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Abstract
Background: For holometabolous insects there has been an explosion of proteomic and peptidomic
information thanks to large genome sequencing projects. Heterometabolous insects, although comprising
many important species, have been far less studied. The migratory locust Locusta migratoria, a
heterometabolous insect, is one of the most infamous agricultural pests. They undergo a well-known and
profound phase transition from the relatively harmless solitary form to a ferocious gregarious form. The
underlying regulatory mechanisms of this phase transition are not fully understood, but it is undoubtedly
that neuropeptides are involved. However, neuropeptide research in locusts is hampered by the absence
of genomic information.

Results: Recently, EST (Expressed Sequence Tag) databases from Locusta migratoria were constructed.
Using bioinformatical tools, we searched these EST databases specifically for neuropeptide precursors.
Based on known locust neuropeptide sequences, we confirmed the sequence of several previously
identified neuropeptide precursors (i.e. pacifastin-related peptides), which consolidated our method. In
addition, we found two novel neuroparsin precursors and annotated the hitherto unknown tachykinin
precursor. Besides one of the known tachykinin peptides, this EST contained an additional tachykinin-like
sequence. Using neuropeptide precursors from Drosophila melanogaster as a query, we succeeded in
annotating the Locusta neuropeptide F, allatostatin-C and ecdysis-triggering hormone precursor, which
until now had not been identified in locusts or in any other heterometabolous insect. For the tachykinin
precursor, the ecdysis-triggering hormone precursor and the allatostatin-C precursor, translation of the
predicted neuropeptides in neural tissues was confirmed with mass spectrometric techniques.

Conclusion: In this study we describe the annotation of 6 novel neuropeptide precursors and the
neuropeptides they encode from the migratory locust, Locusta migratoria. By combining the manual
annotation of neuropeptides with experimental evidence provided by mass spectrometry, we demonstrate
that the genes are not only transcribed but also translated into precursor proteins. In addition, we show
which neuropeptides are cleaved from these precursor proteins and how they are post-translationally
modified.
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Background
The desert locust (Schistocerca gregaria) and the African
migratory locust (Locusta migratoria) are insects with a
well-recognised human impact and ecological and eco-
nomical importance. They show the interesting phenom-
enon of phase polymorphism. In the harmless solitarious
phase their population density is limited to a few individ-
uals per hectare. Under certain circumstances, as a result
of external stimuli and internal (endocrinological)
changes, solitarious locusts can switch to gregarious
behaviour and begin to aggregate, marching in 'hopper
bands' and swarming as adults. This gregarious form
destroys all vegetation with a devastating effect on the
environment and economy, and has a severe impact on
the residents of the afflicted regions (from acute allergic
responses to famine). The neuro-hormonal mechanisms
that drive and accompany this transition are still far from
completely understood, however, it has been proven that
several classical neurotransmitters/modulators [1], phe-
romones [2] and also neuropeptides [3,4], play an impor-
tant role. The latter is not surprising, as (neuro)peptides
are the largest class of signalling molecules found in ani-
mals. They can act as a transmitter, modulator and/or hor-
mone and are known to be involved in most, if not all,
physiological processes in Metazoa. Neuropeptides origi-
nate from larger precursor proteins. These are processed in
the endoplasmatic reticulum to produce the actual bioac-
tive peptides, ranging in size from a few amino acids to
around 100. Processing of neuropeptides in insects gener-
ally occurs at the dibasic sites KR, RR or KK or at a single
R residue proceeded by a basic amino acid residue at posi-
tion -4, -6 or -8 [5]. In many cases, one neuropeptide pre-
cursor contains multiple neuropeptide isoforms and/or
related peptides often containing a consensus motif.
Some precursors produce structurally related peptides
possessing equivalent potencies, whereas others have
been shown to yield peptides with different (occasionally
opposite) activities [6]. Therefore, it is important to iden-
tify all peptides originating from a single precursor since
each of these peptides might have a different physiologi-
cal relevance.

A large number of neuropeptides has already been identi-
fied and characterised in locusts, however, only for a few
peptides the precursor protein is known. In the first
instance (eighties and early nineties) peptide identifica-
tion was done by means of laborious extraction proce-
dures in combination with numerous bioassays and
purification steps (for review see [7]). At a given point the
steady stream of newly bioactive neuropeptides stagnated
due to the restrictions of the available bioassays. With the
introduction of "peptidomics" at the start of the new mil-
lennium, neuropeptide research was boosted once again.
With the combination of new mass spectrometric meth-
ods, genomic databases and bioinformatic tools, it

became possible to identify new peptides without the
necessity to sacrifice vast amounts of animals. This led to
an explosion in the number of identified neuropeptides in
for example D. melanogaster [8] and Caenorhabditis elegans
[9]. Also in the locust, this new peptidomics technique led
to the identification of several new neuropeptides [10,11]
and in addition dozens of partial sequences (unpublished
results). The mass spectral analysis mostly generates a
small sequence tag (a few amino acids), which is then
compared with a genomic database to yield the full
sequence. Unfortunately, for locusts very little genome
sequence information is available and as the size of their
genome is unusually large (it is expected to be up to 30
times larger than the genome of D. melanogaster [12]), no
sequencing efforts are likely to be undertaken. This is a
major pitfall for neuropeptide identification in locusts
and the search for their presumed role in locust phase
transition. In general, compared to the genome sequenc-
ing projects in the group of Holometabola, genome infor-
mation in heterometabolous insects is scarce, hindering
peptidome identifications.

Recently, an EST database from L. migratoria, comprising
76 012 raw EST data which were assembled into 12 161
clustered unigenes, was constructed and deposited in
GenBank [13,14]. Only 30% of the genes discovered were
annotated based on sequence similarity with other spe-
cies, among which only one group of (neuro)peptide
genes (pacifastin-like sequences). Neuropeptides, because
of their small size and very limited similarity (mostly the
conserved active core comprises only a few amino acids),
are often neglected in annotation studies. In this study, we
thoroughly searched the locust EST database specifically
for the presence of neuropeptide precursors using various
bioinformatic tools bearing in mind the typical features of
a neuropeptide precursor.

