ment with a size of 3 × 3 pixels is used to shrink the region of
the foreground [54]. An adverse effect related to the reduction of
foreground data is the possibility of losing important informa-
tion that can be used to enhance the data quality.

Preparation for ML
Up to this point the data cube consists of hundreds of spec-
tral bands. To detect the specific wavelength that includes the
biggest impact for the question of interest, ML is needed. This
is also important for a later transfer to multispectral cameras
with fewer spectral bands but with the opportunity to measure
in high throughput on the field scale.

To prepare the data for use in a common ML routine, using
supervised classification approaches, the dataset is split into 3
subgroups including the same distribution of groups within the
3 sets. That means the ratio between the included groups is sim-
ilar. Set 1 is called the training set and is used to calculate the
model of the ML method such as support vector machines (SVM)
or decision trees (DT). Set 2 is called the validation dataset and
is used for model hyper-parameter tuning. The third set is called
the test set and is used to evaluate the performance of the de-
veloped model and to calculate model accuracy. The size of the
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groups differs with respect to the number of available samples.
A repeated cross-validation using different splits of the dataset
(test and training) is recommended. Dimensionality reduction
methods can decrease spectral redundancy and reduce data vol-
ume within the dataset. Common techniques are principal com-
ponent analysis [55], feature selection using recursive feature
elimination [56], ReliefF [57], or correlation-based feature selec-
tion [58].

Data analysis and interpretation

Hyperspectral traits
Hyperspectral traits can be categorized into different groups, de-
pending of the focus of the data. If the data are coming from a
single plant (TL 1), the data cube can be used to derive very low
resolution information about the plant such as the plant canopy
[59]. If the data cube is segmented into regions including single
leaves, disease symptoms, or spatially confined areas (ROI, TL
2), these regions can be compared. This is commonly done by
classification on a pixel (single spectrum) level [60]. Time-series
measurements are essential for accurate capturing of develop-
ing disease symptoms. This leads to the development of hyper-
spectral dynamics over time (TL 3) [27, 48]. Hyperspectral data
cubes are affected by distance and the inclination of the mea-
sured object, so the hyperspectral information needs to be cor-
rected for these factors. This can be done by modeling the mea-
surement set-up and the errors that occur. It necessitates the
use of an accompanying sensor to measure the object geome-
try such as a 3D laser scanner [61, 62] and fuse the data for a
complete 3D-hyperspectral data model that enables detection
of plant disease within a corrected spectrum [34]. An overview
of these traits, prerequisites, and applications is shown in Fig. 4.

Machine learning
For data analysis and ML, the tasks can be divided into super-
vised methods and unsupervised methods. Supervised methods
require a known target value and therefore labelled data to train
a model. Within the supervised learning methods, methods can
be grouped by their target. If the output is a label as an affiliation
to a group and thus is categorical, the method is called classifica-
tion. Prominent routines for supervised classification are SVM,
DT, and neural network (NN) architectures. A similar approach
using labelled data is regression, where the output does not pre-
dict a group but a numeric value. Known methods for this sce-
nario are support vector regression (SVR), DT, and NN.

A special case of ML is deep learning (DL). DL allows compu-
tational models that are composed of multiple processing lay-
ers to learn representations of data with multiple levels of ab-
straction. It also describes an algorithm allowing raw data as
input and automatically discovers a representation, consisting
of multiple non-linear modules, for detection or classification
[63]. In contrast to SVM or DT approaches, DL is based on NN
architectures and depends on huge labelled datasets for train-
ing. DL approaches have been widely used on RGB images for
the demands of plant phenotyping as a classification of root
tips, shoots, and leaves [64, 65] and can be characterized as state
of the art. During recent years, hyperspectral applications have
been used more widely. Different types of DL approaches have
been used for plant disease [66] or stress detection [67].

Usually the results of a classification are presented by a
confusion matrix, which indicates for a specific trained model
the resulting classification of the test dataset regarding true-
positive, false-positive, false-negative, and true-negative results.
This compares the predicted values to the true values.

Unsupervised approaches do not need labelled data and
try to detect patterns within the data. Clustering approaches
such as k-means shift manual work from model generation
to cluster interpretation because it becomes the task of the
scientist to give a semantic interpretation to the clustered
datasets. The clustering of hyperspectral datasets has been
successfully shown for the detection of drought exposure in
maize [68].

Challenges and limitations

HSI faces many challenges regarding sensor set-up, illumina-
tion, data processing, and plant-specific characteristics. This
starts with the measuring set-up, where the sensor, illumina-
tion, and the object distance have to be adapted to the plant size
to optimize reflectance results. Including both extrema within
1 measuring set-up can cause problems in illumination, image
resolution, and chip intensity.

When HSI is extended to the UV range between 200 and 400
nm, plants can be damaged by the harmful properties of illumi-
nation in this spectral region [5]. Further evaluation of the effects
of light exposure on the study subjects is recommended because
plant properties such as architecture, tissue composition, and
wax layer differ between species.

Surface geometry has a remarkable effect on the mea-
sured spectrum. Behmann et al. [7] found a correlation be-
tween normalized difference vegetation index and surface in-
clination. Thus this effect has to at least be taken into ac-
count or ideally be corrected. This emphasizes the need for
imaging set-ups to include different sensors for geometry and
reflectance.

The workflow proposed is not transferable to field condi-
tions, which necessitate a different experimental set-up to en-
sure high-quality hyperspectral measurements [69].

High-throughput imaging set-ups [14] combine hyperspec-
tral cameras with high-frequency imaging, which leads to com-
plex datasets independent of the scale [70]. This emphasizes the
need for reliable, stable, and efficient algorithms and high-end
computational machines to process the data cubes. Image anal-
ysis and interpretation is the key plant phenotyping bottleneck
[71].

Conclusion

HSI is a well-established tool for plant phenotyping in green-
houses. However, each laboratory uses a specialized workflow
for data assessment, processing, and handling, which makes the
data individually valid but difficult to compare.

This study introduces a generalized workflow for handling
HSI data for greenhouses and laboratories. It includes calibra-
tion, reflectance retrieval, data smoothing, masking, and prepa-
ration for use in an ML routine.

This workflow includes hardware-based calibration steps, as
well as software-based processing. Furthermore, a general def-
inition for hyperspectral traits is introduced to establish a level
system starting from traits for the whole plant, to traits for single
organs, traits describing temporal development, and traits that
are based on the measurements of different sensors. A literature
overview of the use of HSI and ML demonstrates the different
application areas for plant measurement in agriculture together
with the ML method and plant material used. This review offers
a standardized protocol for raw data processing and how plant
traits can be categorized owing to their complexity regarding ef-
fort in data processing and derivable traits.



8 Technical workflows for hyperspectral plant image assessment and processing

Figure 4: A general trait visualization. Plant traits are parameters that describe the hyperspectral properties of the plant tissue. Nevertheless, these traits can be
grouped according to the effort that is needed for their extraction. First-level traits (TL 1) describe the spectrum of the whole canopy. By using a classification based

on a ML algorithm it is possible to identify spectra of single organs (TL 2). By taking measurements over time the development of these spectra can be visualized (TL
3), and by using further sensors it is possible to reduce geometrical effects based on a particular sensor by means of fusion of sensor data (TL 4).
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