Results and discussion
In the present study, we examined the EST database of L.
migratoria generated by Kang et al. [13] for sequences that
encode putative neuropeptides and their respective pre-
cursors. Besides a whole body database (from gregarious
fifth instar locusts), ESTs were generated from the head,
hind legs and midgut from solitarious and gregarious
locusts separately.

In first instance, we performed BLAST searches using all
known neuropeptide precursors from L. migratoria and a
related species, S. gregaria, as queries. In a second search,
neuropeptides from L. migratoria, for which the precursor
proteins are not known, were used as an input query in
the BLAST searches. In this analysis, neuropeptide
sequences that are expected to originate from a single pre-
cursor were combined (all possible combinations) and
each neuropeptide sequence was flanked by typical
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processing sites [(G)KR, (G)(R)R or (G)KK]. As a third
group of queries, neuropeptide precursors from D. mela-
nogaster were used for screening the locust EST database.

The resulting EST sequences were further analysed to iden-
tify start and stop codons and typical neuropeptide pre-
cursor features (length, possible signal peptide (SignalP),
cleavage sites, post-translational modifications). This way,
we found several new Locusta neuropeptide precursors,
which are discussed below. This strategy also provided
interesting and valuable information concerning the link
between heterometabolous and holometabolous insects
at the peptide level.

Pacifastins
The pacifastins are a family of low molecular weight serine
protease inhibitors from arthropods. They display
sequence similarities with nine cysteine rich domains in
the light chain of pacifastin, a heterodimeric serine pro-
tease inhibitor isolated from the hemolymph of the cray-
fish Pacifastacus leniusculus, hence their name pacifastins
[15]. They are characterised by a conserved pattern of six
cysteine residues Cys-Xaa9–12-Cys-Asn-Xaa-Cys-Xaa-Cys-
Xaa2–3-Gly-Xaa3–6-Cys-Thr-Xaa3-Cys. They were first dis-
covered in locusts, but in silico data mining of expressed
sequence tags databases revealed the existence of addi-
tional pacifastin-like polypeptides in Lepidoptera, Dip-
tera, Coleoptera, and Siphonaptera [16].

Thus far, 10 pacifastin-related precursors encoding
together 22 different peptides have been characterised in
L. migratoria and S. gregaria [16-18]]. In L. migratoria 3
pacifastin-related precursors were cloned and sequenced
(LMPP 1–3) [19,20]. Blasting the LMPP sequences against
the EST databases resulted in more than 140 hits (E-values
ranging from e-112 to e-4), signifying the presence of paci-
fastin mRNAs in whole-body, midgut, hind leg and head.
The presence of pacifastin mRNA in the head provides
additional evidence that the brain is one of the sites of
pacifastin biosynthesis. Although pacifastin peptides had
been shown in several brain areas before, so far there was
always controversy whether or not this was due to con-
tamination by the hemolymph, where the pacifastins are
known to be present in high concentrations [21,22]. Most
of the hits represent different length ESTs corresponding
to one of the three previously cloned LMPP precursor
genes (LMPP 1–3) [19,20], which again shows the high
abundance of these pacifastins in locusts. These findings
are a good indication that the predefined parameters are
chosen well and allow an adequate analysis.

LMPP-1 contains two protease inhibitor peptides (LMPI-
1, also called PMP-D2 and LMPI-2, also called PMP-C),
that were both isolated and sequenced before [21]. LMPP-
2 displays three potential peptide sequences, one of which

was isolated before (LMPI-3, previously named HI or
hemolymph inhibitor) [23]. The LMPP-3 gene encodes
for four putative additional protease inhibitor peptides,
none of which was isolated before.

Only the ESTs corresponding to the LMPP-3 gene differ
from the previously cloned LMPP-3 gene in one amino
acid within the LMPI-7 peptide, as a result of one different
nucleotide (AGA coding for R in ESTs instead of ACA cod-
ing for T in cDNA cloning). As none of the sequenced
LMPP-3 ESTs shows a threonine residue at that position,
we can assume that SEEQCTPGTTFKKDCNTCSCGND-
GRAAVCTLKACRELTTDQAGSRA is the correct sequence
for LMPI-7 (Fig. 1). It cannot be excluded that the long list
of hits also includes ESTs corresponding to hitherto
unknown Locusta pacifastin precursors.

Based on the number of pacifastin ESTs that were found
in both phases, the pacifastin genes are predicted to be dif-
ferentially expressed in the solitary and gregarious phase
with a higher prevalence in solitarious locusts [13]. This
was previously also shown in a peptide differential dis-
play study by Clynen et al. [4].

Neuroparsins
The neuroparsins are a family of structurally related pep-
tides from arthropods (crustaceans, insects, chelicerates)
that is characterised by a pattern of positional conserved
cysteine residues and shows striking similarities to the ver-
tebrate insulin-like growth factor binding proteins
(IGFBP). The neuroparsins were first discovered in L.
migratoria, where they are produced by neurosecretory
cells in the pars intercerebralis region of the brain and
then transported to the corpora cardiaca, where they are
stored prior to release into the hemolymph [24]. They are
multifunctional neurohormones displaying antijuvenile
[25], antidiuretic [26], hyperglycemic, hyperlipemic [27]
and neuritogenic effects [28]. In L. migratoria one neu-
roparsin precursor has been cloned and sequenced [29].
From this precursor several N-terminally truncated
polypeptide isoforms (neuroparsin-A 1–4 and neu-
roparsin-B) originate.

In the desert locust S. gregaria 4 different neuroparsin pre-
cursor cDNAs (Scg-NPP 1–4) were cloned and sequenced
[30,31]. While NPP-1 and 2 are restricted to the brain,
NPP-3 and 4 also occur in peripheral tissue (fat body,
reproductive system). All 4 neuroparsin precursors are
identical in the N-terminal region (first 61 amino acid res-
idues) and contain at least 10 cysteine residues. Recently,
evidence was provided for a phase-dependent transcrip-
tional regulation of neuroparsin-encoding genes [32,33].
It was shown that neuroparsin transcripts are generally
more abundant in solitarious locusts. In addition, in con-
trast to the gregarious phase, solitarious animals also con-
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tain detectable transcript levels of NPP 1–2 in the fat
body.

A BLAST search with the L. migratoria neuroparsin precur-
sor resulted in 5 hits with E-value < 5e-26. Three hits
(CO849956, CO849957 and CO849958) were derived
from the solitarious phase head cDNA library, one from
the gregarious head (CO832876) and one from the gre-
garious whole-body (CO821291) cDNA library.

None of these hits, however, gave an exact match, mean-
ing that they represent novel Locusta neuroparsin-like
sequences (Fig. 2). This is not surprising, as also in the
desert locust 4 different neuroparsin precursor cDNAs
(Scg-NPP 1–4) are present.

Four of the EST tags (CO849956, CO849957, CO832876
and CO821291) most likely represent the same gene, as
their protein-coding sequence is identical except for one
amino acid in the signal peptide (A versus G in
CO849956 as a result of one different nucleotide), which
is probably due to a sequencing error. This novel neu-
roparsin-like sequence in L. migratoria shows 83% identity
with NPP-4 of S. gregaria, both containing 10 cysteine res-
idues.

The protein-coding sequence of CO849958 differs sub-
stantially from the other ESTs. Although both the start and
stop codon is missing, this EST clearly represents a mem-
ber of the neuroparsin family. The lack of a start codon is

probably due to a sequencing error at the beginning of the
EST, while at the 3' end the protein-coding sequence is
incomplete. The partial sequence displays 76% identity
with NPP-2 from S. gregaria. An attempt to complete the
3' end by the contig assembly procedure failed. Blasting
the Schistocerca neuroparsin precursors against the Locusta
EST database yielded no additional significant hits.

Tachykinins
The tachykinins belong to an evolutionary conserved fam-
ily of peptide neurotransmitters that play major roles in
signalling in the nervous system and intestine of both ver-
tebrates and invertebrates. The invertebrate tachykinin
family is characterised by a common C-terminal sequence
-FXGXRamide (X being a variable amino acid residue)
analogous to the vertebrate consensus -FXGLMamide. The
first members of the invertebrate tachykinin family were
isolated as myotropic peptides from the central nervous
system of L. migratoria [34,35]. All four Locusta tachyki-
nins contain the C-terminal -FXGVRamide (X being Y or
H) sequence. Their precursor protein was as yet unknown.

When blasting the four tachykinin sequences separately,
only tachykinin-4 gave one hit with a gregarious phase
midgut cDNA sequence (CO848687), though with a rela-
tively high E-value (0.13). Blasting the four tachykinin
peptides in line (separated by GKR) against the EST data-
base gave the same hit with a lower E-value 1e-7. This
clearly demonstrates the benefit of combining several
peptides that are expected to originate from the same pre-

Locusta migratoria Pacifastin Precursor 3Figure 1
Locusta migratoria Pacifastin Precursor 3. Amino acid sequence alignment of LMPP-3 and the ORF of CO827143 and 
CO827145 (most identical sequences). The signal peptide is indicated in italic, dibasic cleavage sites are shown in bold and pac-
ifastin-like peptides are marked. Identical residues are marked with an asterisk.

LMPP-3 MNVAVSVLALLLVAVGCSAEFEKECTPGETKKLDCNTCFCTKAGIWGCTLMACRTINIEL

CO827143/5 MNVAVSVLALLLVAVGCSAEFEKECTPGETKKLDCNTCFCTKAGIWGCTLMACRTINIEL

                ************************************************************ 

LMPI-6

LMPP-3          TPGQNATRVRRSEEQCTPGTTFKKDCNTCSCGNDGTAAVCTLKACRELTTDQAGSRARRS

CO827143/5      TPGQNATRVRRSEEQCTPGTTFKKDCNTCSCGNDGRAAVCTLKACRELTTDQAGSRARRS

                *********************************** ************************ 

LMPP-3          ASHCTPNTTFQKDCNTCTCNKDGTAAVCTLKACLKRSTREVSCTPGATYKEDCNICRCRS

CO827143/5      ASHCTPNTTFQKDCNTCTCNKDGTAAVCTLKACLKRSTREVSCTPGATYKEDCNICRCRS

                ************************************************************ 

LMPP-3          DGKSGACTKKSCPVVED

CO827143/5      DGKSGACTKKSCPVVED

*****************

LMPI-9

LMPI-7

LMPI-8
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cursor. The same hit was found when blasting the D. mel-
anogaster tachykinin precursor (1e-4). The translated
protein has all typical features of a neuropeptide precur-
sor: SignalP predicts the presence of a signal peptide and
several possible dibasic cleavage sites are present (Fig. 3).
The EST is incomplete at the 3' side, as no stop codon is
present. Of the four previously characterised Locusta tach-
ykinin peptides, only TK-4 gives a perfect match and is
present twice in this Locusta tachykinin precursor. The

sequences of TK 1–3 were not found within this precursor,
meaning that either there is more than one tachykinin
precursor present in L. migratoria, or TK 1–3 are encoded
by the missing part of the precursor at the 3' end. The lat-
ter assumption is strengthened by the fact that in all inver-
tebrate species investigated so far, a single tachykinin
precursor gene encodes multiple tachykinin forms [36].
The D. melanogaster genome contains a single tachykinin
precursor, coding for six putative tachykinin sequences,

Locusta migratoria Neuroparsin PrecursorsFigure 2
Locusta migratoria Neuroparsin Precursors. Multiple sequence alignment (ClustalW 1.82) of CO849956, CO849957, 
CO832876, CO849958, CO821291 and the known Locusta neuroparsin precursor (Lom-NPP). Translation initiation sites are 
indicated in black and cysteine residues are shaded.

CO849956        ------------------------------------------------------------

CO849957        ------------------------------------------------------------

CO832876        ------------------------------------------------------------

CO849958        ------------------------------------------------------------

CO821291        WIPGLQAGQAIRLFISVPPISVAASASNYEERCLLPLRHGRARVPRLTGSAPGVDSGQQP 

Lom-NPP         ------------------------------------------------------------

CO849956        ------------------------FQPSTPHPTPADAGAMKATGALVAATLLLAVTLFHR

CO849957        -----------------------------------FAAAMKATAALVAATLLLAVTLFHR

CO832876        ------------------------------------------------------------

CO849958        --------------------------------------RHEGHSSPVAATLLLGVTLFHR 

CO821291        RNAAAAADRVYIGSATPRTAAELRRQPSTPHPTPADAAAMKATAALVAATLLLAVTLFHR

Lom-NPP         ---------------------------------------MKATAALVAATLLLAVTLFHR

CO849956        AEANPISRSCEGANCVVDLTRCEYGDVTDFFGRKVCAKGPGERCDD----VEKCGAGMRC

CO849957        AEANPISRSCEGANCVVDLTRCEYGDVTDFFGRKVCAKGPGERCDD----VEKCGAGMRC

CO832876        ARG---SRSCEGANCVVDLTRCEYGDVTDFFGRKVCAKGPGERCDD----VEKCGAGMRC

CO849958        AEANPISRSCEGANCVVDLTRCEYGDVTDFFGRKVCAKGPSEECSD----FVKCGPGLRC

CO821291        AEANPISRSCEGANCVVDLTRCEYGDVTDFFGRKVCAKGPGERCDD----VEKCGAGMRC

Lom-NPP         AERNPISRSCEGANCVVDLTRCEYGDVTDFFGRKVCAKGPGDKCGGPYELHGKCGVGMDC

CO849956        AQKLCNGCSLVTLQCFTLVSLPISEDEStopSCRLIPGRLRICSSAACGGLHTStopLSG

CO849957        AQKLCNGCSLVTLQCFTLVSLPISEDEStopSCRLIPGRLRICSSAACGGLHTStopLSG

CO832876        AQKLCNGCSLVTLQCFTLVSLPISEDEStopSCRLIPGRLRICSSAAASTLNSVGIHWFV

CO849958        QCGRCTGCSLVKLTCYTDISTP--------------------------------------

CO821291        ------------------------------------------------------------

Lom-NPP         RCGLCSGCSLHNLQCFFFEGGLPSSC----------------------------------

CO849956  HSLVCRKNLHRLNVVIINLWSVSRAVIStopTQVNKFIS-----------------

CO849957  HSLVCWKNLHRLNVVIINLWSVSRAVIStopTQVNKFISSCSVSVSFFSQStopIICLHS

CO832876  GKTCIALMLLSStopTCGVCHVQStopYRHKStopINLSLLVLFLFLSFHN-KLSVCI--

CO849958        -------------------------------------------- 

CO821291        -------------------------------------------- 

Lom-NPP         --------------------------------------------
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five of which were identified in a peptide extract of Dro-
sophila central nervous systems [37]. Also in cockroaches,
up to 15 tachykinins are encoded by the same precursor
gene [38]. A second argument is that the novel (partial)
Locusta tachykinin precursor is only 141 amino acid resi-
dues in length, while all known insect tachykinin precur-
sors vary between 289 and 366 amino acid residues.

Besides Lom-TK-4, the Locusta tachykinin precursor con-
tains another putative tachykinin-like peptide (APM-
RGFQSVRamide), separated by dibasic cleavage sites. The
C-terminus of this peptide resembles the -FXGXRamide

consensus sequence for invertebrate tachykinins, except
for the G, which is replaced by S. The mass of this putative
peptide was calculated (1146.6 Da) and we searched
MALDI-TOF mass spectra from the entire Locusta neuroen-
docrine system for the presence of this peptide. The exact
mass was found in peptide extracts from the brain (proto-
, deutero- and tritocerebrum), circumoesophageal con-
nectives, suboesophageal ganglion, frontal ganglion,
hypocerebral ganglion, pro-, meso and metathoracic gan-
glion and all five abdominal ganglia (Fig. 3). The novel
tachykinin mass was neither found in the corpora allata
nor in the neurohemal organs of the head (corpora cardi-

Locusta migratoria Tachykinin Precursor (top) and MS spectrum displaying the monoisotopic masses of 5 different Tachykinins (bottom)Figure 3
Locusta migratoria Tachykinin Precursor (top) and MS spectrum displaying the monoisotopic masses of 5 dif-
ferent Tachykinins (bottom). Amino acid sequence corresponding to the ORF of CO848687. The signal peptide as pre-
dicted by SignalP is shown in italic, possible amidation and dibasic cleavage sites are indicated in bold, possible tachykinin-like 
peptides are marked. MALDI-TOF mass spectrum of the first abdominal ganglion of Locusta migratoria. Masses corresponding 
to tachykinin peptides are marked (r.i. is relative intensity, m/z is mass to charge ratio).

MCRVGALLLLAALMSADPAAAQRQEAGEPRAAAPFLGMRTAAAAADADGGAADGLLEKRAPSLGFHGVRGKK

DDLQELEDKRAPSLGFHGVRGKKDDANGLDDDDFDKRAPMRGFQSVRGKKDEAEVEDAELGDGDYLQLA

r.i.

1104.6

1039.6
TK-4

APSLGFHGVRa0.16

0.12

1065.6
TK-2

APLSGFYGVRa
1117.5

938.5
TK-1

GPSGFYGVRa

1064.6
TK-3

APQAGFYGVRa974.6
997.50.08

1147.6 1186.6
TK-5

APMRGFQSVRa

0.04
911.5

950 1000 1050 1100 1150 m/z
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aca) and the abdomen (perisympathetic organs). The
exact masses of the other four known tachykinins (TK 1–
4) were found in the same peptide extracts. The fact that
the distribution of the novel tachykinin is identical to that
of the other four Locusta tachykinins presents an addi-
tional argument that all these Locusta tachykinins most
likely originate from the same precursor. The presence of
the precursor in the midgut (midgut EST library) is con-
sistent with earlier immunocytochemical studies and the
purification of a tachykinin from the midgut of S. gregaria
[39,40].

To confirm that the 1146.6 Da peptide found in the
MALDI-spectra genuinely corresponds to the tachykinin-
like peptide, we analysed a peptide extract of 10 ventral
nerve cords by ESI-Q-TOF MSMS and fragmented the ion
corresponding to the 1146.6 Da peptide. Hereby we con-
firmed its sequence. This proves that this peptide is pro-
duced from the tachykinin precursor through a common
endoproteolytic pathway as seen for most neuropeptides.
Hence, this peptide was designated as tachykinin-5 (TK-
5). The presence of a peptide with an aberrant C-terminus
it not unusual, as also in Leucophaea maderae, Periplaneta
americana, Apis mellifera and D. melanogaster tachykinins
with a substitution in the C-terminal consensus sequence
occur. In both cockroach species it was proven that these
peptides (-FXAXRamides) are also translated in vivo by
demonstrating their presence in tissue extracts by mass
spectrometry [38].

Ecdysis-triggering hormone
The ecdysis-triggering hormone (ETH) is one of the three
principal neuroendocrine components known to regulate
ecdysis behaviour, together with eclosion hormone (EH)
and crustacean cardioactive peptide (CCAP). To date,
ETHs have only been identified in the lepidopterans Man-
duca sexta and Bombyx mori and in the dipterans D. mela-
nogaster and Anopheles gambiae [41-45]]. The ETH-genes
encode two peptides with ETH-like structure and biologi-
cal activity: ETH and pre-ETH in Lepidoptera and ETH-1
and 2 in Diptera.

Blasting the D. melanogaster ETH precursor against the L.
migratoria EST database gave one significant hit (E-value
6e-6) in the gregarious phase whole body cDNA library
(CO822155). There are several indications that this EST
actually corresponds to the L. migratoria ETH precursor:
the translated protein has all features of a typical neu-
ropeptide precursor, displaying a signal sequence and sev-
eral dibasic cleavage sites. In addition, the precursor
contains two peptides having a C-terminal -PRIamide,
which is a typical consensus sequence for the ETH pep-
tides (-PRVamide in Mas-PETH and Bom-PETH, -PRMa-
mide in Mas-ETH and Bom-ETH, -PRIamide in Drm-ETH-
2 and Aga-ETH-1 and 2 and -PRLamide in Drm-ETH-1).
The Locusta EST sequence does not contain a stop codon.
However, blasting the nucleotide sequence of CO822155
against the EST database gave two hits with an overlap in
the C-terminal region (CO833211 and CO822156). This
way we were able to complete the EST precursor sequence
(Fig. 4).

Locusta migratoria Ecdysis Triggering Hormone PrecursorFigure 4
Locusta migratoria Ecdysis Triggering Hormone Precursor. Amino acid sequence alignment of CG18105 (the Dro-
sophila ETH-precursor) and the novel Locusta ETH-precursor (assembly of ORF from CO822155 and CO833211). The signal 
peptide is indicated in italic, amidation sites and dibasic cleavage sites are marked in bold and (putative) ETH-peptides are 
marked.

CG18105 MRIITVLSVSLLVGLVAISQADDSSPGFFLKITKNVPRLGKRGENFAIKNLKTIPRIGRS

Lom-ETH MLLCKETLASLAVVLVVAAAAAAPEEGGGLLLKPHVARRS----DFFLKTAKSVPRIGRR

                * : .   .** * **. : *  .. *  * :. :*.* .    :* :*. *::***** 

CG18105         EHSSVTPLLAWLWDLETSPSKRRLPAGESPAKEQELNVVQPVNSNTLLELLDNNAIPS-E

Lom-ETH         SD-------LFLKSAKSVPRIGRRTNLAPIEAQDGGEWLWPGGADALPMPARRQAYYVRK

                ..        :* . :: *   * .   .   ::  : : * .:::*     .:*    :

CG18105         QVKFVHWKDFDRALQADADLYSKVIQLGRRPDQHLKQTLSFGSFVPIFGDEQNPDFMMYK

Lom-ETH         DGQPVMWSDVARDVEENPDLWP---------------------------------WSDFD 

                : : * *.*. * :: :.**:.                                 :  :.

CG18105         NNEDQELYGGGNRYDRQFLKYNIL

Lom-ETH         SGSVREVDGSR-------------

                ... :*: *.
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The two putative Locusta ETH-peptides were designated as
Lom-ETH-1 (SDFFLKTAKSVPRIamide) and Lom-ETH-2
(SDLFLKSAKSVPRIamide). They show most sequence
similarity with the Anopheles ETHs (Fig. 5), sharing the C-
terminal KSVPRIamide sequence. This EST provides the
first biochemical evidence for the presence of ETHs in a
heterometabolous insect.

The ETHs are produced by the epitracheal organs, which
are distributed along the tracheae and mainly consist of
Inka cells. In D. melanogaster, the Inka cells are referred to
as peritracheal cells. The peritracheal cell system is widely
conserved in insects. Several holometabolous and heter-
ometabolous insect orders show PETH-immunoreactivity
among peritracheal cells [42]. The morphology and distri-
bution along the tracheae varies considerably. In Orthop-
tera, tracheae have numerous immunopositive cells
scattered on both the major and minor branches. We dis-
sected tracheae from fifth instar L. migratoria just before
adult ecdysis and analysed a peptide extract of these tra-
cheae by nanoLC-Q-TOF MS(MS). Both the predicted
masses of Lom-ETH-1 and Lom-ETH-2 (respectively
1606.9 Da and 1558.9 Da) were present and their
sequences were confirmed by MSMS fragmentation anal-
ysis (Fig. 6), proving that these mature ETH-peptides are
processed from the ETH-precursor.

Neuropeptide F
Neuropeptide Y, the most abundant neuropeptide in the
mammalian nervous system, is a highly conserved 36
amino acid neuromodulator [46]. The invertebrate NPY-
related peptides are divided into two groups based on
their size: the shortNPFs ranging in size from 8 to 11
amino acid residues and the (long)NPFs ranging in size

from 36 to 40 amino acid residues. The longNPFs are con-
sidered as the invertebrate homologues of vertebrate NPY.
Whereas the vertebrate NPYs C-terminally end with an
amidated tyrosine (Y) residue, all NPFs end with an ami-
dated phenylalanine (F) residue. The NPFs have been
found in platyhelminths [47,48], molluscs [49,50] and
insects [51]. In D. melanogaster, both the short NPF (sNPF;
CG13968) and the (long) Drosophila NPF (dNPF;
CG10342) gene have been characterised. dNPF regulates
larval feeding behaviour [52]. The dNPF gene is highly
expressed in larvae attracted to food and is turned off in
older larvae that exhibit food aversion, hypermobility
(wandering stage) and co-operative burrowing. Overex-
pression of the dNPF gene in older larvae prolonged feed-
ing whereas down regulation in young larvae induced
food aversion. Also sNPF was found to control food intake
and regulate body size [53]. These findings suggest a func-
tional similarity with vertebrates as NPY also exerts a cen-
tral role in the regulation of feeding behaviour [54].

In locusts, recently two shortNPF peptides were character-
ised (unpublished results). Until now, nothing was
known about longNPF in locusts, or in any other heter-
ometabolous insect. Blasting the dNPF precursor against
the L. migratoria EST database gave one significant hit (E-
value 7e-6) with the solitarious phase head cDNA library
(CO854418). There are several indications that this EST in
fact corresponds to the L. migratoria longNPF precursor:
the translated protein has all features of a typical neu-
ropeptide precursor, displaying a signal sequence imme-
diately followed by the NPF sequence (33 amino acid
residues) with the typical -RXRFamide C-terminal motif,
an amidation signal and a dibasic cleavage site (Fig. 7).
The presence of this long neuropeptide F in the locust

Amino acid sequence alignment of all known ETH-like peptidesFigure 5
Amino acid sequence alignment of all known ETH-like peptides.

Lom-ETH-1       ------------SDFFLKTAKSVPRIamide

Lom-ETH-2       ------------SDLFLKSAKSVPRIamide

Aga-ETH-2       ---------GDLENFFLKQSKSVPRIamide

Aga-ETH-1       ---------SESPGFFIKLSKSVPRIamide

Drm-ETH-1       --------DDSSPGFFLKITKNVPRLamide

Bom-ETH         SNEA---FDEDVMGYVIKSNKNIPRMamide

Mas-ETH         SNEAISPFDQGMMGYVIKTNKNIPRMamide

Drm-ETH-2       --------GEN---FAIKNLKTIPRIamide

Bom/Mas-PETH    --------------SFIK-PNNVPRVamide
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MSMS spectra of the two locust ETH-peptidesFigure 6
MSMS spectra of the two locust ETH-peptides. MSMS fragmentation spectrum of the triple charged ion at m/z 536.67, 
corresponding to ETH-1 (SDFFLKTAKSVPRIamide) and the double charged ion at m/z 780.45, corresponding to ETH-2 
(SDLFLKSAKSVPRIamide). A-type, b-type, y-type and z-type fragment ions are shown. The theoretical fragment ion masses 
found in the spectrum are indicated in bold and the mass difference between the expected and observed fragment ion masses 
is shown below.
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nervous system could not be demonstrated by mass spec-
trometry as yet.

Allatostatin-C
The allatostatins were originally isolated from brain tissue
as inhibitors of juvenile hormone biosynthesis by the cor-
pora allata, hence their name allatostatins [55]. After the
discovery of additional allatostatins in a variety of insect
orders they were classified in three different peptide
groups based on their sequence similarity. There is the
large group of the allatostatin A-type that have the com-
mon Y/FXFGL/Iamide C-terminal sequence, the allatosta-
tin B-type which share a -WX6Wamide C-terminal
sequence and the allatostatin C-Type with a common -
PISCF C-terminal sequence. Besides the allatostatic activ-
ity of these three groups, which is confined to a specific
insect order (Dictyoptera), they all appear to be pleio-
tropic in function [56,57]. Thus far, only in D. mela-
nogaster the three genes that encode the three different
types of allatostatins have been identified [58-60]]. Blast-
ing with the D. melanogaster allatostatin precursors
resulted in a good similarity for allatostatin-C with an EST
sequence from gregarious head cDNA (CO835369).
Although the E-value turned out to be rather high (4e-4)
and the translated sequence yielded a number of stop
codons, the peptide sequence itself is very good preserved
(QVRYRQCYFNPISCF in D. melanogaster and QLRYYR-
CYFNPISCF in L. migratoria) (Fig. 8). Also the Lepidop-
teran allatostatin-C (QVRFRQCYFNPISCF), the only
other allatostatin-C identified thus far, is almost identical.
This is the first report of an allatostatin-C sequence in

locusts and in heterometabolous insects in general. The
allatostatin B-type was discovered as a myoinhibiting pep-
tide in L. migratoria [61], whereas several A-type allatostat-
ins have been purified and sequenced in S. gregaria, for
which the precursor has also been cloned and sequenced
[62,63]. The presence of all three types of allatostatins in
a representative of the insect order Diptera (D. mela-
nogaster) and Orthoptera (L. migratoria) strengthens the
assumption that all insects (holometabolous and heter-
ometabolous) have peptides belonging to the three differ-
ent allatostatin peptide families. The mass corresponding
to this novel allatostatin-C peptide displaying one disul-
phide bridge (1969.9 Da) was found in peptide extracts of
the ventral nerve cord, indicating that this mature peptide
is processed from the presumed allatostatin-C precursor.

Conclusion
Heretofore 9 neuropeptide precursors had been identified
in L. migratoria, including the pacifastin-like precursor 1–
3, adipokinetic hormone precursor 1–3, insulin-related
peptide precursor, neuroparsin precursor and ion trans-
port peptide precursor. In this study this number was
increased to 15, as we annotated the peptide precursor
transcripts of two novel neuroparsin precursors, the tach-
ykinin precursor, ecdysis-triggering hormone precursor,
long neuropeptide F precursor and allatostatin-C precur-
sor in the EST database published by Kang et al [13]. These
annotations were based on a profound sequence homol-
ogy with neuropeptide precursors that have been cloned
and sequenced previously in locusts (pacifastins and neu-
roparsins) [19,20] or, for the smaller peptides, were sup-

Locusta migratoria Neuropeptide FFigure 7
Locusta migratoria Neuropeptide F. Amino acid sequence alignment of CG10342 (the Drosophila NPF-precursor) and the 
ORF of CO854418. The signal peptide is indicated in italic, possible amidation and dibasic cleavage sites are marked in bold and 
a (putative) NPF-peptide is marked.

CG10342 MCQTMRCILVACVALALLAAGCRVEASNSRPPRKNDVNTMADAYKFLQDLDTYYGDRARV

CO854418 MSQSR--PLALLVVAALVAAAVLVAAAEAQQADGNKLEGLADALKYLQELDRYYSQVARP

                *.*:    *.  *. **:**.  * *:::: .  *.:: :*** *:**:** **.: ** 

CG10342         RFGKRGSLMDILRNHEMDNINLGKNANNGGEFARGFNEEEIF

CO854418        RFGKR----AELRPDVVDDVIP--EEMSADKFWRRFARRR--

                *****      ** . :*::    :  ...:* * * ...

Locusta migratoria Allatostatin-CFigure 8
Locusta migratoria Allatostatin-C. Amino acid sequence corresponding to the ORF of CO835369. Possible dibasic cleavage 
sites and translation stops are indicated in bold, a possible allatostatin-C peptide is marked.

TRAESAIFKISKRVITPStopSVAWStopCAVFVCStopLCILTAStopIAStopKStopTSIStopCSAVKRKNCV
SVVGAIPFLLStopAAIKRWPIVFSNStopLPQStopFEYKStopGYQLLHLPKRCStopTGYAGLRPCASSICLLL
RPYIVHADDPEPDSNRFIYKRKRQLRYYRCYFNPISCFStopNKELYLLIFEWQERKCNMIILStopSDFDNCDFCY
SFQKLNKQCIQNLFSFVIEITNKStop
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ported by mass spectrometry data from this study
(tachykinins, ecdysis-triggering hormones and allatosta-
tin-C). Our search method was validated by the detection
of three pacifastin-like precursors that were previously
cloned and sequenced [19,20]. Although blasting the neu-
roparsin peptide precursor did not result in an exact
match, it did reveal the presence of two novel neu-
roparsin-related precursors. These novel precursors can be
considered as paralogues, which probably evolved differ-
ently after a gene duplication event in evolution. Both
newly annotated neuroparsin transcripts show high simi-
larity with previously identified neuroparsin precursors
from S. gregaria.

The BLAST search program is not optimal for detecting
small peptides. In fact, no specialised search tools for
small peptides are available to date. To circumvent this
problem, we combined several peptide isoforms and
(post-translational) processing sites in a single search.
This way, the hitherto unknown Locusta tachykinin pre-
cursor was identified, which not only contained two cop-
ies of a known tachykinin peptide (TK-4), but in addition
a putative novel tachykinin-related peptide (TK-5). Mass
spectrometrical analyses of peptide fractions from the
Locusta central nervous system revealed that this peptide is
actually generated as an endogenous peptide via post-
translational cleavage at the dibasic cleavage sites.
Although the other 3 known tachykinins were not con-
tained within this newly predicted precursor, the absence
of a stop codon leaves open the possibility that the 3 other
known tachykinin sequences may be located more C-ter-
minally within this same precursor.

Blasting neuropeptide precursors from D. melanogaster
also proved to be a successful approach. This way, we were
able to annotate the long neuropeptide F, ecdysis-trigger-
ing hormone, and allatostatin-C precursor orthologues in
L. migratoria. This is the first time that these peptide pre-
cursors have been demonstrated in a heterometabolous
insect. L. migratoria (heterometabolous) and D. mela-
nogaster (holometabolous) have followed different evolu-
tionary paths, meaning that these peptides have been well
conserved during evolution.

Several other neuropeptide(precursors) were not found
within our EST database search. It is possible that these are
not present in the EST database (which does not cover the
entire transcriptome) or that these neuropeptides are not
encoded at all in the genome of L. migratoria. We also have
to keep in mind that our analysis of the EST database is
biased towards some factors. It is estimated that 3% of
ESTs contain sequencing errors. Because of these errors,
translated sequences could be wrong or insignificant at
first sight. A misread nucleotide can cause the formation

of a stop codon or a missing nucleotide can disturb the
reading frame.

This study is a nice example of how bioinformatics can
offer a solution for biological questions. New precursors
and peptides are now found in a relatively easy manner,
compared with the months and years sometimes needed
for a biologist to characterise just one peptide precursor.
In the future these EST data can be used to design primers
for cloning and full-length sequencing of the respective
genes. The characterisation of the precursor protein can
lead to the characterisation of novel peptide isoforms
encoded by the same precursor protein (see tachykinin).
Moreover, comparison of precursor sequences enables us
to obtain more crucial information about the evolution-
ary and/or interphyletic relationship than does compari-
son of peptide sequences alone. Comparable studies have
been conducted for holometabolous insects (D. mela-
nogaster and Anopheles gambiae), however, here genomic
data were mined to annotate neuropeptide precursors
instead of EST data [64-67]]. Our study is also unique in
that respect that for three neuropeptide precursors our
data were consolidated by mass spectrometry.

Methods
Database searches
All presently known neuropeptide (precursor) sequences
from L. migratoria,S. gregaria and D. melanogaster were
used in a homology search with the recently generated
EST databases of L. migratoria, deposited in the GenBank
database under the accession nos. CO819675–CO832059
and CO832067–C0865130[13]. For this purpose, tblastn,
a program of the BLAST family, was used. The database
was set to EST_others and was limited to the Locusta EST
databases created by Kang et al. By entering the accession
numbers under entrez query. For all other parameters
default values were used. Signal peptide cleavage sites
were predicted by using SignalP 3.0 [68]. Putative neu-
ropeptide precursors were aligned by using CLUSTALW
[69].

Animals and peptide extraction
L. migratoria was raised under laboratory conditions [70],
under a 13 h light, 11 h dark photoperiod at a constant
temperature of 32°C and relative humidity between 40
and 60%. They were kept under gregarious conditions in
cages of 38 cm × 38 cm × 38 cm that contained at least 100
locusts and fed daily with fresh grass and oatmeal ad libi-
tum. Both male and female locusts were decapitated with-
out previous anaesthesia. Neural tissues (brain parts,
suboesophageal ganglia, circumoesophageal connectives,
corpora cardiaca, corpora allata, frontal ganglia, hypocer-
ebral ganglia, thoracic ganglia, abdominal ganglia,
abdominal perisympathetic organs) from adult locusts (5
equivalents) and tracheae from fifth instar larvae (approx-
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imately 15 equivalents) were dissected in Ringer solution
and transferred to a 0.5-ml Eppendorf tube on ice, con-
taining 50 μl methanol/water/acetic acid (90/9/1) for
neural tissues and 200 μl of the same solution for tracheae
(Ringer solution, 9.82 g/l NaCl, 0.32 g/l CaCl2, 0.48 g/l
KCl, 0.73 g/l MgCl2, 0.25 g/l NaHCO3, 0.19 g/l NaH2PO4,
pH 6.5). The samples were sonicated (on ice) three times
for 1 min and the remaining solid fraction was centrifuged
down (10 min at 9500 g).

Prior to the MS analysis the samples (neural tissues) were
concentrated and desalted using ZipTipC18 pipette tips
(Millipore, 15 μm). For this purpose, the supernatants
were dried in a vacuum centrifuge and reconstituted in 50
μl of 0.1% aqueous TFA. The ZipTipC18 was pre-equili-
brated for sample binding using 0.1% aqueous TFA con-
taining 50% CH3CN, followed by 0.1% aqueous TFA. The
sample was loaded onto the ZipTipC18 and, after flushing
with 0.1% aqueous TFA to remove salts and other impuri-
ties, eluted in 4 μl 0.1% aqueous formic acid (FA) contain-
ing 70% CH3CN.

For nanoLC-Q-TOF MS(MS) (tracheae), the supernatant
was filtered through a spindown filter (Ultrafree-MC, 0.22
μm, Millipore). The filtrate was dried in a vacuum centri-
fuge (Speedvac Concentrator SVC200H, Savant) and sub-
sequently redissolved in 0.1% aqueous FA.

Mass spectrometry
Matrix-assisted laser desorption/ionisation (MALDI)
time-of-flight (TOF) mass spectrometry was performed on
a Reflex IV (Bruker Daltonic GmbH), equipped with a N2
laser and pulsed ion extraction accessory. One μl of the
sample solution was transferred to a ground steel target
plate, mixed with 0.5 μl of a saturated solution of α-
cyano-4-hydroxycinnamic acid in acetone and air-dried.
The instrument was calibrated using a standard peptide
mixture (Bruker Daltonic GmbH). Spectra were recorded
in the reflectron mode within a mass range from m/z 500
to m/z 3000.

Nanoflow electrospray ionisation (ESI) double quadru-
pole (Qq) orthogonal acceleration (oa) time-of-flight
(TOF) mass spectrometry was performed on a Q-tof
instrument (Micromass, UK). One microliter of the sam-
ple solution was loaded into a gold-coated capillary (Long
NanoES spray capillaries for Micromass Q-tof, Protana
Engineering A/S). The sample was sprayed at a typical
flow rate of 30 nl/min giving extended analysis time in
which MS spectra as well as several MSMS spectra were
acquired. During MSMS or tandem mass spectrometry,
fragment ions are generated from a selected precursor ion
by collision-induced dissociation.

Nanoflow liquid chromatography (nanoLC) Q-TOF
MS(MS) was conducted using a Famos autosampler, a
Switchos column-switching device and an Ultimate HPLC
pump (all LC Packings) coupled to a Q-TOF mass spec-
trometer (Micromass) as described earlier [8]. Ten μl of
sample (corresponding to approximately 15 tracheae) was
loaded. The separation was done on a NanoEase Atlantis™
Dc18 column (3 μm, 100 μm × 100 mm, Waters) using a
linear gradient from 95% solvent A, 5% solvent B to 40%
solvent A, 60% solvent B in 50 minutes, with a constant
flow rate of 150 nl/min (solvent A: 0.1% FA in water; sol-
vent B: 0.1% FA in CH3CN). The outlet of the HPLC was
connected to the electrospray interface of the Q-TOF mass
spectrometer. The column eluent was directed through a
stainless steel nano-bore emitter (Proxeon). Tandem mass
spectrometry was conduced in an automated fashion.
Doubly and triply charged ions above a certain threshold
were selected for fragmentation by collision-induced dis-
sociation. The applied collision energy was chosen auto-
matically depending on the number of charges and the
mass to charge ratio of the selected ion.
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